1
|
Ma J, Wang J, Wan Y, Wang S, Jiang C. Probiotic-fermented traditional Chinese herbal medicine, a promising approach to maintaining the intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118815. [PMID: 39270882 DOI: 10.1016/j.jep.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, PR China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Shihua Wang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| |
Collapse
|
2
|
Wang XL, Liu ZW, Jia HP, Wu MY, Li DM, Ye XG, Hu Y, Chen Y, Huang C. Production, structure, and performance of guar gum based bacterial cellulose generated from soy sauce residue hydrolysate by in-situ fermentation. Int J Biol Macromol 2025; 300:140108. [PMID: 39842594 DOI: 10.1016/j.ijbiomac.2025.140108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Guar gum based bacterial cellulose (GG-BC) was generated from the soy sauce residue hydrolysate by in-situ fermentation, and its structure and performance were learned systematically. The GG concentration of 0.2 % was most suitable for GG-BC production with the yield of 1.21 g/L. During the in-situ fermentation, GG was implanted into the nano network of BC and thus altered its microstructure and properties. According to the FT-IR and NMR results, GG-BC had similar functional group structure and cellulose structural framework to those of BC. The degree of polymerization (DP) of GG-BC was 526.32-832.16, which was higher than that (426.32) of BC. Also, the GG-BC with low GG addition (0.2 % and 0.4 %) had a higher crystallinity than BC. Moreover, the GG-BC had a better heat tolerance than BC based on its higher temperature reaching the maximum degradation rate. The GG-BC with suitable GG addition had better texture characteristics, UV barrier property, swelling rate, and antioxidant activity than those of BC, showing that the in-situ fermentation with GG addition could promote the performance of GG-BC. Overall, this study can provide an attractive technology for both solving the environmental issue brought by soy sauce residue and producing high value-added GG-BC with good performance efficiently.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zhuo-Wei Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Huai-Peng Jia
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Meng-Yue Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Liu W, Wang Y, Lu S. Cellulose Based Nano-Scaffolds for Targeted Cancer Therapies: Current Status and Future Perspective. Int J Nanomedicine 2025; 20:199-213. [PMID: 39802388 PMCID: PMC11721505 DOI: 10.2147/ijn.s500261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
In the last few years, cellulose has garnered much interest for its application in drug delivery, especially in cancer therapy. It has special properties like biocompatibility, biodegradability, high porosity, and water permeability render it a good candidate for developing efficient carriers for anticancer agents. Cellulose based nanomaterials like cellulose nanofibers, bacterial cellulose, cellulose nanocrystals and microcrystalline cellulose as delivery vehicles for targeted drug delivery to cancer cells are reviewed. This review elaborates on the synthesis, functionalization, and application strategies of these nanocarriers, and shows how they facilitate to improve drug stability, bioavailability and targeted delivery to tumor sites. Their possibilities as a tool to overcome the limitations of conventional cancer therapeutics are also discussed. We also explore future directions for improving the efficacy of cellulose based carriers in cancer therapy.
