1
|
Kassie BB, Daget TM, Tassew DF. Synthesis, functionalization, and commercial application of cellulose-based nanomaterials. Int J Biol Macromol 2024; 278:134990. [PMID: 39181366 DOI: 10.1016/j.ijbiomac.2024.134990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In recent times, cellulose, an abundant and renewable biopolymer, has attracted considerable interest due to its potential applications in nanotechnology. This review explores the latest developments in cellulose-based nanomaterial synthesis, functionalization, and commercial applications. Beginning with an overview of the diverse sources of cellulose and the methods employed for its isolation and purification, the review delves into the various techniques used for the synthesis of cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs), highlighting their unique properties and potential applications. Furthermore, the functionalization strategies employed to enhance the properties and tailor the functionalities of cellulose-based nanomaterials were discussed. The review also provides insights into the emerging commercial applications of cellulose-based nanomaterials across diverse sectors, including packaging, biomedical engineering, textiles, and environmental remediation. Finally, challenges and prospects for the widespread adoption of cellulose-based nanomaterials are outlined, emphasizing the need for further research and development to unlock their full potential in sustainable and innovative applications.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | - Tekalgn Mamay Daget
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
2
|
Lin Y, Wang Q, Huang Y, Du J, Cheng Y, Lu J, Tao Y, Wang H. Design of amphoteric MOFs-cellulose based composite for wastewater remediation: Adsorption and catalysis. Int J Biol Macromol 2023; 247:125559. [PMID: 37394212 DOI: 10.1016/j.ijbiomac.2023.125559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
Water pollution remains a serious problem for aquatic organism and human beings. Developing an efficient material which can simultaneously remove and convert pollutants into low or no harmful compounds is an essential issue. Targeting at this goal, a multifunctional and amphoteric wastewater treatment material of Co-MOF and functionalized cellulose-based composite (CMC/SA/PEI/ZIF-67) was designed and prepared. Carboxymethyl cellulose (CMC) and sodium alginate (SA) were selected as support to construct an interpenetrating network structure and made it crosslinked with polyethyleneimine (PEI) for further in situ growth of ZIF-67 with good dispersion. The material was characterized using an appropriate set of spectroscopic and analytical techniques. When applied in the adsorption of heavy metal oxyanions with no adjustment of pH, the adsorbent could completely decontaminate Cr(VI) at both low and high initial concentrations with good reduction rates. The adsorbent maintained good reusability after five cycles. Meanwhile, the cobalt species of CMC/SA/PEI/ZIF-67 can activate peroxymonosulfate to generate high oxidizing substances (such as SO4-· and ·OH- radicals) to degrade cationic rhodamine B dye within 120 min, thus indicating the amphoteric and catalytic nature of our CMC/SA/PEI/ZIF-67 adsorbent. The mechanism of the adsorption and catalytic process was also discussed based with the assistance of different characterization analysis.
Collapse
Affiliation(s)
- Yujiao Lin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingqing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuhui Huang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Yue J, Zhou S, Ji X, Jiao C, Cheng Y, Tao Y, Lu J, Du J, Wang H. High-performance carboxymethyl cellulose-based composite film tailored by versatile zeolitic imidazolate framework. Int J Biol Macromol 2023; 229:295-304. [PMID: 36592855 DOI: 10.1016/j.ijbiomac.2022.12.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Robust biopolymer-based composite film with multifunctional performances significantly contributes to the packaging field. Herein, we proposed a sort of carboxymethyl cellulose (CMC) based composite film via incorporating versatile zeolitic imidazolate framework (ZIF) materials. Compared to pristine CMC film, the OTR, WVTR, and tensile strength of CMC/ZIF composite film with 1 wt ‰ Zn/Co-ZIF were improved from 64.89 cm3*μm/(m2*d*kPa), 1579.21 g/(m2*24h) and 16.9 MPa to 20.79 cm3*μm/(m2*d*kPa), 1209.58 g/(m2*24h) and 70.1 MPa, respectively. Notably, owing to the reduced band gap and intrinsic chemical and thermal stability of Zn/Co-ZIF, the fabricated Zn/Co-ZIF/CMC composite film presented well UV protection capability within the whole UV region and excellent UV-blocking durability after being exposed to UV-light at 365 nm for 12 h. In practice, the photocatalytic degradation of RhB solutions under UV light could be effectively suppressed when using Zn/Co-ZIF/CMC film as UV protection layer. Our findings proposed the potential application of these versatile ZIF materials as functional nanofiller within biopolymer substances for UV protection and transparent packaging area.
