1
|
Wang X, Zhang Z, Lei H, Zhu C, Fu R, Ma X, Duan Z, Fan D. Treatment of ulcerative colitis via the in situ restoration of local immune and microbial homeostasis by oral administration of Tremella polysaccharide drug-carrying hydrogel. Int J Biol Macromol 2024; 285:138223. [PMID: 39626817 DOI: 10.1016/j.ijbiomac.2024.138223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Ulcerative colitis (UC) is a prevalent inflammatory bowel disease, and conventional treatments, such as anti-inflammatory medications and surgery, often prove inadequate due to frequent recurrences and various complications. To alleviate patient suffering, there is an urgent need for a therapeutic system that specifically delivers drugs to the colon for wound healing, inflammation relief, and restoration of microbial homeostasis. In this paper, we developed a Tremella polysaccharide drug-carrying hydrogel that adheres to the inflamed colonic mucosa, forming an effective artificial barrier and releasing the drug in situ to restore local immune and microbial balance. The hydrogel backbone was synthesized through the chemical cross-linking of Tremella polysaccharide with 1,4-butanediol diglycidyl ether in an alkaline environment. During this process, Soluplus® and TPGS-encapsulated ginsenoside compound K adhered to the hydrogel backbone due to electrostatic attraction. The enhanced adhesion following cross-linking enables the hydrogel to stably attach to the inflamed colonic mucosa, releasing mixed micelles that improve drug penetration and absorption by inhibiting the cellular efflux protein P-glycoprotein. This mechanism promotes local immune recovery and eliminates harmful intestinal flora, providing significant relief from UC symptoms. This natural polysaccharide-based hydrogel represents a highly effective oral treatment for UC.
Collapse
Affiliation(s)
- Xue Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Zhuo Zhang
- Plastic and Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710069, Shaanxi, China.
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Jiang T, Dong Y, Zhu W, Wu T, Chen L, Cao Y, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. Underlying mechanisms and molecular targets of genistein in the management of type 2 diabetes mellitus and related complications. Crit Rev Food Sci Nutr 2024; 64:11543-11555. [PMID: 37497995 DOI: 10.1080/10408398.2023.2240886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease caused by a complex interaction of genetic and environmental factors and is characterized by persistent hyperglycemia. Long-term hyperglycemia can cause macrovascular and microvascular damage, and compromise the heart, brain, kidney, peripheral nerves, eyes and other organs, leading to serious complications. Genistein, a phytoestrogen derived from soybean, is known for its various biological activities and therapeutic properties. Recent studies found that genistein not only has hypoglycemic activity but can also decrease insulin resistance. In addition, genistein has particular activity in the prevention and treatment of diabetic complications, such as nephropathy, cardiovascular disease, osteoarthrosis, encephalopathy and retinopathy. Therefore, the purpose of this review is to summarize the latest medical research and progress of genistein in DM and related complications and highlights its potential molecular mechanisms and therapeutic targets. Meanwhile, evidence is provided for the development and application of genistein as a potential drug or functional food in the prevention and treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yuantong Cao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
3
|
Abu Elella MH, Kolawole OM. Recent advances in modified chitosan-based drug delivery systems for transmucosal applications: A comprehensive review. Int J Biol Macromol 2024; 277:134531. [PMID: 39116977 DOI: 10.1016/j.ijbiomac.2024.134531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Recently, transmucosal drug delivery systems (TDDSs) have been extensively studied because they protect therapeutic agents from degradation; improve drug residence time at the mucosal membranes; and facilitate sustained drug release for a prolonged period. Chitosan is a well-researched polymeric excipient due to its biocompatibility, non-toxicity, biodegradability, mucoadhesive, antimicrobial, and low immunogenicity. Its limited mucoadhesiveness in the physiological environment necessitated its chemical modification. This review highlights the recent advances in the chemical modification of chitosan with various chemical groups to generate various functionalized chitosan derivatives, such as thiolated, acrylated, methacrylated, boronated, catechol, and maleimide-functionalized chitosans with superior mucoadhesive capabilities compared to the parent chitosan. Moreover, it presents the different prepared dosage forms, such as tablets, hydrogels, films, micro/nanoparticles, and liposomes/niosomes for drug administration within various mucosal routes including oral, buccal, nasal, ocular, colonic, intravesical, and vaginal routes. The reported data from preclinical studies of these pharmaceutical formulations have revealed the controlled and target-specific delivery of therapeutics because of their formation of covalent bonds with thiol groups on the mucosal surface. All functionalized chitosan derivatives exhibited long drug residence time on mucosal surfaces and sustainable drug release with excellent cellular permeability, drug efficacy, and biocompatibility. These promising data could be translated from the research laboratories to the clinics with consistent and intensive research effort.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6AD, United Kingdom; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | |
Collapse
|
4
|
Md S, Kotta S. Advanced drug delivery technologies for postmenopausal effects. J Control Release 2024; 373:426-446. [PMID: 39038543 DOI: 10.1016/j.jconrel.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Postmenopause is the 12-month absence of menstrual periods, characterized by decreased estrogen and progesterone levels, leading to physical and psychological alterations such as hot flashes, mood swings, sleep disruptions, and skin changes. Present postmenopausal treatments include hormone replacement therapy, non-hormonal drugs, lifestyle modifications, vaginal estrogen therapy, bone health treatments, and alternative therapies. Advanced drug delivery systems (ADDSs) are essential in managing postmenopausal effects (PMEs), offering targeted and controlled delivery to alleviate symptoms and improve overall health. This review emphasizes such ADDSs for addressing PMEs. Emerging trends such as artificial ovaries are also reviewed. Additionally, the prospects of technologies such as additive manufacturing (3D and 4D printing) and artificial intelligence in further tailoring therapeutic strategies against PMEs are provided.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Ozkan G, Ceyhan T, Çatalkaya G, Rajan L, Ullah H, Daglia M, Capanoglu E. Encapsulated phenolic compounds: clinical efficacy of a novel delivery method. PHYTOCHEMISTRY REVIEWS 2024; 23:781-819. [DOI: 10.1007/s11101-023-09909-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2025]
Abstract
AbstractEncapsulation is a drug or food ingredient loaded-delivery system that entraps active components, protecting them from decomposition/degradation throughout the processing and storage stages and facilitates their delivery to the target tissue/organ, improving their bioactivities. The application of this technology is expanding gradually from pharmaceuticals to the food industry, since dietary bioactive ingredients, including polyphenols, are susceptible to environmental and/or gastrointestinal conditions. Polyphenols are the largest group of plants' secondary metabolites, with a wide range of biological effects. Literature data have indicated their potential in the prevention of several disorders and pathologies, ranging from simpler allergic conditions to more complex metabolic syndrome and cardiovascular and neurodegenerative diseases. Despite the promising health effects in preclinical studies, the clinical use of dietary polyphenols is still very limited due to their low bioaccessibility and/or bioavailability. Encapsulation can be successfully employed in the development of polyphenol-based functional foods, which may improve their bioaccessibility and/or bioavailability. Moreover, encapsulation can also aid in the targeted delivery of polyphenols and may prevent any possible adverse events. For the encapsulation of bioactive ingredients, several techniques are applied such as emulsion phase separation, emulsification/internal gelation, film formation, spray drying, spray-bed-drying, fluid-bed coating, spray-chilling, spray-cooling, and melt injection. The present review aims to throw light on the existing literature highlighting the possibility and clinical benefits of encapsulated polyphenols in health and disease. However, the clinical data is still very scarce and randomized clinical trials are needed before any conclusion is drawn.
Graphical abstract
Collapse
|
6
|
Vargas-Osorio Z, González Castillo EI, Mutlu N, Vidomanová E, Michálek M, Galusek D, Boccaccini AR. Tailorable mechanical and degradation properties of KCl-reticulated and BDDE-crosslinked PCL/chitosan/κ-carrageenan electrospun fibers for biomedical applications: Effect of the crosslinking-reticulation synergy. Int J Biol Macromol 2024; 265:130647. [PMID: 38460627 DOI: 10.1016/j.ijbiomac.2024.130647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The development of intricated and interconnected porous mats is desired for many applications in biomedicine and other relevant fields. The mats that comprise the use of natural, bioactive, and biodegradable polymers are the focus of current research activities. In the present work, crosslinked fibers with improved characteristics were produced by incorporating 1,4-butanediol diglycidyl ether (BDDE) into a polymer formulation containing polycaprolactone (PCL), chitosan (CS), and κappa-carrageenan (κ-C). A slight variation of formic acid (FA)/acetic acid (AA) ratio used as a solvent system, significantly affected the characteristics of the produced fiber mats. Both polysaccharides and BDDE played a major role in tailoring mechanical properties when fibrous scaffolds were reticulated under KCl-mediated basic conditions for determined periods of time at 50 °C. In vitro biological assessment of the electrospun fiber mats revealed proliferation of MC3T3-E1 cells when incubated for 1 and 7 days. After staining the cells with 4',6-diamidino-2-phenylindole (DAPI)/rhodamine phalloidin an autofluorescence response was observed by fluorescence microscopy in the scaffold manufactured using a solvent with higher FA/AA ratio due to the formation of microfibers. The results demonstrated the potential of the BDDE-crosslinked PCL/CS/κ-C electrospun fibers as promising materials for biomedical applications that may include soft and bone tissue regeneration.