Collapse
Affiliation(s)
- Yanwei Li
- Department of General Practice and Family Medicine, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Wei Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Yuanyuan Wang
- Department of Radiotherapy, Central Hospital of Changchun City, Changchun, 130000, People’s Republic of China
| | - Shan Lu
- Department of General Practice and Family Medicine, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| |
Collapse
|
4
|
Hu J, Wang L, Xiao M, Chen W, Zhou M, Hu Y, Zhang Y, Lai M, He A, Zhao M. Insights into bacterial cellulose for adsorption and sustained-release mechanism of flavors. Food Chem X 2025; 25:102110. [PMID: 39810953 PMCID: PMC11732607 DOI: 10.1016/j.fochx.2024.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.98 mg/g) was obtained through response surface optimization. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Flourier transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were utilized to verify the successful adsorption. Thermo-gravimetry (TG) analysis showed that the release of citral was delayed. Temperature responsiveness indicated the release of citral was controlled by internal diffusion. Density functional theory (DFT) calculations indicated the interactions between BC and citral was mainly composed of van der Waals forces and hydrogen bonds. BC-Citral also exhibited excellent antibacterial capability. This work provided a new approach for constructing controlled-release materials of citral, which offered good application prospects in food industry.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Longfei Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Menglan Xiao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Weihua Chen
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang 050051, China
| | - Meng Zhou
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yihan Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Zhang
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang 050051, China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Aimin He
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang 050051, China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
D A G, Adhikari J, Debnath P, Ghosh S, Ghosh P, Thomas S, Ghandilyan E, Gorbatov P, Kuchukyan E, Gasparyan S, Saha P. 3D printing of bacterial cellulose for potential wound healing applications: Current trends and prospects. Int J Biol Macromol 2024; 279:135213. [PMID: 39216564 DOI: 10.1016/j.ijbiomac.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Several advances in skin tissue engineering have been made to restore skin damage, facilitating wound healing. Bacterial cellulose (BC), a naturally occurring polymer, has gained attention as a potential material in wound healing due to its unique physical and biological properties. In recent years, with the advent of 3D bio-printing technology, new avenues have opened for fabricating customized wound dressings and scaffolds for tissue engineering purposes. The existing literature in this field mainly focuses on the ways of modifications of bacterial cellulose to make it printable. Still, the applicability of 3D printed scaffolds for wound healing needs to be explored more. This review article focuses on the current research on using 3D-printed BC for skin regeneration, including its production methods and physical and biological properties, making it a better choice than traditional dressings. Furthermore, it also highlights the limitations and future directions for using BC in wound healing and tissue engineering applications. This review provides a comprehensive and up-to-date exploration of the applications of 3D-printed BC in wound healing, drawing insights from pre-existing studies and emphasizing patient compliance, clinical outcomes, and economic viability.
Collapse
Affiliation(s)
- Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Poonam Debnath
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Shrayana Ghosh
- Department of Biotechnology, Amity University, Kolkata, India
| | - Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and IIUCNN, Mahatma Gandhi University, Kottayam 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa; TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd, Sreekariyam, Trivandrum, Kerala 695016, India
| | - Emmanuel Ghandilyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Pavel Gorbatov
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Elza Kuchukyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Seda Gasparyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India.
| |
Collapse
|
6
|
Orasugh JT, Temane LT, Ray SS. Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. Int J Biol Macromol 2024; 277:133891. [PMID: 39025190 DOI: 10.1016/j.ijbiomac.2024.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Electronic systems and telecommunications have grown in popularity, leading to increasing electromagnetic (EM) radiation pollution. Environmental protection from EM radiation demands the use of environmentally friendly products. The design of EM interference (EMI) shielding materials using resources like nanocellulose (NC) is gaining traction. Cellulose, owing to its biocompatibility, biodegradability, and excellent mechanical and thermal properties, has attracted significant interest for developing EMI shielding materials. Recent advancements in cellulose-based EMI shielding materials, particularly modified cellulosic composites, are highlighted in this study. By incorporating metallic coatings compounded with conductive fillers and modified with inherently conductive elements, conductivity and effectiveness of EMI shielding can be significantly improved. This review discusses the introduction of EMI shields, cellulose, and NC, assessing environmentally friendly EMI shield options and diverse NC-based composite EMI shields considering their low reflectivity. The study offers new insights into designing advanced NC-based conductive composites for EMI shielding applications.
