1
|
Ma Y, Li H, Li Y, Wei D. Preparation of Paper-Based Fluorescent Sensors and Their Application for the Detection of Cu 2+ in Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3920. [PMID: 39203098 PMCID: PMC11355718 DOI: 10.3390/ma17163920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024]
Abstract
Excessive copper (Cu2+) causes adverse effects on human health and the ecological environment. Traditional methods for detecting Cu2+ have drawbacks such as high detection costs, complex operating conditions, and being time consuming. Therefore, there is an urgent need to develop simple detection methods to better meet specific health and environment quality needs. In this work, a paper-based fluorescence sensor was prepared (herein referred to as the as-prepared method) by immersing filter paper in aqueous polyethyleneimine (PEI) solution, and its potential use in Cu2+ detection was investigated. The results showed that the as-prepared paper samples, with fluorescence properties obtained by aggregation-induced luminescence of PEI, have selective recognition of Cu2+ based on the internal filtration effect, and the lowest detection limit is 0.03 μM. In addition, the relative error of this method is in the range of 1.80~2.23%, which is relatively comparable to the national standard method (0.63~630 μM), demonstrating high accuracy. Therefore, paper-based sensors with a simple preparation method have potential applications in the detection of Cu2+ in water.
Collapse
Affiliation(s)
- Yue Ma
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China; (Y.M.); (H.L.)
- Hebei Key Laboratory of Quality and Safety Analysis of Agricultural Products and Food, Hebei North University, Zhangjiakou 075000, China
| | - Hui Li
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China; (Y.M.); (H.L.)
- Hebei Key Laboratory of Quality and Safety Analysis of Agricultural Products and Food, Hebei North University, Zhangjiakou 075000, China
- Key Laboratory of Quality and Safety of Zhangjiakou Special Agricultural Products, Hebei North University, Zhangjiakou 075000, China
| | - Yufeng Li
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China; (Y.M.); (H.L.)
- Hebei Key Laboratory of Quality and Safety Analysis of Agricultural Products and Food, Hebei North University, Zhangjiakou 075000, China
| | - Dong Wei
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China; (Y.M.); (H.L.)
- Hebei Key Laboratory of Quality and Safety Analysis of Agricultural Products and Food, Hebei North University, Zhangjiakou 075000, China
- Key Laboratory of Quality and Safety of Zhangjiakou Special Agricultural Products, Hebei North University, Zhangjiakou 075000, China
| |
Collapse
|
2
|
Jieying S, Tingting L, Caie W, Dandan Z, Gongjian F, Xiaojing L. Paper-based material with hydrophobic and antimicrobial properties: Advanced packaging materials for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13373. [PMID: 38778547 DOI: 10.1111/1541-4337.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.
Collapse
Affiliation(s)
- Shi Jieying
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Tingting
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wu Caie
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhou Dandan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fan Gongjian
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Li Xiaojing
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Hua Y, Liu C, Tang Y. Conductive and antibacterial films by loading reduced graphene oxide/silver nanoparticles on cellulose nanofiber films. Int J Biol Macromol 2023; 242:124752. [PMID: 37156316 DOI: 10.1016/j.ijbiomac.2023.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
The development of sustainable high-performance materials based on nanocellulose has received great attention in recent years. Herein, nanocellulose based composite films with highly electro-conductive and antibacterial properties have been developed by loading reduced graphene oxide (rGO)/silver nanoparticles (AgNPs) on cellulose nanofiber films via vacuum filtration process. The reduction effect of gallic acid on the chemical structure and electrical conductivity of rGO/AgNP composites was studied. Due to the strong reducibility of gallic acid, the obtained rGO/AgNPs exhibited a high electrical conductivity of 1549.2 S·m-1. Furthermore, the electrical conductivity, mechanical properties and antibacterial properties of the prepared rGO/AgNP-cellulose nanofiber films as a function of various proportions were investigated. The prepared composite film with a specific ratio of rGO/AgNPs to cellulose nanofibers as 7:3 exhibited the superior tensile strength of 28.0 MPa and the electrical conductivity of 1199.3 S·m-1. Meanwhile, compared with pure cellulose nanofiber films, rGO/AgNP-cellulose nanofiber films displayed strong antibacterial effect against Escherichia coli and Staphylococcus aureus. Therefore, this work demonstrated an effective approach for imparting structural and functional properties to cellulose nanofiber based films, which could hold great application prospects for flexible and wearable electronics.
