1
|
Zhang J, Liu D, Liang X, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Synthesis and characterization of selenium nanoparticles stabilized by Grifola frondosa polysaccharides and gallic acid conjugates. Int J Biol Macromol 2024; 278:134787. [PMID: 39153675 DOI: 10.1016/j.ijbiomac.2024.134787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Selenium nanoparticles (SeNPs) are of interest for their versatility and low toxicity, but bare SeNPs are unstable and tend to aggregate and precipitate as black elemental Se, which limits the application of SeNPs. This study evaluated the physicochemical properties, physical stability, antioxidant activities and cytotoxicity of SeNPs stabilized by Grifola frondosa polysaccharides (GFPs) and GFPs-gallic acid conjugates (GFPs-GA). The results showed that the particle size (PZ), polymer index (PDI) and zeta potential (ZP) of the GFPs-SeNPs and GFPs-GA-SeNPs were 58.72 ± 0.53 nm, 0.11, -8.36 ± 0.21 mV and 61.80 ± 0.16 nm, 0.12, -9.37 ± 0.13 mV, respectively. Besides, the GFPs-SeNPs and GFPs-GA-SeNPs remained stable when stored at 4 °C for 70 days in darkness. SeNPs stabilized with GFPs have improved the antioxidant activity and selective toxicity to tumour cells. Interestingly, SeNPs stabilized with GFPs-GA further enhanced these biological activities. This work provided a simple and effective method to construct well-dispersed SeNPs in aqueous systems, demonstrating the important roles of GFPs and GFPs-GA in the size control, dispersion and stabilization of SeNPs. The prepared GFPs-SeNPs and GFPs-GA-SeNPs can serve as good selenium supplements and have potential prospects for antioxidant activity and tumour inhibition.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Dongming Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xia Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
2
|
Gan N, Li Q, Li Y, Li M, Li Y, Chen L, Zeng T, Song Y, Geng F, Wu D. Encapsulation of lemongrass essential oil by bilayer liposomes based on pectin, gum Arabic, and carrageenan: Characterization and application in chicken meat preservation. Int J Biol Macromol 2024:135706. [PMID: 39349334 DOI: 10.1016/j.ijbiomac.2024.135706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024]
Abstract
The volatile characteristics of lemongrass essential oil (LO) have seriously hindered its further application, and encapsulation it with multilayer modified liposomes may be an effective strategy to improve this dilemma. This study selected chitosan (CH) and three anionic polymers, pectin (P) / gum arabic (GA) / carrageenan (C), as the first and second coating polymers to modify nano liposomes (NL) by layer-by-layer electrostatic deposition, obtaining three bilayer liposomes, P-CH-NL, GA-CH-NL, and C-CH-NL as high-quality stabilized carriers of LO. The bilayer liposomes showed a dense membrane structure ranging from 110 to 150 nm uniformly, with good antioxidant properties. All bilayer liposomes had good stability during 28-day storage at 4 °C, while C-CH-NL performed relatively better inferred by smaller changes of size, PDI and Zeta potential. The total volatile base nitrogen (TVB-N) values of fresh chicken meat and a total number of bacterial colonies (TBC) experiments showed that GA-CH-NL and C-CH-NL could better retard the increase of volatile salt base nitrogen. All bilayer liposomes could delay the time for the total bacterial count to exceed 6 log CFU/g (from 7 days to 10 / 12 days). Therefore, the bilayer liposomes P-CH-NL, GA-CH-NL, and C-CH-NL may be promising natural preservatives for food products.
Collapse
Affiliation(s)
- Na Gan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qinhong Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuanqiao Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mohan Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yilin Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lijuan Chen
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610100, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610100, China.
| | - Fang Geng
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Xie F, Liu X, Liu N, Feng X, He Z, Din ZU, Cheng S, Luo Y, Cai J. Effect of degree of substitution of octenyl succinate on starch micelles for synthesis and stability of selenium nanoparticles: Towards selenium supplements. Int J Biol Macromol 2024; 280:135586. [PMID: 39276897 DOI: 10.1016/j.ijbiomac.2024.135586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
To develop a promising selenium supplement that overcomes the instability and poor water dispersibility of selenium nanoparticles (SeNPs), we synthesized a series of amphiphilic octenyl succinic anhydride starch (OSAS) through esterification. As the degree of substitution (DS) increased, the particle size of OSAS micelles and the critical micelle concentration (CMC) decreased. FTIR and XRD analysis confirmed the successful introduction of octenyl succinic anhydride groups onto starch. Subsequently, OSAS micelles were used as carriers to synthesize SeNPs via in situ chemical reduction, forming SeNPs-loaded self-assembled starch nano-micelles (OSAS-SeNPs). The OSAS-SeNPs exhibited spherical dispersion in water with an average diameter of 116.1 ± 2.3 nm, contributed to enhanced hydrophobic interactions. TEM images showed a core-shell structure with SeNPs as the core and OSAS as the shell. FTIR results indicated hydrogen bonding interactions between OSAS and SeNPs. Due to the negatively charged OSAS shell and hydrogen bonding (OH⋯Se), OSAS-SeNPs remained non-aggregated for one month at room temperature, demonstrating remarkable stability. This study suggests that using OSAS can address the synthesis and stability issues of SeNPs, making it a potential selenium supplement candidate for further evaluation as an anticancer agent.
Collapse
Affiliation(s)
- Fang Xie
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaoqing Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Nian Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaofang Feng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Microbiology & Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Jie Cai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
4
|
Qi C, Li A, Wu B, Wang P. Multi-Sensitive Au NCs/5-FU@Carr-LA Composite Hydrogels for Targeted Multimodal Anti-Tumor Therapy. Molecules 2024; 29:4051. [PMID: 39274898 PMCID: PMC11397649 DOI: 10.3390/molecules29174051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Multifunctional targeted drug delivery systems have been explored as a novel cancer treatment strategy to overcome limitations of traditional chemotherapy. The combination of photodynamic therapy and chemotherapy has been shown to enhance efficacy, but the phototoxicity of traditional photosensitizers is a challenge. In this study, we prepared a multi-sensitive composite hydrogel containing gold nanoclusters (Au NCs) and the temperature-sensitive antitumor drug 5-fluorourac il (5-FU) using carboxymethyl cellulose (Carr) as a dual-functional template. Au NCs were synthesized using sodium borohydride as a reducing agent and potassium as a promoter. The resulting Au NCs were embedded in the Carr hydrogel, which was then conjugated with lactobionic acid (LA) as a targeting ligand. The resulting Au NCs/5-FU@Carr-LA composite hydrogel was used for synergistic photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy. Au NCs/5-FU@Carr-LA releases the drug faster at pH 5.0 due to the acid sensitivity of the Carr polymer chain. In addition, at 50 °C, the release rate of Au NCs/5-FU@Carr-LA is 78.2%, indicating that the higher temperature generated by the photothermal effect is conducive to the degradation of Carr polymer chains. The Carr hydrogel stabilized the Au NCs and acted as a matrix for drug loading, and the LA ligand facilitated targeted delivery to tumor cells. The composite hydrogel exhibited excellent biocompatibility and synergistic antitumor efficacy, as demonstrated by in vitro and in vivo experiments. In addition, the hydrogel had thermal imaging capabilities, making it a promising multifunctional platform for targeted cancer therapy.