Collapse
Affiliation(s)
- Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Lesego Tabea Temane
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| |
Collapse
|
7
|
Yu C, Han Z, Sun H, Tong J, Hu Z, Wang Y, Fang X, Yue W, Qian S, Nie G. Balancing mechanical property and swelling behavior of bacterial cellulose film by in-situ adding chitosan oligosaccharide and covalent crosslinking with γ-PGA. Int J Biol Macromol 2024; 267:131280. [PMID: 38640644 DOI: 10.1016/j.ijbiomac.2024.131280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
Bacterial cellulose (BC) is an ideal candidate material for drug delivery, but the disbalance between the swelling behavior and mechanical properties limits its application. In this work, covalent crosslinking of γ-polyglutamic acid (γ-PGA) with the chitosan oligosaccharide (COS) embedded in BC was designed to remove the limitation. As a result, the dosage, time, and batch of COS addition significantly affected the mechanical properties and the yield of bacterial cellulose complex film (BCCF). The addition of 2.25 % COS at the incubation time of 0.5, 1.5, and 2 d increased the Young's modulus and the yield by 5.65 and 1.42 times, respectively, but decreased the swelling behavior to 1774 %, 46 % of that of native BC. Covalent γ-PGA transformed the dendritic structure of BCCF into a spider network, decreasing the porosity and increasing the swelling behavior by 3.46 times. The strategy balanced the swelling behavior and mechanical properties through tunning hydrogen bond, electrostatic interaction, and amido bond. The modified BCCF exhibited a desired behavior of benzalkonium chlorides transport, competent for drug delivery. Thereby, the strategy will be a competent candidate to modify BC for such potential applications as wound dressing, artificial skin, scar-inhibiting patch, and so on.
Collapse
Affiliation(s)
- Chenrui Yu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China; College of Biological Science and Medical Engineering, Donghua University, 201620, Shanghai, China
| | - Zhenxing Han
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Hongxia Sun
- College of Chemistry and Materials Science, Anhui Normal University, 241002 Wuhu, China.
| | - Jie Tong
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Ziwei Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Yu Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wenjin Yue
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Guangjun Nie
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| |
Collapse
|
8
|
Saleh AK, Ray JB, El-Sayed MH, Alalawy AI, Omer N, Abdelaziz MA, Abouzeid R. Functionalization of bacterial cellulose: Exploring diverse applications and biomedical innovations: A review. Int J Biol Macromol 2024; 264:130454. [PMID: 38417758 DOI: 10.1016/j.ijbiomac.2024.130454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
The demand for the functionalization of additive materials based on bacterial cellulose (BC) is currently high due to their potential applications across various sectors. The preparation of BC-based additive materials typically involves two approaches: in situ and ex situ. In situ modifications entail the incorporation of additive materials, such as soluble and dispersed substances, which are non-toxic and not essential for bacterial cell growth during the production process. However, these materials can impact the yield and self-assembly of BC. In contrast, ex situ modification occurs subsequent to the formation of BC, where the additive materials are not only adsorbed on the surface but also impregnated into the BC pellicle, while the BC slurry was homogenized with other additive materials and gelling agents to create composite films using the casting method. This review will primarily focus on the in situ and ex situ functionalization of BC then sheds light on the pivotal role of functionalized BC in advancing biomedical technologies, wound healing, tissue engineering, drug delivery, bone regeneration, and biosensors.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622 Giza, Egypt.
| | - Julie Basu Ray
- Department of Health Sciences, Christian Brothers University, Memphis, TN, USA
| | - Mohamed H El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Arar, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Noha Omer
- Department of chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622 Giza, Egypt; School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
9
|
Liu Z, Wang Y, Guo S, Liu J, Zhu P. Preparation and characterization of bacterial cellulose synthesized by kombucha from vinegar residue. Int J Biol Macromol 2024; 258:128939. [PMID: 38143062 DOI: 10.1016/j.ijbiomac.2023.128939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Bacterial cellulose (BC) has been widely applied in various fields due to its excellent physicochemical properties, but its high production cost remains a challenge. Herein, the present study aimed to utilize the hydrolysate of vinegar residue (VR) as the only medium to realize the cost-effective production of BC. The BC production was optimized by the single-factor test. The treatment of 6 % VR concentration with 3 % acid concentration at 100 °C for 1.5 h and 96 U/mL of cellulase for 4 h at 50 °C obtained a maximum reducing sugar concentration of about 32 g/L. Additionally, the VR hydrolysate treated with 3 % active carbon (AC) at 40 °C for 0.5 h achieved a total phenol removal ratio of 86 %. The yield of BC reached 2.1 g/L under the optimum conditions, which was twice compared to the standard medium. The produced BC was characterized by SEM, FT-IR, XRD, and TGA analyses, and the results indicated that the BC prepared by AC-treated VR hydrolysate had higher fiber density, higher crystallinity, and good thermal stability. Furthermore, the regenerated BC (RBC) fibers with a tensile stress of 400 MPa were prepared successfully using AmimCl solution as a solvent by dry-wet-spinning method. Overall, the VR waste could be used as an alternative carbon source for the sustainable production of BC, which could be further applied to RBC fibers preparation.