Collapse
Affiliation(s)
- Yiwen Hua
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Liu
- International Innovation Center for Forest Chemicals and materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanjun Tang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Huo J, Zhang M, Wang D, S Mujumdar A, Bhandari B, Zhang L. New preservation and detection technologies for edible mushrooms: A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3230-3248. [PMID: 36700618 DOI: 10.1002/jsfa.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyi Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Dayuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Lujun Zhang
- R&D Center, Shandong Qihe Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
5
|
Li L, Liu W, Yao X, Wang W, Yan C, Kang D. Study on film forming characteristic of ε-polylysine grafted chitosan through TEMPO oxidation system and its preservation effects for pork fillet. Meat Sci 2023; 201:109189. [PMID: 37031666 DOI: 10.1016/j.meatsci.2023.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
The present study synthesized a new type of ε-polylysine (PL) modified chitosan film (TO-CH-PL) through TEMPO (2,2,6,6-Tetramethylpiperidine) oxidation system. Firstly, the physicochemical properties of the TO-CH-PL were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive spectrometer analysis. Results proved that PL was successfully grafted onto chitosan molecules. Based on the water vapor, oxygen permeability, and mechanical analysis, the TO-CH-PL film demonstrated higher physical properties than chitosan and PE films. Secondly, the TO-CH-PL film's preservation effect on pork fillets was evaluated. Due to the significant retardation of growth of the aerobic plate count (APC), total volatile basic nitrogen (TVBN), and thiobarbituric acid reactive substances (TBARS), as well as the changes of pH and color in packaged pork, TO-CH-PL film exhibited better preservation effects for the pork samples. According to the criteria of TVBN values (<15 mg/100 g), compared with CH and PE films, TO-CH-PL film can prolong the shelf life of pork for 2 to 3 days. Therefore, PL-modified chitosan films could be introduced as an alternative method to maintain the quality indices and extend the shelf life of pork during refrigerated storage.
Collapse
Affiliation(s)
- Ling Li
- College of Life Sciences, Linyi University, Linyi, Shandong, China
| | - Wenjing Liu
- College of Life Sciences, Linyi University, Linyi, Shandong, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food, Co. Ltd., Linyi, Shandong, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food, Co. Ltd., Linyi, Shandong, China
| | - Chengying Yan
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Dacheng Kang
- College of Life Sciences, Linyi University, Linyi, Shandong, China.