Collapse
Affiliation(s)
- Chunxia Qi
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei 230601, China
| | - Ang Li
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Baoming Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhu Province, Hefei 230032, China
| | - Peisan Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Peng K, Yue L, Song X, Zhang Q, Wang Y, Cui X. Preparation, characterization and evaluation of microwave-assisted synthesized selenylation Codonopsis pilosula polysaccharides. Int J Biol Macromol 2024; 273:133228. [PMID: 38897504 DOI: 10.1016/j.ijbiomac.2024.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
In this work, the selenylation Codonopsis pilosula polysaccharide (Se-CPPS) were synthesized using an optimized microwave-assisted method. Then, physicochemical properties, including molecular weight, particle size, valence state of selenium, antioxidant capacity, release mechanism of selenium under gastrointestinal conditions, as well as their effects on HT-29 cell viability were comprehensively investigated. The results demonstrated that Se-CPPS with the highest selenium content (21.71 mg/g) was synthesized using 0.8% nitric acid concentration under microwave conditions of 90 min at 70 °C. FTIR and XPS analysis revealed that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, with a valence state of either 0 or +4. In vitro investigations on antioxidant activity and selenium release capacity indicated that selenization not only enhanced the antioxidant activity of CPPS but also endowed Se-CPPS with robust selenium release capability in simulated gastric digestion. The effects of Se-CPPS on HT-29 cells was further investigated by CCK-8 method. The results showed that the selenide modification effectively reduced the toxicity of Na2SeO3 and enhanced the viability of CPPS. The findings of this study offer valuable methodological guidance for the synthesis of Se-polysaccharides with superior functional properties.
Collapse
Affiliation(s)
- Kaitao Peng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Linqing Yue
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - XiaoXiao Song
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
6
|
Bi Bi S, Elahi I, Sardar N, Ghaffar O, Ali H, Alsubki RA, Iqbal MS, Attia KA, Abushady AM. Exploring non-cytotoxic, antioxidant, and anti-inflammatory properties of selenium nanoparticles synthesized from Gymnema sylvestre and Cinnamon cassia extracts for herbal nanomedicine. Microb Pathog 2024; 192:106670. [PMID: 38734323 DOI: 10.1016/j.micpath.2024.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
The increasing need for pharmaceutical agents that possess attributes such as safety, cost-effectiveness, environmental sustainability, and absence of side effects has driven the advancement of nanomedicine research, which lies at the convergence of nanotechnology and medicine. AIMS AND OBJECTIVES The study aimed to synthesize non-toxic selenium nanoparticles (SeNPs) using Gymnema sylvestre (G. sylvestre) and Cinnamon cassia (C. cassia) extracts. It also sought to develop and evaluate versatile nanomedicine formulations i.e. selenium nanoparticles of G. sylvestre and C. cassia (SeNPs), drug (lupeol) loaded SeNPs (DLSeNPs), drug-loaded and coated (PEG) SeNPs (DLCSeNPs) without side effects. METHODS The SeNPs formulations were hydrothermally synthesized, loaded with lupeol to improve efficacy, coated with polyethylene glycol (PEG) for targeted delivery, and characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta potential analysis, size distribution analysis, and X-ray diffraction (XRD). Hemolytic cytotoxicity, 2,2-Diphenyl-1-picrylhydzayl (DPPH), total Reducing power, and total antioxidant capacity (TAC) antioxidant assays, carrageenan-induced paw edema, and histological studies were used to estimate the acute anti-inflammatory activity of the synthesized SeNPs. RESULTS The final form of PEGylated and drug (lupeol)-loaded selenium nanoparticles (DLCSeNPs) exhibited an average particle size ranging from 100 to 500 nm as evidenced by SEM, and Zeta potential results. These nanoparticles demonstrated no cytotoxic effects and displayed remarkable antioxidant (IC50 values 19.29) and anti-inflammatory capabilities. These results were fed into Graph-pad Prism 5 software and analyzed by one-way ANOVA, followed by Tukey's post hoc test (p < 0.001). All nano-formulations exhibited significant overall antioxidant activity, with IC50 values ≤ 386 (p < 0.05) as analyzed by ANOVA. The study's results suggest that G. sylvestre outperformed C. cassia in terms of reducing 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical, potassium ferricyanide, and ammonium molybdate in respective antioxidant assays. As far as anti-inflammatory activities are concerned drug (lupeol)-loaded and PEG-coated G. sylvestre SeNPs exhibited the highest anti-inflammatory potential from all other nano-formulations including drug (lupeol)-loaded and PEG-coated C. cassia SeNPs, as exhibited to reduce the release of pro-inflammatory signals i.e. cytokines and NF-kB, making them innovative anti-inflammatory nanomedicine. CONCLUSION The study synthesized lupeol-loaded and PEG-coated SeNPs, showcasing the potential for biocompatible, cost-effective anti-inflammatory nanomedicines. G. Sylvester's superior antioxidant and anti-inflammatory performance than Cinnamon cassia emphasizes medicinal plant versatility.
Collapse
Affiliation(s)
- Sumairan Bi Bi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Iqra Elahi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Nimra Sardar
- Department of Microbiology and Molecular Genetics, School of Applied Sciences, University of Okara, Okara, Pakistan.
| | - Omer Ghaffar
- Department of Biotechnology, School of Natural and Applied Sciences, Niğde Ömer Halisdemir University, Turkey.
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, 2455, Riyadh, 11451, Saudi Arabia.
| | - Muhammad Sarfaraz Iqbal
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia.
| | - Asmaa M Abushady
- Biotechnology School, 26Th of July Corridor, Nile University, Sheikh Zayed City, Giza, 12588, Egypt; Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Chen Y, Zhu F, Chen J, Liu X, Li R, Wang Z, Cheong KL, Zhong S. Selenium nanoparticles stabilized by Sargassum fusiforme polysaccharides: Synthesis, characterization and bioactivity. Int J Biol Macromol 2024; 269:132073. [PMID: 38705328 DOI: 10.1016/j.ijbiomac.2024.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Selenium nanoparticles (SeNPs) are a potential tumor therapeutic drug and have attracted widespread attention due to their high bioavailability and significant anticancer activity. However, the poor water solubility and degradability of selenium nanoparticles severely limit their application. In this study, spherical selenium nanoparticles with a particle size of approximately 50 nm were prepared by using Sargassum fusiforme polysaccharide (SFPS) as a modifier and Tween-80 as a stabilizer. The results of in vitro experiments showed that Sargassum fusiforme polysaccharide-Tween-80-Selenium nanoparticles (SFPS-Tw-SeNPs) had a significant inhibitory effect on A549 cells, with an IC50 value of 6.14 μg/mL, and showed antitumor cell migration and invasion ability against A549 cells in scratch assays and cell migration and invasion assays (transwell assays). Western blot experiments showed that SFPS-Tw-SeNPs could inhibit the expression of tumor migration- and invasion-related proteins. These results suggest that SFPS-Tw-SeNPs may be potential tumor therapeutic agents, especially for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Yanzhe Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Feifei Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China.
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| |
Collapse
|
8
|
Su X, Liu W, Yang B, Yang S, Hou J, Yu G, Feng Y, Li J. Constructing network structures to enhance stability and target deposition of selenium nanoparticles via amphiphilic sodium alginate and alkyl glycosides. Int J Biol Macromol 2024; 267:131588. [PMID: 38615860 DOI: 10.1016/j.ijbiomac.2024.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.