Collapse
Affiliation(s)
- Jiaji Yue
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Siying Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chunqi Jiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Mai T, Li DD, Chen L, Ma MG. Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydr Polym 2023; 302:120359. [PMID: 36604046 DOI: 10.1016/j.carbpol.2022.120359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the star nanomaterial in functional polymers, have a large surface area, high porosity, and adjustable structure. The collaboration of nanocellulose and MOFs is a desirable strategy to make composites especially interesting for multifunctional and multi-field applications. What sparks will be produced by the collaboration of two-star nanomaterials? In this review article, we highlight an up-to-date overview of nanocellulose-based MOFs composites. The sewage treatment, gas separation, energy storage, and biomedical applications are mainly summarized. Finally, the challenges and research trends of nanocellulose-based MOFs composites are prospected. We hope this review may provide a valuable reference for the development and applications of carbohydrate polymer composites soon.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Dan-Dan Li
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Improved piezoelectricity of porous cellulose material via flexible polarization-initiate bridge for self-powered sensor. Carbohydr Polym 2022; 298:120099. [DOI: 10.1016/j.carbpol.2022.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
6
|
Shen Y, Li X, Huang H, Lan Y, Gan L, Huang J. Embedding Mn2+ in polymer coating on rod-like cellulose nanocrystal to integrate MRI and photothermal function. Carbohydr Polym 2022; 297:120061. [DOI: 10.1016/j.carbpol.2022.120061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
7
|
Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li MC. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Shi Z, Li S, Li M, Gan L, Huang J. Surface modification of cellulose nanocrystals towards new materials development. J Appl Polym Sci 2021. [DOI: 10.1002/app.51555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenxu Shi
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Shufang Li
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Mingxia Li
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Lin Gan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bintuan Shihezi University Shihezi, Xinjiang China
| |
Collapse
|
10
|
Abdelhamid HN, Mathew AP. In-situ growth of zeolitic imidazolate frameworks into a cellulosic filter paper for the reduction of 4-nitrophenol. Carbohydr Polym 2021; 274:118657. [PMID: 34702476 DOI: 10.1016/j.carbpol.2021.118657] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 02/01/2023]
Abstract
Whatman® cellulosic filter paper was used as a substrate for the synthesis of two zeolitic imidazolate frameworks (ZIFs); ZIF-8 and ZIF-67 with and without 2,2,6,6-tetramethyl-1-piperidine oxoammonium salt (TEMPO)-oxidized cellulose nanofibril (TOCNF). All synthesis procedures take place at room temperature via a one-pot procedure. The synthesis steps were followed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transforms infrared (FT-IR). Data indicated the formation of metal oxide that converted to a pure phase of ZIFs after the addition of the organic linker i.e. 2-methyl imidazole (Hmim). The materials were characterized using XRD, FT-IR, SEM, energy dispersive X-ray (EDX), nitrogen adsorption-desorption isotherms, and X-ray photoelectron microscope (XPS). Data analysis confirms the synthesis of ZIFs into Whatman® filter paper. The materials were used for the reduction of pollutants such as 4-nitrophenol (4-NP) compound to 4-aminophenol (4-AP). The materials exhibit high potential for water treatment and may open new exploration for hybrid materials consisting of cellulose and ZIFs.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt.