| |
Collapse
|
6
|
Guo Y, Chen X, Gong P, Long H, Wang J, Deng Z, Wang R, Han A, Qi Z, Yao W, Yang W, Wang J, Li N, Chen F. Characterization of an active film prepared with Lentinus edodes (shiitake) polysaccharide and its effect on post-harvest quality and storage of shiitake. Int J Biol Macromol 2023; 238:123973. [PMID: 36921827 DOI: 10.1016/j.ijbiomac.2023.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
The aim of this study was to prepare a film based on shiitake (Lentinus edodes) stalk polysaccharides (LEP) for mushroom preservation. The effects of different LEP concentrations on physical, mechanical, antioxidant, and antimicrobial properties of the prepared film were evaluated. Using scanning electron microscopy, it was revealed that the addition of 1.5 % LEP resulted in homogeneous distribution in the prepared film, as well as greatly improved its antimicrobial properties. Moreover, LEP film resulted in superior mushroom preservation by regulating enzyme activities related to mushroom browning and softening, thereby decaying these processes. In addition, the prepared film maintained mushroom quality by reducing the accumulation of H2O2 and activating the regulatory system against oxidative stress. Collectively, the findings of the present study highlight the potential benefits of LEP films as a strategy to improve mushroom quality and prevent post-harvest spoilage, hence constituting a novel prospect for the development of shiitake by-products.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Aoyang Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
7
|
Abdelatif Y, Gaber AAM, Fouda AEAS, Elsokkary T. Sustainable utilization of calcined sugarcane mud waste as nanofiller for fine paper production. BIOMASS CONVERSION AND BIOREFINERY 2022. [DOI: 10.1007/s13399-022-03571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 09/02/2023]
|
8
|
Preparation of robust and fully bio-based modified paper via mussel-inspired layer-by-layer assembly of chitosan and carboxymethyl cellulose for food packaging. Int J Biol Macromol 2022; 222:1238-1249. [PMID: 36181888 DOI: 10.1016/j.ijbiomac.2022.09.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
A green and facile method was proposed to prepare robust and fully bio-based modified paper in this study, which involved in layer-by-layer deposition of chitosan (CS) and mussel adhesive protein-mimetic polymer (dopamine-grafted carboxymethyl cellulose, CMC-g-DA) on paper surface and subsequent oxidative cross-linking by sodium periodate. The mechanical, barrier and antibacterial properties of the cross-linked multilayer-modified paper significantly improved with the increased bilayer numbers. Compared with unmodified paper, cross-linked (CS/CMC-g-DA)6 multilayer-modified paper exhibited 71.6 % improvement in tensile strength, 69.2 % and 56.3 % decline in air and water vapor permeability, as well as above 90 % antibacterial efficiency against S. aureus and E. coli. Particularly, the cross-linked multilayer-modified paper maintained outstanding functional stability even after suffering from vigorously corrosive treatment. The obtained functional paper effectively extended the shelf-life of Agaricus bisporus to 6 days under ambient conditions. We believed that the prepared robust functional paper in this study will have promising application prospect in food packaging field.
Collapse
|
9
|
Nian L, Wang M, Sun X, Zeng Y, Xie Y, Cheng S, Cao C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:2304-2339. [PMID: 36123805 DOI: 10.1080/10408398.2022.2122924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The consumption of fresh fruits and vegetables is restricted by the susceptibility of fresh produce to deterioration caused by postharvest physiological and metabolic activities. Developing efficient preservation strategies is thus among the most important scientific issues to be urgently addressed in the field of food science. The incorporation of active agents into a polymer matrix to prepare biodegradable active packaging is being increasingly explored to mitigate the postharvest spoilage of fruits and vegetables during storage. This paper reviews the composition of biodegradable polymers and the methods used to prepare biodegradable active packaging. In addition, the interactions between bioactive ingredients and biodegradable polymers that can lead to plasticizing or cross-linking effects are summarized. Furthermore, the applications of biodegradable active (i.e., antibacterial, antioxidant, ethylene removing, barrier, and modified atmosphere) packaging in the preservation of fruits and vegetables are illustrated. These films may increase sensory acceptability, improve quality, and prolong the shelf life of postharvest products. Finally, the challenges and trends of biodegradable active packaging in the preservation of fruits and vegetables are discussed. This review aims to provide new ideas and insights for developing novel biodegradable active packaging materials and their practical application in the preservation of postharvest fruits and vegetables.