Collapse
Affiliation(s)
- Xiaona Su
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Shujuan Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Jinjian Hou
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Gaobo Yu
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Jiacheng Li
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| |
Collapse
|
9
|
Li T, Zhu K, Wang L, Dong Y, Huang J. Stabilization by Chaperone GroEL in Biogenic Selenium Nanoparticles Produced from Bifidobacterium animalis H15 for the Treatment of DSS-Induced Colitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13439-13452. [PMID: 38456847 DOI: 10.1021/acsami.3c16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Inflammatory bowel diseases have a high rate of mortality and pose a serious threat to global public health. Selenium is an essential trace element, which has been shown to play important roles in redox control and antioxidant defense. Microorganisms play important roles in the reduction of toxic inorganic selenium (selenite and selenate) to less-toxic biogenic selenium nanoparticles (Bio-SeNPs), which have higher biocompatibility. In the present study, novel Bio-SeNPs with high stability were synthesized using probiotic Bifidobacterium animalis subsp. lactis H15, which was isolated from breastfed infant feces. The Bio-SeNPs with a size of 122 nm showed stability at various ionic strengths, temperatures, and in simulated gastrointestinal fluid, while chemosynthetic SeNPs underwent aggregation. The main surface protein in the Bio-SeNPs was identified as chaperone GroEL by liquid chromatography-tandem mass spectrometry. The overexpression and purification of GroEL demonstrated that GroEL controlled the assembly of Bio-SeNPs both in vitro and in vivo. In vivo, oral administration of Bio-SeNPs could alleviate dextran sulfate sodium-induced colitis by decreasing cell apoptosis, increasing antioxidant capacity and the number of proliferating cells, and improving the function of the intestinal mucosal barrier. In vitro experiments verified that Bio-SeNPs inhibited lipopolysaccharide-induced toll-like receptor 4/NF-κB signaling pathway activation. These results suggest that the Bio-SeNPs with high stability could have potential as a nutritional supplement for the treatment of colitis in nanomedicine applications.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
10
|
Blinova A, Blinov A, Kravtsov A, Nagdalian A, Rekhman Z, Gvozdenko A, Kolodkin M, Filippov D, Askerova A, Golik A, Serov A, Shariati MA, Alharbi NS, Kadaikunnan S, Thiruvengadam M. Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3128. [PMID: 38133025 PMCID: PMC10746028 DOI: 10.3390/nano13243128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli, Micrococcus luteus and Mucor. Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Anastasiya Blinova
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Andrey Blinov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexander Kravtsov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Zafar Rekhman
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexey Gvozdenko
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Maksim Kolodkin
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Dionis Filippov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alina Askerova
- Laboratory of Food and Industrial Biotechnology, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Alexey Golik
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexander Serov
- Chemical and Pharmaceutical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Gagarin Avenue 238G, Almaty 050060, Kazakhstan;
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.K.)
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.K.)
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Bhattacharya S, Bonde S, Hatware K, Sharma S, Anjum MM, Sahu RK. Physicochemical characterization, in vitro and in vivo evaluation of chitosan/carrageenan encumbered with Imatinib mesylate-polysarcosine nanoparticles for sustained drug release and enhanced colorectal cancer targeted therapy. Int J Biol Macromol 2023:125529. [PMID: 37379942 DOI: 10.1016/j.ijbiomac.2023.125529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The objective of this investigation was to fabricate nanoparticles consisting of Imatinib mesylate-poly sarcosine-loaded chitosan/carrageenan in order to attain prolonged drug release and efficacious therapy for colorectal cancer. The study involved the synthesis of nanoparticles through the utilisation of ionic complexation and nanoprecipitation techniques. The subsequent nanoparticles were subjected to an assessment of their physicochemical characteristics, anti-cancer efficacy using HCT116 cell line, and acute toxicity. The present study examined two distinct nanoparticle formulations, namely IMT-PSar-NPs and CS-CRG-IMT-NPs, with respect to their particle size, zeta potential, and morphology. Both formulations demonstrated satisfactory characteristics, as they displayed consistent and prolonged drug release for a duration of 24 h, with the highest level of release occurring at a pH of 5.5. The efficacy and safety of IMT-PSar-NPs and CS-CRG-IMT-PSar-NPs nanoparticles were evaluated through various tests including in vitro cytotoxicity, cellular uptake, apoptosis, scratch test, cell cycle analysis, MMP & ROS estimate, acute toxicity, and stability tests. The results suggest that these nanoparticles were well fabricated and have promising potential for in vivo applications. The prepared polysaccharide nanoparticles have great potential for active targeting and could potentially reduce dose-dependent toxicity in the treatment of colon cancer.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Smita Bonde
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Ketan Hatware
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar 844102, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, P.O. Kilkileshwar, Via Kritinagar, Distt. Tehri Garhwal Pin-249161, Uttarakhand, India
| |
Collapse
|
12
|
Venkatesan J, Hur W, Gupta PK, Son SE, Lee HB, Lee SJ, Ha CH, Hwa CS, Kim DH, Seong GH. Gum Arabic-mediated liquid exfoliation of transition metal dichalcogenides as photothermic anti-breast cancer candidates. Int J Biol Macromol 2023:124982. [PMID: 37244326 DOI: 10.1016/j.ijbiomac.2023.124982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Transition metal dichalcogenides (TMDs) have gained considerable attention for a broad range of applications, including cancer therapy. Production of TMD nanosheets using liquid exfoliation provides an inexpensive and facile route to achieve high yields. In this study, we developed TMD nanosheets using gum arabic as an exfoliating and stabilizing agent. Different types of TMDs, including MoS2, WS2, MoSe2, and WSe2 nanosheets, were produced using gum arabic and were characterized physicochemically. The developed gum arabic TMD nanosheets exhibited a remarkable photothermal absorption capacity in the near-infrared (NIR) region (808 nm and 1 W⋅cm-2). The drug doxorubicin was loaded on the gum arabic-MoSe2 nanosheets (Dox-G-MoSe2), and the anticancer activity was evaluated using MDA-MB-231 cells and a water-soluble tetrazolium salt (WST-1) assay, live and dead cell assays, and flow cytometry. Dox-G-MoSe2 significantly inhibited MDA-MB-231 cancer cell proliferation under the illumination ofan NIR laser at 808 nm. These results indicate that Dox-G-MoSe2 is a potentially valuable biomaterial for breast cancer therapy.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea; Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangaluru 575018, India
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Pramod K Gupta
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Su Jeong Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Cheon Se Hwa
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Do Hyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
13
|
Borowska M, Jiménez-Lamana J, Bierla K, Jankowski K, Szpunar J. A green and fast microwave-assisted synthesis of selenium nanoparticles and their characterization under gastrointestinal conditions using mass spectrometry. Food Chem 2023; 417:135864. [PMID: 36924715 DOI: 10.1016/j.foodchem.2023.135864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
We present a novel microwave-assisted green synthesis of selenium nanoparticles (SeNPs) using yeast extract as source of a non-toxic reducing and capping agents. Effects of synthesis and gastrointestinal digestion conditions on the biogenic Se particle size distribution and number concentration using SP ICP MS were evaluated. The median equivalent diameter of SeNPs varied depending on the synthesis conditions. Upon incubation in simulated gastric juice, the increase of SeNPs size was observed, whereas after simulated intestinal juice addition, their size came back close to the initial value. The biomolecules contained in yeast extract, which play predominant role in the synthesis of SeNPs, were identified by non-targeted qualitative analysis using LC Orbitrap ESI MS. The use of the state-of-the-art MS techniques allowed both the comprehensive assessment of the processes leading to the SeNPs formation and the evaluation of their behavior under gastrointestinal conditions which is of utmost importance for their use as a novel selenium source.
Collapse
Affiliation(s)
- Magdalena Borowska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, 00-664 Warsaw, Poland.