| | - Aji P Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
11
|
Rana AK, Frollini E, Thakur VK. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. Int J Biol Macromol 2021; 182:1554-1581. [PMID: 34029581 DOI: 10.1016/j.ijbiomac.2021.05.119] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 01/04/2023]
Abstract
Cellulose nanocrystals (CNCs) have attracted great interest from researchers from academic and industrial areas because of their interesting structural features and unique physicochemical properties, such as magnificent mechanical strength, high surface area, and many hydroxyl groups for chemical modification, low density, and biodegradability. CNCs are an outstanding contender for applications in assorted fields comprehensive of, e.g., biomedical, electronic gadgets, water purifications, nanocomposites, membranes. Additionally, a persistent progression is going on in the extraction and surface modification of cellulose nanocrystals to fulfill the expanding need of producers to fabricate cellulose nanocrystals-based materials. In this review, the foundation of nanocellulose that emerged from lignocellulosic biomass and recent development in extraction/preparation of cellulose nanocrystals and different types of cellulose nanocrystal surface modification techniques are summed up. The different sorts of cellulose modification reactions that have been discussed are acetylation, oxidations, esterifications, etherifications, ion-pair formation, hydrogen bonding, silanization, nucleophilic substitution reactions, and so forth. The mechanisms of surface functionalization reactions are also introduced and considered concerning the impact on the reactions. Moreover, the primary association of cellulose and different forms of nanocellulose has likewise been examined for beginners in this field.
Collapse
Affiliation(s)
| | - Elisabete Frollini
- São Carlos Institute of Chemistry, Macromolecular Materials and Lignocellulosic Fibers Group, Center for Science and Technology of BioResources, University of São Paulo, C.P. 780, São Carlos, SP CEP 13560-970, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
12
|
Song L, Miao X, Li X, Bian F, Lin J, Huang Y. A tunable alkaline/oxidative process for cellulose nanofibrils exhibiting different morphological, crystalline properties. Carbohydr Polym 2021; 259:117755. [PMID: 33674009 DOI: 10.1016/j.carbpol.2021.117755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
This study describes a two-step alkali/oxidation process to efficiently convert waste sugarcane bagasse (SCB) into cellulose nanofibrils (CNF) whose structures have been characterized using a range of analytical techniques (SR-WAXS, IR, TEM and DLS). Increasing the concentration of the NaOH solution from 10 to 16 wt% in the first step results in a gradual increase in cellulose II content from 0 to >99 %, which also produces a corresponding increase in fiber crystallinity index from 32 to 61 %. Varying the concentration of NaClO used in the second oxidative step enables the morphologies of the CNF to be reliably controlled, with fiber lengths decreasing from micrometer to nanometer levels as the amount of NaClO oxidant used is increased. This simple two-step alkaline/oxidative treatment process enables SCB to be converted into CNF exhibiting different polymorphic and morphological properties, thus enabling their economic and reproducible production as nanostructured materials for numerous applications.
Collapse
Affiliation(s)
- Liangyi Song
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaran Miao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuhong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fenggang Bian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jinyou Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Yuying Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| |
Collapse
|
13
|
Liu M, Kuang K, Li G, Yang S, Yuan Z. Photoluminescence-enhanced cholesteric films: Coassembling copper nanoclusters with cellulose nanocrystals. Carbohydr Polym 2021; 257:117641. [PMID: 33541665 DOI: 10.1016/j.carbpol.2021.117641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Iridescent and luminescent composite films were fabricated through a coassembly strategy, in which glutathione-stabilized copper nanoclusters (GSH-CuNCs) were incorporated into chiral nematic structures of a cellulose nanocrystal (CNC) film. Through variations in the helical pitch, these composite films exhibited broadband reflection. The fluorescence emission spectrum of the composite film exhibited peaks at 439 and 600 nm, corresponding to crystallization-induced emission from CNCs and assembly-induced emission from CuNCs. The enhanced luminescence and prolonged lifetime of the composite film were attributed to the confinement effect of solid layers and attendant intermolecular interactions. By tuning the reaction time, temperature, and pH of the solution, the emission color and intensity of the CuNCs could be changed. At appropriate GSH and Cu2+ concentrations, the chiral organization of GSH-CuNCs enabled the composite CNC film to exhibit right-handed chiral fluorescence with an asymmetry factor of -0.16. Luminescent composite films were employed to fabricate LEDs with custom colors and patterns.
Collapse
Affiliation(s)
- Mingye Liu
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Kexu Kuang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guihua Li
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shiquan Yang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zaiwu Yuan
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|