Collapse
Affiliation(s)
- Linyu Nian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Sun
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yan Zeng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yao Xie
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
11
|
Tong H, Chen H, Zhao Y, Liu M, Cheng Y, Lu J, Tao Y, Du J, Wang H. Robust PDMS-based porous sponge with enhanced recyclability for selective separation of oil-water mixture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Cheng S, Li F, Mei X. Structure, mechanical and physical properties of hordein/chitosan composite films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Jafarzadeh S, Forough M, Amjadi S, Javan Kouzegaran V, Almasi H, Garavand F, Zargar M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit Rev Food Sci Nutr 2022; 63:9667-9693. [PMID: 35522084 DOI: 10.1080/10408398.2022.2070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumer demands to utilize environmentally friendly packaging have led researchers to develop packaging materials from naturally derived resources. In recent years, plant protein-based films as a replacement for synthetic plastics have attracted the attention of the global food packaging industry due to their biodegradability and unique properties. Biopolymer-based films need a filler to show improved packaging properties. One of the latest strategies introduced to food packaging technology is the production of nanocomposite films which are multiphase materials containing a filler with at least one dimension less than 100 nm. This review provides the recent findings on plant-based protein films as biodegradable materials that can be combined with nanoparticles that are applicable to food packaging. Moreover, it investigates the characterization of nanocomposite plant-based protein films/edible coatings. It also briefly describes the application of plant-based protein nanocomposite films/coating on fruits/vegetables, meat and seafood products, and some other foods. The results indicate that the functional performance, barrier, mechanical, optical, thermal and antimicrobial properties of plant protein-based materials can be extended by incorporating nanomaterials. Recent reports provide a better understanding of how incorporating nanomaterials into plant protein-based biopolymers leads to an increase in the shelf life of food products during storage time.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
14
|
Zeng L, Zhu Z, Sun DW. Novel graphene oxide/polymer composite membranes for the food industry: structures, mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 62:3705-3722. [PMID: 35348019 DOI: 10.1080/10408398.2022.2054937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The membrane can not only be used as food packaging, but also for the separation, fractionation and recovery of food ingredients. Graphene oxide (GO) sheets are a two-dimensional (2 D) material with a unique structure that exhibit excellent mechanical properties, biocompatibility, and flexibility. The corporation of polymer matrix membrane with GO can significantly improve the permeability, selectivity, and antibacterial activity. In this review, the chemical structures of GO, GO membranes and GO/polymer composite membranes are introduced, the permeation mechanisms of molecules through the membranes are discussed and key factors affecting the permeability are presented in detail. In addition, recent applications in the food industry for filtration, bioreactions and active food packaging are analyzed, and limitations and future trends of GO membranes development are also highlighted. GO/polymer composite membranes exhibit excellent permeability, selectivity and strong barrier properties against bacterial and gas permeation. However, current food material filtration and packaging applications of GO/polymer composite membranes are still in the laboratory stage. Future work can focus on the development of large scale uniformly sized GO production, the homogeneous distribution and tight combination of GO in polymer matrixes, the sensing function of GO in packaging, and the verification method of GO toxicology.
Collapse
Affiliation(s)
- Leyin Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
15
|
Ultra-high gas barrier and enhanced mechanical properties of corn cellulose nanocomposite films filled with graphene oxide nanosheets. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
Zhou H, Tong H, Lu J, Cheng Y, Qian F, Tao Y, Wang H. Preparation of bio-based cellulose acetate/chitosan composite film with oxygen and water resistant properties. Carbohydr Polym 2021; 270:118381. [PMID: 34364623 DOI: 10.1016/j.carbpol.2021.118381] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
Plastic pollution has inspired the preparation of environmentally friendly bio-based plastics that can replace petroleum-based plastics. Herein, a composite film with oxygen and water resistant properties was prepared by a fluidized bed method, employing bio-based cellulose acetate (CA) as raw material, glycerol as a plasticizer, and chitosan and silica as additives. The addition of 15% chitosan greatly reduced the oxygen transmission rate of the CA film by 83.5%, and increased the tensile stress and tensile strain of the composite membrane, reaching 26.5 MPa and 22.2%, respectively. The deposition of silica particles is able to compensate for the undesired increase in the hydrophilicity caused by the addition of chitosan, and tune the hydrophilic nature of the surface of the CA/CS films to the hydrophobic nature, which is desirable for water-resistant applications. The prepared composite film displays good oxygen and water resistant properties and can be used for food packaging and related applications.
Collapse
Affiliation(s)
- Huimin Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, China
| | - Hao Tong
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, China
| | - Jie Lu
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, China
| | - Yi Cheng
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Yehan Tao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, China.
| | - Haisong Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|