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| | - Katarzyna Bierla
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| | - Krzysztof Jankowski
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, 00-664 Warsaw, Poland
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| |
Collapse
|
14
|
Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced anti-inflammatory effects: fabrication, structural characterization and property evaluation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Quinoa protein isolate-gum Arabic coacervates cross-linked with sodium tripolyphosphate: Characterization, environmental stability, and Sichuan pepper essential oil microencapsulation. Food Chem 2023; 404:134536. [DOI: 10.1016/j.foodchem.2022.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
16
|
Blinov AV, Maglakelidze DG, Rekhman ZA, Yasnaya MA, Gvozdenko AA, Golik AB, Blinova AA, Kolodkin MA, Alharbi NS, Kadaikunnan S, Thiruvengadam M, Shariati MA, Nagdalian AA. Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. MICROMACHINES 2023; 14:433. [PMID: 36838132 PMCID: PMC9964575 DOI: 10.3390/mi14020433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This article presents the results of the synthesis of Se NPs stabilized by a quaternary ammonium compound-catamine AB. Se NPs were obtained by chemical reduction in an aqueous medium. In the first stage of this study, the method of synthesis of Se NPs was optimized by a multifactorial experiment. The radius of the obtained samples was studied by dynamic light scattering, and the electrokinetic potential was studied using acoustic and electroacoustic spectrometry. Subsequently, the samples were studied by transmission electron microscopy, and the analysis of the data showed that a bimodal distribution is observed in negatively charged particles, where one fraction is represented by spheres with a diameter of 45 nm, and the second by 1 to 10 nm. In turn, positive Se NPs have a diameter of about 70 nm. In the next stage, the influence of the active acidity of the medium on the stability of Se NPs was studied. An analysis of the obtained data showed that both sols of Se NPs exhibit aggregative stability in the pH range from 2 to 6, while an increase in pH to an alkaline medium is accompanied by a loss of particle stability. Next, we studied the effect of ionic strength on the aggregative stability of Se NPs sols. It was found that negatively charged ions have a significant effect on the particle size of the positive sol of Se NPs, while the particle size of the negative sol is affected by positively charged ions.
Collapse
Affiliation(s)
- Andrey V. Blinov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - David G. Maglakelidze
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Zafar A. Rekhman
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maria A. Yasnaya
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey A. Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey B. Golik
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Anastasiya A. Blinova
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maxim A. Kolodkin
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
| | - Andrey A. Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| |
Collapse
|
17
|
Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Res Int 2023; 164:112435. [PMID: 36738002 DOI: 10.1016/j.foodres.2022.112435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Selenium nanoparticles (SeNPs) have attracted much recent interest as nutraceuticals, while they face great challenges, such as poor stability and low cellular uptake efficiency. This study introduced a facile approach to synthesizing protamine sulfate (PS) functionalized selenium nanoparticles (PS-SeNPs) by using PS as a surface decorator. The monodisperse spherical PS-SeNPs with a particle size of 130 nm and a ζ-potential of +31 mV were ligated with PS through Se-N, Se-O bonds, and physical adsorption, which exhibits excellent physical stability against pH, temperature, and storage time. The positive surface charge of PS-SeNPs contributed to the enhancement of cellular uptake efficiency by endocytosis, which was 3-times higher than bare SeNPs. Compared to SeNPs (IC50 = 17.675 μg/mL), PS-SeNPs could dramatically inhibit the proliferation of HepG2 cells with an IC50 value of 5.507 μg/mL, as reflected by the induction of apoptosis, S phase arresting, overproduction of intracellular ROS, and depolarization of mitochondria membrane. Overall, these results demonstrated the great potential of PS-SeNPs that can be applied as a functional ingredient in foods and nutraceuticals.
Collapse
|
18
|
Constructing Selenium Nanoparticles with Enhanced Storage Stability and Antioxidant Activities via Conformational Transition of Curdlan. Foods 2023; 12:foods12030563. [PMID: 36766092 PMCID: PMC9914686 DOI: 10.3390/foods12030563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are among the emerging selenium supplements because of their high bioactivity and low toxicity. However, bare SeNPs are prone to activity loss caused by aggregation and sedimentation. This study aims to stabilize SeNPs with curdlan (CUR), a polysaccharide, to maintain or even enhance their biological activity. Herein, the stable SeNPs were constructed via the unique conformational transition of CUR induced by alkali-neutralization (AN) pretreatment. The physicochemical properties and structures of the prepared SeNPs were characterized by dynamic light scattering (DLS), UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and free-radical-scavenging activity assays. The results show that most SeNPs are stabilized within the triple helix of CUR that has been pretreated with high-intensity AN treatment. These amorphous, small-sized (average size was 53.6 ± 17.7 nm), and stabilized SeNPs have significantly enhanced free-radical-scavenging ability compared to the control and can be well-stabilized for at least 240 days at 4 °C. This work indicates that CUR, as a food additive, can be used to well-stabilize SeNPs by AN pretreatment and provides a facile method to prepare and enhance the stability and bioactivity of SeNPs via triple-helix conformational transition.
Collapse
|
19
|
Alkyl Chain Length and Headgroup Dependent Stability and Agglomeration Properties of Surfactant-Assisted Colloidal Selenium Nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Yang Z, Hu Y, Yue P, Li H, Wu Y, Hao X, Peng F. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissima. Carbohydr Polym 2023; 299:120219. [PMID: 36876820 DOI: 10.1016/j.carbpol.2022.120219] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Selenium nanoparticles (SeNPs) have attracted widespread attention, but the poor water dispersibility restricted their applications seriously. Herein, Usnea longissima lichenan decorated selenium nanoparticles (L-SeNPs) were constructed. The formation, morphology, particle size, stability, physicochemical characteristics, and stabilization mechanism of L-SeNPs were investigated via TEM, SEM, AFM, EDX, DLS, UV-Vis, FT-IR, XPS, and XRD. The results indicated that the L-SeNPs displayed orange-red, amorphous, zero-valent, and uniform spherical nanoparticles with an average diameter of 96 nm. Due to the formation of CO⋯Se bonds or the hydrogen bonding interaction (OH⋯Se) between SeNPs and lichenan, L-SeNPs exhibited better heating and storage stability, which kept stable for more than one month at 25 °C in an aqueous solution. The decoration of the SeNPs surface with lichenan endowed the L-SeNPs with superior antioxidant capability, and their free radicals scavenging ability exhibited in a dose-dependent manner. Furthermore, L-SeNPs showed excellent selenium controlled-release performance. In simulated gastric liquids, selenium release kinetics from L-SeNPs followed the Linear superimposition model, which was governed by the polymeric network retardation of macromolecular, while in simulated intestinal liquids, it was well fitted to the Korsmeyer-Peppas model and followed a Fickian mechanism controlled by diffusion.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Panpan Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Huiling Li
- JALA Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Yuying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China.
| |
Collapse
|
21
|
Selenium Nanoparticles Synergistically Stabilized by Starch Microgel and EGCG: Synthesis, Characterization, and Bioactivity. Foods 2022; 12:foods12010013. [PMID: 36613229 PMCID: PMC9818717 DOI: 10.3390/foods12010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium (Se) is a chemical element essential to human health because of its bioactive properties, including antioxidative, anticancer, and immunomodulating activities. Despite the high therapeutic potential of Se, its intrinsic properties of poor stability, a narrow therapeutic window, and low bioavailability and bioactivity have limited its clinical applications. Selenium nanoparticles (SeNPs) exhibit lower toxicity and higher bioactivity than other Se forms. Herein, we report a green method for the preparation of monodisperse SeNPs with starch microgel (SM) and epigallocatechin gallate (EGCG) through Se-O bonds and polysaccharide-polyphenol interactions (namely, SM-EGCG-SeNPs). SM-EGCG-SeNPs showed higher stability, bioactivities, and cytotoxicity than SeNPs and SM-SeNPs at the equivalent dose. SM-EGCG-SeNPs induced the apoptosis of cancer cells via the activation of several caspases and reactive oxygen species overproduction. This work proposes a facile method for the design and potentiation of structure-bioactive SeNPs via polysaccharide-polyphenol interactions.
