1
|
Sreeharsha N, Prasanthi S, Rao GSNK, Gajula LR, Biradar N, Goudanavar P, Naveen NR, Shiroorkar PN, Meravanige G, Telsang M, Asif AH, Sreenivasalu PKP. Formulation optimization of chitosan surface coated solid lipid nanoparticles of griseofulvin: A Box-Behnken design and in vivo pharmacokinetic study. Eur J Pharm Sci 2025; 204:106951. [PMID: 39486655 DOI: 10.1016/j.ejps.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Solid lipid nanoparticles (SLNs) are becoming increasingly favored for their robust biocompatibility and their capacity to enhance drug solubility, particularly for drugs with limited water solubility. This study delves into the effectiveness of the hot melt sonication technique in fabricating SLNs with high drug loading capabilities and sustained release characteristics. Griseofulvin (GF), chosen as a representative drug due to its poor water solubility, was encapsulated into SLNs composed of stearic acid. Optimization of chitosan-coated GF-loaded SLNs (CS-GF-SLN) was conducted using a Box-Behnken design. Utilizing the desirability approach, optimal parameters were determined, including a lipid quantity of 450.593 mg, chitosan content of 268.67 mg, and sonication duration of 2.14 h. These parameters resulted in a zeta potential of -34.8 mV and a particle size (PS) of 56.87 nm. Following optimization, the refined formulation underwent comprehensive assessment across various parameters. Notably, the drug encapsulated within SLNs exhibited sustained release over three days, as illustrated by the in-vitro drug release profile. The optimized formulation demonstrated a bioavailability enhancement by approximately 1.7 to 2.0 times compared to the conventional formulation. Furthermore, administration of drug-loaded SLNs to a macrophage cell line demonstrated no cytotoxicity, affirming their suitability as conventional drug delivery platforms for GF.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, 31982, Kingdom of Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore, 560035, India.
| | - Samathoti Prasanthi
- Department of Pharmaceutics, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyanikethan College of Pharmacy), Sree sainathnagar, A.Rangampet, Tirupati, Andhra Pradesh, 517102, India
| | - Gudhanti Siva Naga Koteswara Rao
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Lakshmi Radhika Gajula
- Department of Pharmaceutics, SJM College of Pharmacy, Chitradurga, Karnataka, 577502, India
| | - Nikita Biradar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India.
| | | | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | | |
Collapse
|
2
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
3
|
Lee YR, Jeong HM, Kim JS, Kim EA, Lee EH, Shim JH. Enzymatic formation of cyclic maltooligosaccharides for the application of quercetin inclusion complex. Carbohydr Polym 2023; 310:120722. [PMID: 36925261 DOI: 10.1016/j.carbpol.2023.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
To improve the applicability of quercetin (QCT), we produced a QCT and cycloamylose (CA-QCT) inclusion complex based on the cyclization activity of cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19). The encapsulated QCT was purified using recycling preparative high-performance liquid chromatography, and its formation was analyzed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The water solubility of CA-QCT was 55,000-fold higher than that of QCT. CA-QCT had 97 % stability for one week at pH 8 in a 4 °C water bath. According to a 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay, CA-QCT activity in aqueous solution was 24 times higher than that of an equal amount of QCT in aqueous solution. In an anti-inflammatory assay using lipopolysaccharide-induced RAW264.7 macrophages, CA-QCT in aqueous solution decreased nitric oxide production in a similar manner to QCT in dimethyl sulfoxide (DMSO). Additionally, even under aqueous conditions, CA-QCT more effectively inhibited the production of inflammatory mediators, such as interleukin-1β, interleukin-6, and cyclooxygenase, compared with QCT dissolved in DMSO.