Collapse
Affiliation(s)
- Zhanna Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Yingying Wang
- Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Shengnan Guo
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China.
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
10
|
Wu Y, Liu YL, Jia HP, Chen KH, Wu FF, Gao J, Hu Y, Chen Y, Huang C. Effect of in-situ biochemical modification on the synthesis, structure, and function of xanthan gum based bacterial cellulose generated from Tieguanyin oolong tea residue hydrolysate. Food Chem 2024; 432:137133. [PMID: 37633139 DOI: 10.1016/j.foodchem.2023.137133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
The effect of in-situ biochemical modification on the synthesis, structure, and function of xanthan gum based bacterial cellulose generated from Tieguanyin oolong tea residue hydrolysate was evaluated for the first time. This modification could overcome the inhibitory effect of the hydrolysate and the bacterial cellulose yield with 0.6% xanthan gum addition increased by 260.8% compared with that without xanthan gum addition. Bacterial cellulose and xanthan gum were combined by the in-situ modification and the alteration of fermentation medium rheological properties by xanthan gum addition might be beneficial for their combination. The average diameter of the bacterial cellulose microfibrils was increased by the modification, and it had a great influence on the crystalline structure of the bacterial cellulose. Additionally, both the water absorption and texture properties of the bacterial cellulose was strengthened by the modification. Overall, this modification showed great potential for efficient and effective xanthan gum based bacterial cellulose production.
Collapse
Affiliation(s)
- Yi Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Yang-Ling Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Huai-Peng Jia
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Kang-Hui Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Fang-Fang Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Jing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
11
|
Jia HP, Wang XL, Liu ZW, Wu Y, Gao J, Hu Y, Chen Y, Huang C. Bacterial cellulose/gum Arabic composite production by in-situ modification from lavender residue hydrolysate. Int J Biol Macromol 2023; 253:126961. [PMID: 37722637 DOI: 10.1016/j.ijbiomac.2023.126961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In this study, bacterial cellulose/gum Arabic composite (BC/GA) was synthesized by in-situ modification from lavender residue hydrolysate for the first time. The in-situ modification with GA adding showed great beneficial effect for BC/GA synthesis. Both the product (BC or BC/GA) yield and the product (BC or BC/GA) production per sugars consumption increased greatly by the in-situ modification when compared with the fermentation without GA adding (2.90 g/L vs. 0.91 g/L, and 0.461 g/g vs. 0.138 g/g). It is hypothesized that the combination of BC and GA is the main mechanism for the beneficial effect of the in-situ modification, and the scanning electron microscope (SEM) images confirmed this hypothesis. GA adding showed little effect on the rheological properties of lavender residue hydrolysate, and this environment was suitable for the combination of BC and GA. The in-situ modification had an obvious influence on the crystallinity index and the thermal stability of BC/GA, but affected little on its functional groups and cellulose structural framework. Besides BC/GA synthesis and structure, the in-situ modification could also alter the texture properties of BC/GA. Overall, this study can offer some useful information for the biochemical conversion from green and cost-effective lavender residue hydrolysate to attractive biomaterial BC/GA.