Collapse
|
22
|
Blinov AV, Nagdalian AA, Siddiqui SA, Maglakelidze DG, Gvozdenko AA, Blinova AA, Yasnaya MA, Golik AB, Rebezov MB, Jafari SM, Shah MA. Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine. Sci Rep 2022; 12:21975. [PMID: 36539549 PMCID: PMC9763805 DOI: 10.1038/s41598-022-25884-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, selenium nanoparticles (Se NPs) stabilized with cocamidopropyl betaine were synthesized for the first time. It was observed that Se NPs synthesized in excess of selenic acid had a negative charge with ζ-potential of -21.86 mV, and in excess of cocamidopropyl betaine-a positive charge with ξ = + 22.71 mV. The resulting Se NPs with positive and negative charges had a spherical shape with an average size of about 20-30 nm and 40-50 nm, respectively. According to the data of TEM, HAADF-TEM using EDS, IR spectroscopy and quantum chemical modeling, positively charged selenium nanoparticles have a cocamidopropylbetaine shell while the potential- forming layer of negatively charged selenium nanoparticles is formed by SeO32- ions. The influence of various ions on the sol stability of Se NPs showed that SO42- and PO43- ions had an effect on the positive Se NPs, and Ba2+ and Fe3+ ions had an effect on negative Se NPs, which corresponded with the Schulze-Hardy rule. The mechanism of coagulating action of various ions on positive and negative Se NPs was also presented. Also, influence of the active acidity of the medium on the stability of Se NPs solutions was investigated. Positive and negative sols of Se NPs had high levels of stability in the considered range of active acidity of the medium in the range of 1.21-11.98. Stability of synthesized Se NPs stability has been confirmed in real system (liquid soap). An experiment with the addition of Se NPs stabilized with cocamidopropyl betaine to liquid soap showed that the particles of dispersed phases retain their initial distributions, which revealed the stability of synthesized Se NPs.
Collapse
Affiliation(s)
- Andrey V. Blinov
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Andrey A. Nagdalian
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Shahida A. Siddiqui
- grid.6936.a0000000123222966Campus Straubing for Biotechnology and Sustainability, Technical University of Munich (TUM), Essigberg 3, 94315 Straubing, Germany ,grid.424202.20000 0004 0427 4308German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - David G. Maglakelidze
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Alexey A. Gvozdenko
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Anastasiya A. Blinova
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Mariya A. Yasnaya
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Alexey B. Golik
- grid.440697.80000 0004 0646 0593North-Caucasus Federal University, Pushkina Str. 1, Stavropol, Russia 355017
| | - Maksim B. Rebezov
- grid.446163.20000 0000 9194 3477Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia ,grid.465377.40000 0004 5940 5280Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Seid Mahdi Jafari
- grid.411765.00000 0000 9216 4846Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran ,grid.6312.60000 0001 2097 6738Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, 32004 Ourense, Spain
| | - Mohd Asif Shah
- Department of Economics, Kebridehar University, Kebri Dehar, Somali Post Box 250, Ethiopia ,Adjunct Faculty, School of Business, Woxsen University, Hyderabad, Telangana 502345 India
| |
Collapse
|
23
|
Synthesis, Characterization of Low Molecular Weight Chitosan Selenium Nanoparticles and Its Effect on DSS-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2022; 23:ijms232415527. [PMID: 36555167 PMCID: PMC9779469 DOI: 10.3390/ijms232415527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles have attracted extensive attention due to their good bioavailability and activity. In the present study, a new form of selenium nanoparticle (Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs)) were synthesized in a system of sodium selenite and acetic acid. The size, element state, morphology and elementary composition of LCS-SeNPs were characterized by using various spectroscopic and microscopic measurements. The protection of LCS-SeNPs against dextran sulfate sodium (DSS)-induced intestinal barrier dysfunction and the inherent mechanisms of this process were investigated. The results showed that LCS-SeNPs, with an average diameter of 198 nm, zero-valent and orange-red relatively uniform spherical particles were prepared. LCS-SeNPs were mainly composed of C, N, O and Se elements, of which Se accounted for 39.03% of the four elements C, N, O and Se. LCS-SeNPs reduced colon injury and inflammation symptoms and improved intestinal barrier dysfunction. LCS-SeNPs significantly reduced serum and colonic inflammatory cytokines TNF-α and IL-6 levels. Moreover, LCS-SeNPs remarkably increased antioxidant enzyme GSH-Px levels in serum and colonic tissue. Further studies on inflammatory pathways showed that LCS-SeNPs alleviated DSS-induced colitis through the NF-κB signaling pathway, and relieved inflammatory associated oxidative stress through the Nrf2 signaling pathway. Our findings suggested that LCS-SeNPs are a promising selenium species with potential applications in the treatment of oxidative stress related inflammatory intestinal diseases.
Collapse
|
24
|
Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
The effect of kappa-carrageenan and gum Arabic on the production of guava-banana fruit leather. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4415-4426. [PMID: 35812463 PMCID: PMC9253237 DOI: 10.1007/s13197-022-05521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 02/05/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Guava-banana fruit leather was made by heat-drying a mixture of guava puree, banana puree, sorbitol, kappa-carrageenan or gum Arabic, and water at 60 °C for 8 h in various formulations (F1 to F6). Each formulation was evaluated for its effect on water activity, texture, surface color, proximate composition, pH, ascorbic acid content, antioxidant activity, and sensory properties. Hydrocolloid kappa-carrageenan was found to be the most significant independent variable affecting the desired properties. However, using gum Arabic was more effective at maintaining both water activity and ascorbic acid levels, as well as improving starch digestibility in vitro. In general, there was no discernible effect of the guava to banana ratio in any formulation. While hydrocolloids have no effect on the texture of guava-banana fruit leather, they do affect other sensory characteristics such as color, aroma, taste, and overall. In general, panelists preferred fruit leather made with a 50:50 (F1), 40:60 (F3), or 30:70 (F6) guava-banana ratio and containing kappa-carrageenan.
Collapse
|
26
|
Huang Q, Lin W, Yang XQ, Su DX, He S, Nag A, Zeng QZ, Yuan Y. Development, characterization and in vitro bile salts binding capacity of selenium nanoparticles stabilized by soybean polypeptides. Food Chem 2022; 391:133286. [PMID: 35640344 DOI: 10.1016/j.foodchem.2022.133286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The paper presents the positive effect of soybean polypeptides (SP) on the stability and the potential hypolipidemic effect of selenium nanoparticles (SeNPs). After preparing SeNPs, SP with different molecular weight were introduced to stabilize SeNPs. We found that the SP with molecular weight >10 kDa (SP5) had the best stabilizing effect on SeNPs. We inferred that the steric resistance resulting from the long chains of SP5 protected SeNPs from collision-mediated aggregation, and the electrostatic repulsions between SP5 and SeNPs also played a positive role in stabilizing SeNPs. The as-prepared SP5-SeNPs were spherical, amorphous and zero valent. It was proved that SeNPs were bound with SP5 through O- and N- groups in SP5, and the main forces were hydrogen bonds and van der Waals forces. The bile salts binding assay showed that the SP5-SeNPs exhibited a high binding capacity to bile salts, which indicated their potential in hypolipidemic application.