Collapse
Affiliation(s)
- Ye-Rim Lee
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Hyun-Mo Jeong
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Ji-Soo Kim
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Eun-A Kim
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Eun-Hyeong Lee
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea.
| |
Collapse
|
4
|
Fuster MG, Moulefera I, Muñoz MN, Montalbán MG, Víllora G. Synthesis of Cellulose Nanoparticles from Ionic Liquid Solutions for Biomedical Applications. Polymers (Basel) 2023; 15:polym15020382. [PMID: 36679262 PMCID: PMC9867531 DOI: 10.3390/polym15020382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
A method for the synthesis of cellulose nanoparticles using the ionic liquid 1-ethyl-3-methylimidazolium acetate has been optimised. The use of a highly biocompatible biopolymer such as cellulose, together with the use of an ionic liquid, makes this method a promising way to obtain nanoparticles with good capability for drug carrying. The operating conditions of the synthesis have been optimised based on the average hydrodynamic diameter, the polydispersity index, determined by Dynamic Light Scattering (DLS) and the Z-potential, obtained by phase analysis light scattering (PALS), to obtain cellulose nanoparticles suitable for use in biomedicine. The obtained cellulose nanoparticles have been characterised by Fourier transform infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA/DTA). Finally, cell viability studies have been performed with a cancer cell line (HeLa) and with a healthy cell line (EA.hy926). These have shown that the cellulose nanoparticles obtained are not cytotoxic in the concentration range of the studied nanoparticles. The results obtained in this work constitute a starting point for future studies on the use of cellulose nanoparticles, synthesised from ionic liquids, for biomedical applications such as targeted drug release or controlled drug release.
Collapse
|
5
|
Itraconazole and Difluorinated-Curcumin Containing Chitosan Nanoparticle Loaded Hydrogel for Amelioration of Onychomycosis. Biomimetics (Basel) 2022; 7:biomimetics7040206. [PMID: 36412734 PMCID: PMC9680304 DOI: 10.3390/biomimetics7040206] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Onychomycosis is a nail infection caused by a fungus, Trichophyton mentagrophytes, that is responsible for major nail infections. The best method suited for treating such infections generally includes a topical remedy. However, conventional oral or topical formulations are associated with various limitations. Therefore, a more efficient and compatible formulation is developed in this study. The primary objective of the current study is to formulate and evaluate chitosan nanoparticle-based hydrogel for ameliorating onychomycosis. The sole purpose of this research was to increase the permeation of the lipophilic drug itraconazole and difluorinated curcumin, and its synergistic antifungal activity was also evaluated for the first time. Both in vitro and ex vivo drug release evaluations confirmed the sustained release of both drugs from the hydrogel, which is a prerequisite for treating onychomycosis. The results overall highlighted the promising activity of a synergistic approach that could be implemented for the treatment of onychomycosis. The hydrogel-based formulation serves as an effective method of delivery of drugs across the layers of the skin, resulting from its hydrating characteristics.
Collapse
|
6
|
Hydroxypropyl-β-cyclodextrin/Oridonin and Trehalose loaded nanovesicles attenuate foam cells formation and regulate the inflammation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Compatibilized Biopolymer-based Core–shell Nanoparticles: A New Frontier in Malaria Combo-therapy. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym 2022; 278:118968. [PMID: 34973783 DOI: 10.1016/j.carbpol.2021.118968] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Microcrystalline cellulose (MCC) is one of the most popular cellulose derivatives in the pharmaceutical industry. Thanks to its outstanding tabletability, MCC is generally included in direct compression (DC) tablet formulations containing poor-tabletability active pharmaceutical ingredients. Nowadays, numerous grades of MCC from various brands are accessible for pharmaceutical manufacturers, leading to variability in MCC properties. Hence, it seems to be worthy and urgent to evaluate the influences of MCC variability on tablet quality and to identify critical material attributes (CMAs) based on the idea of Quality by Control. Besides, MCC-based co-processed excipients can effectively combine the functions of the filler, binder, disintegrant, lubricant, glidant, or flavor, and thus have drawn extensive interest. In this review, we focused specifically on the recent advances and development of MCC on DC tableting, including the functions in tablet formulations, potential CMAs, and MCC-based co-possessed excipients, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|