Collapse
Affiliation(s)
- Huai-Peng Jia
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Xiao-Lin Wang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zhuo-Wei Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Yi Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
12
|
Nguyen NN, Tran TTV, Nguyen QD, Nguyen TP, Lien TN. Modification of microstructure and selected physicochemical properties of bacterial cellulose produced by bacterial isolate using hydrocolloid-fortified Hestrin-Schramm medium. Biotechnol Prog 2023; 39:e3344. [PMID: 37025043 DOI: 10.1002/btpr.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
Bacterial cellulose (BC) is a biopolymer with applications in numerous industries such as food and pharmaceutical sectors. In this study, various hydrocolloids including modified starches (oxidized starch-1404 and hydroxypropyl starch-1440), locust bean gum, xanthan gum (XG), guar gum, and carboxymethyl cellulose were added to the Hestrin-Schramm medium to improve the production performance and microstructure of BC by Gluconacetobacter entanii isolated from coconut water. After 14-day fermentation, medium supplemented with 0.1% carboxymethyl cellulose and 0.1% XG resulted in the highest BC yield with dry BC content of 9.82 and 6.06 g/L, respectively. In addition, scanning electron microscopy showed that all modified films have the characteristic three-dimensional network of cellulose nanofibers with dense structure and low porosity as well as larger fiber size compared to control. X-ray diffraction indicated that BC fortified with carboxymethyl cellulose exhibited lower crystallinity while Fourier infrared spectroscopy showed characteristic peaks of both control and modified BC films.
Collapse
Affiliation(s)
- Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Thi Tuong Vi Tran
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Tran-Phong Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Tuyet-Ngan Lien
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| |
Collapse
|
13
|
Luo J, Yang R, Ma F, Jiang W, Han C. Recycling utilization of Chinese medicine herbal residues resources: systematic evaluation on industrializable treatment modes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32153-32167. [PMID: 36719578 DOI: 10.1007/s11356-023-25614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Traditional Chinese medicine (TCM) is an indispensable part of the world health and medical system and plays an important role in treatment, prevention, and health care. These TCM produce a large amount of Chinese medicine herbal residues (CHMRs) during the application process, most of which are the residues after the decoction or extraction of botanical medicines. These CMHRs contain a large number of unused components, which can be used in medical, breeding, planting, materials, and other industries. Considering the practical application requirements, this paper mainly introduces the low-cost treatment methods of CHMRs, including the extraction of active ingredients, cultivation of edible fungi, and manufacture of feed. These methods not only have low upfront investment, but also have some income in the future. Furthermore, other methods are briefly introduced. In conclusion, this paper can provide a reference for people who need to deal with CMHRs and contribute to the sustainable development of TCM.
Collapse
Affiliation(s)
- Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China.
| |
Collapse
|
14
|
Xu T, Gao X, Li Y, Lin C, Ma P, Bai Z, Zhou J, Wu H, Cao F, Wei P. Characterization of isolated starch from Isatis indigotica Fort. root and anhydro-sugars preparation using its decoction residues. BIOMASS CONVERSION AND BIOREFINERY 2023:1-12. [PMID: 36785541 PMCID: PMC9907209 DOI: 10.1007/s13399-023-03892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Isatis indigotica Fort. root (Ban-lan-gen, IIR), a traditional Chinese medicine (TCM), has an ancient and well-documented history for its medicinal properties. Aside from epigoitrin, indole alkaloids, and their corresponding derivatives as medicinal ingredients, it also contains lots of biomass such as starch. Herein, a new starch was isolated from IIR and the physicochemical properties such as amylose content, moisture content, ash content, morphology, thermal properties, and crystallography were characterized systematically. The amylose content of IIR starch was 19.84 ± 0.85%, and the size and shape of starch granules is ellipsoidal shape with sizes from 2 to 10 μm. IIR starch exhibited a C-type pattern and had 25.92% crystallinity (higher than that of corn starch). The gelatinization temperature of IIR starch was 58.68-75.41 °C, and its gelatinization enthalpy was ΔH gel = 4.33 J/g. After decocting, the IIR's residues can be used to prepare anhydro-sugars in a polar aprotic solvent. The total carbon yield of levoglucosan (LG), levoglucosenone (LGO), 5-hydroxymethylfurfural (HMF), and furfural (FF) could reach 69.81% from IIR's decoction residues in 1,4-dioxane with 15 mM H2SO4 as the catalyst. Further, the residues after dehydration were prepared into biochar by thermochemical conversion and the BET surface area of biochar was 1749.46 m2/g which has good application prospect in soil improvement and alleviates obstacles of IIR continuous cropping.