Collapse
Affiliation(s)
- Qing Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Wei Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xin-Quan Yang
- Office of Science and Research, Guangzhou University, Guangzhou 510006, PR China
| | - Dong-Xiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden 01062, Germany
| | - Qing-Zhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; Office of Science and Research, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
Chen K, Zhang M, Mujumdar AS, Wang M. Encapsulation of different spice essential oils in quinoa protein isolate-gum Arabic coacervates for improved stability. Carbohydr Polym 2022; 300:120250. [DOI: 10.1016/j.carbpol.2022.120250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
28
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
29
|
Yue L, Song X, Cui X, Zhang Q, Tian X, Yang X, Wu Q, Liu Y, Ruan R, Wang Y. Synthesis, characterization, and evaluation of microwave-assisted fabricated selenylation Astragalus polysaccharides. Int J Biol Macromol 2022; 221:8-15. [PMID: 36075149 DOI: 10.1016/j.ijbiomac.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Selenylation Astragalus polysaccharides (Se-APS) was fabricated by an optimized microwave-assisted method. Their physicochemical properties, antioxidant capacities and selenium (Se) release rate under gastrointestinal conditions were determined. Se-APS with the highest Se content (18.8 mg/g) was prepared in 0.4 % nitric acid, under the microwave conditions of 90 min and 80 °C. FTIR and XPS spectra indicated that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, and most of Se+4 was reduced to Se0. Meanwhile, the micromorphology of Se-APS became clusters, loose and porous, which decreased its hydrodynamic particle size and negative surface charges. Besides, Se-APS displayed strong scavenging capacities towards ABTS and superoxide anion free radicals than Na2SeO3, and showed higher Se release rate (12.52 ± 0.31 %) under intestinal fluid comparing with gastric fluid (3.14 ± 0.38 %) during 8 h in vitro digestion. The results provided efficient preparation method references for selenylation polysaccharides, and broaden the application fields of APS.
Collapse
Affiliation(s)
- Linqing Yue
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaojie Tian
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiuhua Yang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
30
|
Wang H, Li ZZ, Liang XY, Jiang WY, Yang XQ, Zeng QZ, Yuan Y. A novel zein-selenium complex nanoparticle with controllable size: quantitative design, physical properties and cytotoxicity in vitro. Food Chem 2022; 402:134470. [DOI: 10.1016/j.foodchem.2022.134470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
|
31
|
Cao X, Xiong C, Zhao X, Yang S, Wen Q, Tang H, Zeng Q, Feng Y, Li J. Tuning self-assembly of amphiphilic sodium alginate-decorated selenium nanoparticle surfactants for antioxidant Pickering emulsion. Int J Biol Macromol 2022; 210:600-613. [PMID: 35513095 DOI: 10.1016/j.ijbiomac.2022.04.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Delivering effectively zero-valent selenium nanoparticles (SeNPs) and develop its functions in more fields is still a challenge. Herein, a novel template for the preparation and stabilization of SeNP-based surfactants was developed, amphiphilic sodium alginate (APSA), which can self-assemble into micelles in an aqueous solution. Primarily, physicochemical properties of SeNPs stabilized by APSA with different molecular weights were compared and the interaction mechanism of APSA/SeNPs was investigated. Moreover, a functional Pickering emulsion (PE) was presented using the SeNP-based surfactants. Results showed that high molecular weight-stabilized SeNPs had small particle size (54.72 nm) and great stability due to the hydrogen bonding between Se atoms and APSA. The "soft" particle-decorated SeNPs with interface activity formed a dense interfacial layer on the oil-water interface, which exhibited excellent antioxidant properties. The contents of lipid hydrogen peroxide (LH) and malondialdehyde (MDA) were significantly reduced by 88.7% and 63.4%. Overall, SeNPs stabilized by APSA have great application potential as an emulsifier and antioxidant in industrial field.
Collapse
Affiliation(s)
- Xinyu Cao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chuang Xiong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qiyan Wen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Haiyun Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qu Zeng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
32
|
Zhang K, Chen C, Huang Q, Li C, Fu X. Preparation and characterization of Sargassum pallidum polysaccharide nanoparticles with enhanced antioxidant activity and adsorption capacity. Int J Biol Macromol 2022; 208:196-207. [PMID: 35307461 DOI: 10.1016/j.ijbiomac.2022.03.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
Abstract
Sargassum pallidum polysaccharide nanoparticle (nSPP-30) was prepared via antisolvent precipitation method and the preparation conditions were optimized. The effects of nanocrystallization on the structure and biological activities of S. pallidum polysaccharide were investigated. Under the optimal preparation condition, the average particle size, polydispersity index (PDI), and ξ-potential of nSPP-30 were 229.63 nm, 0.407, and -28.43 mV, respectively. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analyses indicated that nanocrystallization did not change primary and crystal structures of S. pallidum polysaccharide. However, nanocrystallization could improve the swelling, thermodynamic, and antioxidant properties of S. pallidum polysaccharide. In addition, the thymol adsorption capacity of nSPP-30 was enhanced as compared to the corresponding polysaccharide. These results suggest that nSPP-30 can be developed as a potential antioxidant or natural nano-carrier to encapsulate thymol for practical applications.
Collapse
Affiliation(s)
- Ke Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
33
|
Ma Z, Yao J, Wang Y, Jia J, Liu F, Liu X. Polysaccharide-based delivery system for curcumin: Fabrication and characterization of carboxymethylated corn fiber gum/chitosan biopolymer particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Pérez Gutiérrez RM, Soto Contreras JG, Martínez Jerónimo FF, de la Luz Corea Téllez M, Borja-Urby R. Assessing the Ameliorative Effect of Selenium Cinnamomum verum, Origanum majorana, and Origanum vulgare Nanoparticles in Diabetic Zebrafish (Danio rerio). PLANTS 2022; 11:plants11070893. [PMID: 35406873 PMCID: PMC9002390 DOI: 10.3390/plants11070893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/03/2022]
Abstract
Cinnamomum verum, Origanum majorana, and Origanum vulgare have been used in traditional medicine for a long time to treat diabetes because of their promising therapeutic effects. The combination of these plants (COO) was tested to improve their efficacy using selenium nanoparticles (Se-COO-NPs) and gum Arabic (GA) as stabilizers for sustained release. Phenolic compounds of plants were identified using liquid chromatography–mass spectrometry (LC–MS/MS). GA-Se-COO-NPs were characterized by spectroscopic and microscopic methods and evaluated in diabetic zebrafish. The ultraviolet spectrum was assessed to confirm the formation of plasmon resonance at 267 nm. The obtained particle size of selenium nanospheres was 65.76 nm. They were maintained in a stable form for 5 months at 4 °C. Transmission electron microscopy (TEM) images demonstrated the presence of individual spherical nanoparticles. Fourier transform infrared spectroscopy (FT-IR) showed the interaction between COO extract and selenium, exhibiting good entrapment efficiency (87%). The elemental analysis of COO extract and GA-COO-SeNPs confirmed that NPs were obtained. The zebrafish were exposed to a high glucose concentration for two weeks, and type 2 diabetes and oxidative stress responses were induced. In diabetic zebrafish, treatment with NPs showed antilipidemic and hypoglycemic effects, high survivability, and reduced levels of glucose, reactive oxygen species (ROS), and lipids in the blood. This group this had a higher survivorship rate than the diabetic control. The results demonstrated that GA-Se-COO-NPs have high antidiabetic potential, most likely because of the synergic effects of phenolic compounds and Se nanoparticles.