Collapse
Affiliation(s)
- Zulema Vargas-Osorio
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany.
| | - Eduin I González Castillo
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Nurshen Mutlu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany
| | - Eva Vidomanová
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Martin Michálek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD, FChPT STU, Študentská 2, 911 50 Trenčín, Slovakia
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany.
| |
Collapse
|
7
|
Quiroga D, Coy-Barrera C. Use of Chitosan as a Precursor for Multiple Applications in Medicinal Chemistry: Recent Significant Contributions. Mini Rev Med Chem 2024; 24:1651-1684. [PMID: 38500287 DOI: 10.2174/0113895575275799240306105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.
Collapse
Affiliation(s)
- Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Carlos Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| |
Collapse
|
8
|
Taghizadeh F, Mehryab F, Mortazavi SA, Rabbani S, Haeri A. Thiolated chitosan hydrogel-embedded niosomes: A promising crocin delivery system toward the management of aphthous stomatitis. Carbohydr Polym 2023; 318:121068. [PMID: 37479428 DOI: 10.1016/j.carbpol.2023.121068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 07/23/2023]
Abstract
Aphthous stomatitis is a common inflammatory oral disease with challenging management. Crocin is a natural carotenoid that has shown great anti-inflammatory properties. The aim of this study was to develop thiolated chitosan (TCS)-based hydrogels containing niosomes to serve as a mucoadhesive crocin delivery system for aphthous stomatitis. Crocin-loaded niosomes were prepared and the impact of surfactant type, cholesterol content, and lipid to drug ratio on the characteristics of niosomes was evaluated. TCS was synthesized and the success of thiolation was investigated. The optimum niosomal formulation was loaded into the hydrogel and the hybrid system was characterized regarding the morphology, mucoadhesive properties, viscosity, chemical structure, in vitro drug release, and in vivo efficacy. The optimized niosome formulation showed 77% crocin entrapment, a particle diameter of 59 nm, and a zeta potential of -18 mV. The niosome-containing hydrogel exhibited pseudoplastic rheological behavior, mucoadhesive properties, suitable swelling, and sustained release of crocin. In vivo study revealed that the niosome-containing hydrogel improved ulcer healing and decreased the expression of tumor necrosis factor-alpha (TNF-α) and p53 while increasing the expression of vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (α-SMA). Collectively, TCS hydrogel-embedded crocin-loaded niosomes is a promising therapeutic option for aphthous stomatitis. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Crocin (PubChem CID: 5281233) Chitosan (PubChem CID: 71853) Thioglycolic acid (PubChem CID: 1133) 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (PubChem CID: 2723939) 5,5'-dithiobis (2-nitrobenzoic acid) (PubChem CID: 6254) Cholesterol (PubChem CID: 5997).