Collapse
Affiliation(s)
- Tingting Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xin Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Yuanzhang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Changqu Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Peipei Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Zhongzhong Bai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Hongli Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Fei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
15
|
Preparation of ε-polylysine and hyaluronic acid self-assembled microspheres loaded bacterial cellulose aerogels with excellent antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Low cost production of bacterial cellulose through statistical optimization and developing its composites for multipurpose applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Chen C, Du S, Zhong W, Liu K, Qu L, Chu F, Yang J, Han X. Accurate delivery of pristimerin and paclitaxel by folic acid-linked nano-micelles for enhancing chemosensitivity in cancer therapy. NANO CONVERGENCE 2022; 9:52. [PMID: 36427092 PMCID: PMC9700544 DOI: 10.1186/s40580-022-00343-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/09/2022] [Indexed: 06/01/2023]
Abstract
Chemoresistance remains a huge challenge for effective treatment of non-small cell lung cancer (NSCLC). Previous studies have shown Chinese herbal extracts possess great potential in ameliorating tumor chemoresistance, however, the efficacy is clinically limited mainly because of the poor tumor-targeting and in vivo stability. The construction of nano-delivery systems for herbal extracts has been shown to improve drug targeting, enhance therapeutic efficacy and reduce toxic and side effects. In this study, a folic acid (FA)-modified nano-herb micelle was developed for codelivery of pristimerin (PRI) and paclitaxel (PTX) to enhance chemosensitivity of NSCLC, in which PRI could synergistically enhance PTX-induced growth inhibition of A549 cancer cell. PTX was firstly grafted with the FA-linked polyethylene glycol (PEG) and then encapsulated with PRI to construct the PRI@FA-PEG-PTX (P@FPP) nano-micelles (NMs), which exhibited improved tumor-targeting and in vivo stability. This active-targeting P@FPP NMs displayed excellent tumor-targeting characteristics without obvious toxicity. Moreover, inhibition of tumor growth and metastasis induced by P@FPP NMs were significantly enhanced compared with the combined effects of the two drugs (PRI in combination of PTX), which associated with epithelial mesenchymal transition inhibition to some extent. Overall, this active-targeting NMs provides a versatile nano-herb strategy for improving tumor-targeting of Chinese herbal extracts, which may help in the promotion of enhancing chemosensitivity of NSCLC in clinical applications.
Collapse
Affiliation(s)
- Chao Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shiyu Du
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wu Zhong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Kunguo Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihua Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Feiyi Chu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Jingjing Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
18
|
Nascimento HA, Amorim JDP, M. Filho LEPTD, Costa AFS, Sarubbo LA, Napoleão DC, Maria Vinhas G. Production of bacterial cellulose with antioxidant additive from grape residue with promising cosmetic applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Helenise A. Nascimento
- Department of Chemical Engineering Federal University of Pernambuco (UFPE), Avenida dos Economistas, Cidade Universitária Recife Pernambuco Brazil
| | - Julia D. P. Amorim
- Federal Rural University of Pernambuco (UFRPE), Biotechnology Northeast Network (RENORBIO) Rua Dom Manuel de Medeiros Recife Brazil
- Advanced Institute of Technology and Innovation (IATI) Recife Pernambuco Brazil
| | | | - Andrea Fernanda S. Costa
- Advanced Institute of Technology and Innovation (IATI) Recife Pernambuco Brazil
- Federal University of Pernambuco (UFPE), Academic Center of the Agreste Region Caruaru Pernambuco Brazil
| | - Leonie A. Sarubbo
- Federal Rural University of Pernambuco (UFRPE), Biotechnology Northeast Network (RENORBIO) Rua Dom Manuel de Medeiros Recife Brazil
- Advanced Institute of Technology and Innovation (IATI) Recife Pernambuco Brazil