Collapse
Affiliation(s)
- Rosa Martha Pérez Gutiérrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Mexico City 07708, Mexico;
- Correspondence:
| | - José Guadalupe Soto Contreras
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Mexico City 07708, Mexico;
| | - Felipe Fernando Martínez Jerónimo
- Laboratorio de Hidrobiología Experimental, Instituto Politécnico Nacional (IPN), Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Mónica de la Luz Corea Téllez
- Laboratorio de Investigación en Polímeros y Nanomateriales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional (IPN), Edificio Z-5 Planta Baja Del Gustavo A. Madero, Mexico City 07730, Mexico;
| | - Raúl Borja-Urby
- Laboratorio de Microscopía Electrónica de Transmisión, Centro de Nanociencias y Micro-Nanotecnologías (CNMN), Instituto Politécnico Nacional (IPN), Mexico City 07758, Mexico;
| |
Collapse
|
35
|
Apryatina KV, Murach EI, Amarantov SV, Erlykina EI, Veselov VS, Smirnova LA. Synthesis of a Bioactive Composition of Chitosan-Selenium Nanoparticles. APPL BIOCHEM MICRO+ 2022; 58:126-131. [PMID: 35345603 PMCID: PMC8943790 DOI: 10.1134/s0003683822020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
A biologically active composition of chitosan-selenium nanoparticles has been developed. Selenium nanoparticles are characterized by a clear bimodal size distribution: 2-3 and ~37 nm. The main active centers of complexation with nanoparticles are the amino and hydroxyl groups of chitosan. In experiments on culturing fibroblasts of the hTERT BJ-5ta cell line on sample films, high biocompatibility of the composition was shown. It was shown that the composition of chitosan-selenium nanoparticles has a corrective effect on the oxidative processes of the body, reducing the activity of free-radical oxidation in the blood of animals. This opens up prospects for the use of this complex in the composition of antioxidant and adaptogenic drugs.
Collapse
Affiliation(s)
- K. V. Apryatina
- National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - E. I. Murach
- Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - S. V. Amarantov
- Federal Scientific Research Center “Crystallography and Photonics” of RAS, Institute of Crystallography Named After A. Shubnikov RAS, 119333 Moscow, Russia
| | - E. I. Erlykina
- Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - V. S. Veselov
- National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - L. A. Smirnova
- National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
36
|
Effects of Selenium Nanoparticles on Preventing Patulin-Induced Liver, Kidney and Gastrointestinal Damage. Foods 2022; 11:foods11050749. [PMID: 35267382 PMCID: PMC8909330 DOI: 10.3390/foods11050749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Patulin (PAT) is a toxic fungal metabolite, and oxidative damage was proved to be its important toxicity mechanism. Selenium nanoparticles (SeNPs) were prepared by reducing sodium selenite with chitosan as a stabilizer and used for preventing PAT-induced liver, kidney and gastrointestinal damage. SeNPs have good dispersibility, in vitro antioxidant activity, and are much less cytotoxic than sodium selenite. Cell culture studies indicated that SeNPs can effectively alleviate PAT-induced excessive production of intracellular ROS, the decline of glutathione peroxidase activity, and the suppression of cell viability. Evaluation of serum biochemical parameters, histopathology, oxidative stress biomarkers and activities of antioxidant enzymes in a mouse model showed that pre-treatment with SeNPs (2 mg Se/kg body weight) could ameliorate PAT-induced oxidative damage to the liver and kidneys of mice, but PAT-induced gastrointestinal oxidative damage and barrier dysfunction were not recovered by SeNPs, possibly because the toxin doses suffered by the gastrointestinal as the first exposed tissues exceeded the regulatory capacity of SeNPs. These results suggested that a combination of other strategies may be required to completely block PAT toxicity.
Collapse
|
37
|
Preparation and Characterization of Nano-Selenium Decorated by Chondroitin Sulfate Derived from Shark Cartilage and Investigation on Its Antioxidant Activity. Mar Drugs 2022; 20:md20030172. [PMID: 35323471 PMCID: PMC8951027 DOI: 10.3390/md20030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
In the present study, a selenium-chondroitin sulfate (SeCS) was synthesized by the sodium selenite (Na2SeO3) and ascorbic acid (Vc) redox reaction using chondroitin sulfate derived from shark cartilage as a template, and characterized by SEM, SEM-EDS, FTIR and XRD. Meanwhile, its stability was investigated at different conditions of pH and temperatures. Besides, its antioxidant activity was further determined by the DPPH and ABTS assays. The results showed the SeCS with the smallest particle size of 131.3 ± 4.4 nm and selenium content of 33.18% was obtained under the optimal condition (CS concentration of 0.1 mg/mL, mass ratio of Na2SeO3 to Vc of 1:8, the reaction time of 3 h, and the reaction temperature of 25 °C). SEM image showed the SeCS was an individual and spherical nanostructure and its structure was evidenced by FTIR and XRD. Meanwhile, SeCS remained stable at an alkaline pH and possessed good storage stability at 4 °C for 28 days. The results on scavenging free radical levels showed that SeCS exhibited significantly higher antioxidant activity than SeNPs and CS, indicating that SeCS had a potential antioxidant effect.
Collapse
|
38
|
Chen Y, Liu W, Leng X, Stoll S. Toxicity of selenium nanoparticles on Poterioochromonas malhamensis algae in Waris-H culture medium and Lake Geneva water: Effect of nanoparticle coating, dissolution, and aggregation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152010. [PMID: 34856254 DOI: 10.1016/j.scitotenv.2021.152010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Understanding the algal toxicity of selenium nanoparticles (SeNPs) in aquatic systems by considering SeNPs physicochemical properties and environmental media characteristics is a concern of high importance for the evaluation and prediction of risk assessment. In this study, chitosan (CS) and sodium carboxymethyl cellulose (CMC) coated SeNPs are considered using Lake Geneva water and a Waris-H cell culture medium to investigate the effect of SeNPs on the toxicity of algae Poterioochromonas malhamensis, a widespread mixotrophic flagellate. The influence of surface coating, z-average diameters, ζ-potentials, aggregation behavior, ions release, and medium properties on the toxicity of SeNPs to algae P. malhamensi was investigated. It is found that SeNPs are 5-10 times more toxic in Lake Geneva water compared to the culture medium, suggesting that the traditional algal tests in Waris-H culture medium currently underestimate the toxicity of NPs in a natural water environment. Despite significant dissolution, it is also found that SeNPs themselves are the toxicity driver, and dissolved ions have only a marginal influence on toxicity. SeNPs diameter is found a minor factor in toxicity. Based on a principal component analysis (PCA) it is found that in Lake Geneva water, the nature of the surface coating (CMC versus CS) is the most influential factor controlling the toxicity of SeNPs. In the culture medium, surface coating, ζ-potential, and aggregation are found to contribute at the same level. These results highlight the importance of considering in details both NPs intrinsic and media properties in the evaluation of NPs biological effects.