Collapse
Affiliation(s)
- Fatemeh Taghizadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Jiang Z, Zhang W, Liu C, Xia L, Wang S, Wang Y, Shao K, Han B. Facilitation of Cell Cycle and Cellular Migration of Rat Schwann Cells by O-Carboxymethyl Chitosan to Support Peripheral Nerve Regeneration. Macromol Biosci 2023; 23:e2300025. [PMID: 37282815 DOI: 10.1002/mabi.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Indexed: 06/08/2023]
Abstract
O-carboxymethyl chitosan (CM-chitosan), holds high potential as a valuable biomaterial for nerve guidance conduits (NGCs). However, the lack of explicit bioactivity on neurocytes and poor duration that does not match nerve repair limit the restorative effects. Herein, CM-chitosan-based NGC is designed to induce the reconstruction of damaged peripheral nerves without addition of other activation factors. CM-chitosan possesses excellent performance in vitro for nerve tissue engineering, such as increasing the organization of filamentous actin and the expression of phospho-Akt, and facilitating the cell cycle and migration of Schwann cells. Moreover, CM-chitosan exhibits increased longevity upon cross-linking (C-CM-chitosan) with 1, 4-Butanediol diglycidyl ether, and C-CM-chitosan fibers possess appropriate biocompatibility. In order to imitate the structure of peripheral nerves, multichannel bioactive NGCs are prepared from lumen fillers of oriented C-CM-chitosan fibers and outer warp-knitted chitosan pipeline. Implantation of the C-CM-chitosan NGCs to rats with 10-mm defects of peripheral nerves effectively improve nerve function reconstruction by increasing the sciatic functional index, decreasing the latent periods of heat tingling, enhancing the gastrocnemius muscle, and promoting nerve axon recovery, showing regenerative efficacy similar to that of autograft. The results lay a theoretical foundation for improving the potential high-value applications of CM-chitosan-based bioactive materials in nerve tissue engineering.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Chenqi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lixin Xia
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
10
|
Hashtrodylar Y, Rabbani S, Dadashzadeh S, Haeri A. Berberine-phospholipid nanoaggregate-embedded thiolated chitosan hydrogel for aphthous stomatitis treatment. Nanomedicine (Lond) 2023; 18:1227-1246. [PMID: 37712555 DOI: 10.2217/nnm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: This study aimed to develop nanoaggregates of berberine-phospholipid complex incorporated into thiolated chitosan (TCS) hydrogel for the treatment of aphthous stomatitis. Methods: The berberine-phospholipid complex was formulated through the solvent evaporation technique and assembled into nanoaggregates. TCS was synthesized through the attachment of thioglycolic acid to chitosan (CS). Nanoaggregates-TCS was prepared by the incorporation of nanoaggregates into TCS and underwent in vitro and in vivo tests. Results: Nanoaggregates-TCS exhibited prolonged release of berberine. The mucoadhesive strength of nanoaggregates-TCS increased 1.75-fold compared with CS hydrogel. In vivo studies revealed the superior therapeutic efficacy of nanoaggregates-TCS compared with that of other groups. Conclusion: Due to prolonged drug release, appropriate residence time and anti-inflammatory effects, nanoaggregates-TCS is an effective system for the treatment of aphthous stomatitis.
Collapse
Affiliation(s)
- Yasaman Hashtrodylar
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, 1313814117, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| |
Collapse
|
11
|
Abdelgader A, Govender M, Kumar P, Choonara YE. Intravaginal Drug Delivery Systems to Treat the Genitourinary Syndrome of Menopause: Towards the Design of Safe and Efficacious Estrogen-loaded Prototypes. J Pharm Sci 2023; 112:1566-1585. [PMID: 36868359 DOI: 10.1016/j.xphs.2023.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Estrogens locally delivered to the vagina by tablets, capsules, rings, pessaries, and creams are the most common and highly recommended platforms to treat the genitourinary syndrome of menopause (GSM). Estradiol, an essential estrogen, is routinely administered alone, or in combination with progestins, to effectively alleviate the symptoms associated with moderate to severe menopause when non-pharmacological interventions are not indicated. Since the risk and side effects of estradiol use depends on the administered amount and duration of use, the lowest effective dose of estradiol is recommended when long-term treatment is required. Although there is a wealth of data and literature comparing vaginally administered estrogen-containing products, there is a lack of information revealing the effect of the delivery system used and formulation constituent's attributes on the efficacy, safety, and patient acceptability of these dosage forms. This review therefore aims to classify and compare various designs of commercially available and non-commercial vaginal 17β-estradiol formulations and analyze their performance in terms of systemic absorption, efficacy, safety, and patient satisfaction and acceptance. The vaginal estrogenic platforms included in this review are the currently marketed and investigational 17β-estradiol tablets, softgel capsules, creams, and rings for the treatment of GSM, based on their different design specifications, estradiol loads, and materials used in their preparation. Additionally, the mechanisms of the effects of estradiol on GSM have been discussed, as well as their potential impact on treatment efficacy and patient compliance.
Collapse
Affiliation(s)
- Ahmed Abdelgader
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Mershen Govender
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
12
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
13
|
Fan B, Liu L, Zheng Y, Xing Y, Shen W, Li Q, Wang R, Liang G. Novel pH-responsive and mucoadhesive chitosan-based nanoparticles for oral delivery of low molecular weight heparin with enhanced bioavailability and anticoagulant effect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Nahak BK, Mishra A, Preetam S, Tiwari A. Advances in Organ-on-a-Chip Materials and Devices. ACS APPLIED BIO MATERIALS 2022; 5:3576-3607. [PMID: 35839513 DOI: 10.1021/acsabm.2c00041] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.