- Icam Tech School Catholic University of Pernambuco (UNICAP) Recife Pernambuco Brazil
| | - Daniella Carla Napoleão
- Department of Chemical Engineering Federal University of Pernambuco (UFPE), Avenida dos Economistas, Cidade Universitária Recife Pernambuco Brazil
| | - Glória Maria Vinhas
- Department of Chemical Engineering Federal University of Pernambuco (UFPE), Avenida dos Economistas, Cidade Universitária Recife Pernambuco Brazil
| |
Collapse
|
19
|
Liu X, Wang D, Wang S, Fan W, Yang Y, Gao P, Chen M, Yang W, Cai K. Promoting osseointegration by in situ biosynthesis of metal ion-loaded bacterial cellulose coating on titanium surface. Carbohydr Polym 2022; 297:120022. [DOI: 10.1016/j.carbpol.2022.120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
20
|
Bacterial cellulose: recent progress in production and industrial applications. World J Microbiol Biotechnol 2022; 38:86. [DOI: 10.1007/s11274-022-03271-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
21
|
Singhania RR, Patel AK, Tseng YS, Kumar V, Chen CW, Haldar D, Saini JK, Dong CD. Developments in bioprocess for bacterial cellulose production. BIORESOURCE TECHNOLOGY 2022; 344:126343. [PMID: 34780908 DOI: 10.1016/j.biortech.2021.126343] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Bacterial cellulose (BC) represents a novel bio-origin nonomaterial with its unique properties having diverse applications. Increased market demand and low yield are the major reason for its higher cost. Bacteria belonging to Komagataeibacter sp are the most exploited ones for BC production. Development of a cost-effective bioprocess for higher BC production is desirable. Though static fermentation modes have been majorly employed for BC production using tray fermenters, agitated mode has also been employed successfully with air-lift fermenters as well as stirred tank reactors. Bioprocess advances in recent years has led BC production to an upper level; however, challenges of aeration requirement and labor cost towards the higher end is associated with static cultivation at large scale. We have discussed the bioprocess development for BC production in recent years along with the challenges associated and the path forward.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yi-Sheng Tseng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Vinod Kumar
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
22
|
Li ZY, Azi F, Dong JJ, Liu LZ, Ge ZW, Dong MS. Green and efficient in-situ biosynthesis of antioxidant and antibacterial bacterial cellulose using wine pomace. Int J Biol Macromol 2021; 193:2183-2191. [PMID: 34785197 DOI: 10.1016/j.ijbiomac.2021.11.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022]
Abstract
Biologically active bacterial cellulose (BC) was efficiently synthesized in situ using wine pomace and its hydrolysate. The structural and biomechanical properties together with the biological functions of the BC were investigated. Functional BC from wine pomace and its enzymatic hydrolysate were of high purity and had higher crystallinity indexes (90.61% and 89.88%, respectively) than that from HS medium (82.26%). FTIR results proved the in-situ bindings of polyphenols to the functionalized BC. Compared to BC from HS medium, wine pomace-based BC had more densely packed ultrafine fibrils, higher diameter range distributions of fiber ribbon, but lower thermal decomposition temperatures, as revealed by the SEM micrographs and DSC data. Meanwhile, wine pomace-based BC exhibited higher loads in tensile strength and higher hardness (4.95 ± 0.31 N and 5.13 ± 0.63 N, respectively) than BC in HS medium (3.43 ± 0.14 N). Furthermore, BC synthesized from wine pomace hydrolysate exhibited a slower release rate of phenolic compounds, and possessed more antioxidant activities and better bacteriostatic effects than BC from wine pomace. These results demonstrate that BC synthesized in situ from wine pomace (especially from enzymatic hydrolysate) is a promising biomolecule with a potential application in wound dressing, tissue engineering, and other biomedical fields.
Collapse
Affiliation(s)
- Zhi-Yu Li
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Fidelis Azi
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jia-Jia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Li-Zhi Liu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhi-Wen Ge
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ming-Sheng Dong
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|