Collapse
Affiliation(s)
- Yuying Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Serge Stoll
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| |
Collapse
|
39
|
Chen Y, Stoll S, Sun H, Liu X, Liu W, Leng X. Stability and surface properties of selenium nanoparticles coated with chitosan and sodium carboxymethyl cellulose. Carbohydr Polym 2022; 278:118859. [PMID: 34973724 DOI: 10.1016/j.carbpol.2021.118859] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023]
Abstract
The effect of polysaccharide coatings on the stability and release characteristics of selenium nanoparticles (SeNPs) was evaluated by comparing the characteristics of chitosan-coated SeNPs (CS-SeNPs) and sodium carboxymethyl cellulose-coated SeNPs (CMC-SeNPs). The release characteristics of SeNPs were investigated in storage conditions, gastrointestinal conditions, and free radical systems. CMC-SeNPs formed dimers or trimers, whereas CS-SeNPs were monodispersed but formed large aggregates in a pH range of 7.4-8.25. Upon 50 days of storage at 30 °C, both CMC-SeNPs and CS-SeNPs were converted to Se4+. SeNPs exhibited a lower release rate in simulated gastrointestinal conditions than in free radical systems. SeNPs release in ABTS and superoxide anion free radical systems followed the first-order and Korsmeyer-Peppas models, respectively, indicating that SeNP release is mainly governed by dissolution mechanisms. Additional studies are needed to examine the potential environmental effects and biological activity of the Se4+ released from SeNPs.
Collapse
Affiliation(s)
- Yuying Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Serge Stoll
- Department F. A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| | - Hongbo Sun
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xinnan Liu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Wei Liu
- Department F. A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
40
|
Construction of Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11020240. [PMID: 35204123 PMCID: PMC8868418 DOI: 10.3390/antiox11020240] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Although selenium nanoparticles (SeNPs) have attracted great attention due to their potential antioxidant activity and low toxicity, the application of SeNPs is still restricted by their poor stability. A combination of polysaccharides and SeNPs is an effective strategy to overcome the limitations. In this study, Polygonatum sibiricum polysaccharide (PSP) was used as a stabilizer to fabricate SeNPs under a simple redox system. Dynamic light scattering, transmission electron microscopy, energy dispersive X-ray, ultraviolet-visible spectroscopy, Fourier transform infrared, and X-ray photoelectron spectrometer were applied to characterize the synthesized PSP-SeNPs. The stability and the antioxidant activity of PSP-SeNPs were also investigated. The results revealed that the zero-valent and well-dispersed spherical PSP-SeNPs with an average size of 105 nm and a negative ζ-potential of −34.9 mV were successfully synthesized using 0.1 mg/mL PSP as a stabilizer. The prepared PSP-SeNPs were stable for 30 days at 4 °C. The decoration of the nanoparticle surface with PSP significantly improved the free radical scavenging ability of SeNPs. Compared to the H2O2-induced oxidative stress model group, the viability of PC-12 cells pretreated with 20 μg/mL PSP-SeNPs increased from 56% to 98%. Moreover, PSP-SeNPs exhibited a higher protective effect on the H2O2-induced oxidative damage on PC-12 cells and lower cytotoxicity than sodium selenite and SeNPs. In summary, these results suggest the great potential of PSP-SeNPs as a novel antioxidant agent in the food or nutraceuticals area.
Collapse
|
41
|
Dong Z, Wang R, Wang M, Meng Z, Wang X, Han M, Guo Y, Wang X. Preparation of Naringenin Nanosuspension and Its Antitussive and Expectorant Effects. Molecules 2022; 27:molecules27030741. [PMID: 35164006 PMCID: PMC8837938 DOI: 10.3390/molecules27030741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
Abstract
Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 μg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.
Collapse
Affiliation(s)
- Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Mingyue Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Harbin University of Commerce, No. 138, Tongda Street, Daoli District, Harbin 150076, China
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- Correspondence: (Y.G.); (X.W.); Tel.: +86-010-57833264 (X.W.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- Correspondence: (Y.G.); (X.W.); Tel.: +86-010-57833264 (X.W.)
| |
Collapse
|
42
|
Synthesis, characterization, in vitro antioxidant and hypoglycemic activities of selenium nanoparticles decorated with polysaccharides of Gracilaria lemaneiformis. Int J Biol Macromol 2021; 193:923-932. [PMID: 34728301 DOI: 10.1016/j.ijbiomac.2021.10.189] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Under a simple redox system of selenite and ascorbic acid, we used Gracilaria lemaneiformis polysaccharides (GLPs) as a stabilizer and dispersing agent to generate well-dispersed and stable selenium nanoparticles (SeNPs). The size, stability, morphology and physicochemical properties of GLPs-SeNPs were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric (TG). The results showed that orange-red, amorphous, zero-valent and spherical GLPs-SeNPs with mean diameter of approximately 92.5 nm were successfully prepared, which exhibited good storage stability at 4 °C and remaining highly stable at different ion strengths and pH. The 2,2-diphenyl-1-pycrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and superoxide anion radical (O2•-) radical scavenging ability of GLPs-SeNPs were higher than those of bare SeNPs, GLPs and sodium selenite (Na2SeO3), and could reach 103.41%, 94.23%, 86% at a concentration of 1.5 mg/mL, respectively. Besides, GLPs-SeNPs also showed higher inhibitory effects on α-amylase and α-glucosidase. In vitro cytotoxicity assay and hemolysis activity examinations indicated that GLPs-SeNPs have excellent biocompatibility. Therefore, the GLPs-SeNPs might be used as a potential antioxidant agent and antidiabetic agent for food and medical applications.
Collapse
|
43
|
Zhou L, Song Z, Zhang S, Li Y, Xu J, Guo Y. Construction and antitumor activity of selenium nanoparticles decorated with the polysaccharide extracted from Citrus limon (L.) Burm. f. (Rutaceae). Int J Biol Macromol 2021; 188:904-913. [PMID: 34331980 DOI: 10.1016/j.ijbiomac.2021.07.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023]
Abstract
Selenium nanoparticles (SeNPs), a potential cancer therapeutic agent, have attracted widespread attention owing to their high bioavailability and remarkable anticancer activity. Nevertheless, the poor water solubility and dispersibility of SeNPs seriously limit their applications. In the present study, we synthesized stable and individual spherical selenium nanoparticles (CL90-Tw-SeNP2) with an average diameter of approximately 79 nm using a polysaccharide extracted from Citrus limon (CL90) and Tween-80 as the decorator and stabilizers. The proportion of selenium in CL90-Tw-SeNP2 was 10.6%. CL90-Tw-SeNP2 possessed high stability and good dispersion in water for more than three months. The subsequent biological assay revealed that CL90-Tw-SeNP2 showed remarkable antitumor effects against HepG2 cells, with an IC50 value of 49.13 μg/mL, by inducing cell apoptosis. Furthermore, an in vivo zebrafish assay to explore possible applications indicated that CL90-Tw-SeNP2 could inhibit the proliferation and migration of tumors and the zebrafish angiogenesis. These results indicated that CL90-Tw-SeNP2 could be a potential agent for cancer treatment, especially against human liver hepatoma cancer.
Collapse
Affiliation(s)
- Linan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 3003350, People's Republic of China.
| |
Collapse
|
44
|
Colonic macrophage-targeted curcumin nanoparticles alleviate DSS-induced colitis in mice through the NF-kappa B pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Adamczyk Z, Batys P, Płaziński W, Morga M, Lupa D, Michna A. Macroion molecule properties from slender body hydrodynamics. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Krakow Poland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Krakow Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Krakow Poland
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Krakow Poland
| | - Dawid Lupa
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Krakow Poland
| | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences Krakow Poland
| |
Collapse
|