Collapse
Affiliation(s)
- Bishal Kumar Nahak
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| |
Collapse
|
15
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
16
|
pH-Responsive Eco-Friendly Chitosan–Chlorella Hydrogel Beads for Water Retention and Controlled Release of Humic Acid. WATER 2022. [DOI: 10.3390/w14081190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For improving the mechanical strength of controlled release fertilizer (CRF) hydrogels, a novel material of Chlorella was employed as a bio-based filler to prepare chitosan–chlorella hydrogel beads with physical crosslink method. Here, the synthesis mechanism was investigated, and the chitosan–chlorella hydrogel beads exhibited enhanced mechanical stability under centrifugation and sonication than pure chitosan hydrogel beads. Chlorella brought more abundant functional groups to original chitosan hydrogel, hence, chitosan–chlorella hydrogel beads represented greater sensitivity and controllable response to external factors including pH, salt solution, temperature. In distilled water, the hydrogel beads with 40 wt% Chlorella reached the largest water absorption ratio of 42.92 g/g. Moreover, the mechanism and kinetics process of swelling behavior of the chitosan–chlorella hydrogel beads were evaluated, and the loading and releasing of humic acid by the hydrogel beads as a carrier material were pH-dependent and adjustable, which exhibit the potential of chitosan–chlorella hydrogel beads in the field of controlled release carrier biomaterials.
Collapse
|
17
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
18
|
Yang I, Lin I, Liang Y, Lin J, Chen T, Chen Z, Kuan C, Chi C, Li C, Wu H, Lin F. Development of di(2‐ethylhexyl) phthalate‐containing thioglycolic acid immobilized chitosan mucoadhesive gel as an alternative hormone therapy for menopausal syndrome. Bioeng Transl Med 2021; 7:e10267. [PMID: 35600649 PMCID: PMC9115706 DOI: 10.1002/btm2.10267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023] Open
Abstract
Menopausal syndrome includes the symptoms that most women experience owing to hormone changes after menopause. Although hormone replacement therapy is a common treatment for menopausal syndrome, there are still many side effects and challenges hindering research. In this study, thioglycolic acid (TGA)‐immobilized chitosan mucoadhesive gel was synthesized by a new method of low concentration of 1,4‐butanediol diglycidyl ether (BDDE) would encapsulate di(2‐ethylhexyl) phthalate (DEHP) as an alternative hormone replacement therapy for menopausal syndrome. The efficacies of the DEHP‐containing TGA‐chitosan gel (CT‐D) were confirmed and evaluated by materials characterization and in vitro study. Results showed that CT‐D was not cytotoxic and had better mucoadhesive ability than chitosan. The animal model was constructed 1 month after bilateral ovariectomy in SD rats. CT‐D was administered intravaginally every 3 days. Bodyweight, wet weight of the uterus and vagina, vaginal smears, histology, blood element analysis, and serological analysis was used to assess the ability of the material to relieve menopausal syndrome. The results indicated that the combination of the sustained release of DEHP and mucoadhesive TGA‐immobilized chitosan allows the developed CT‐D to relieve the menopausal syndrome through low concentrations of DEHP, which falls in the safety level of the tolerable daily intake of DEHP.
Collapse
Affiliation(s)
- I‐Hsuan Yang
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - I‐En Lin
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Ya‐Jyun Liang
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Jhih‐Ni Lin
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Tzu‐Chien Chen
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Zhi‐Yu Chen
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Che‐Yung Kuan
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
| | - Chih‐Ying Chi
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine National Chung Hsing University Taichung Taiwan
| | - Chi‐Han Li
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine National Chung Hsing University Taichung Taiwan
| | - Hung‐Ming Wu
- Department of Neurology Changhua Christian Hospital Changhua Taiwan
| | - Feng‐Huei Lin
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine National Chung Hsing University Taichung Taiwan
| |
Collapse
|
19
|
Li P, Wang T, He J, Jiang J, Lei F. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int J Biol Macromol 2021; 183:1987-2000. [PMID: 34087302 DOI: 10.1016/j.ijbiomac.2021.05.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|