1
|
Li L, Wu Y, Xu Z, Xu Y, Gao X, Diao Y, Liu Y, Chen L, Sun J. Controlled release of magnesium ions from PLA microsphere-chitosan hydrogel complex for enhancing osteogenic and angiogenic activities in vitro. Int J Biol Macromol 2024; 283:137649. [PMID: 39579813 DOI: 10.1016/j.ijbiomac.2024.137649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Magnesium ions (Mg2+) play an essential role in the metabolism and regeneration of bone tissue. Appropriate amounts of Mg2+ have been shown to promote osteogenic differentiation of bone-derived cells and angiogenesis of endothelial cells. However, the initial burst release of Mg2+ may compromise the osteogenic effect, so the controlled release of Mg2+ is the critical consideration of the magnesium-containing tissue-engineered bone materials. This study proposes a microsphere-hydrogel complex to enhance the sustained-release effect and prolong the release cycle of Mg2+. For the initial release of Mg2+, polylactic acid (PLA) microspheres containing MgO and MgCO3 were fabricated with uniform morphology. Further microspheres were incorporated into the chitosan-based hydrogel to form microsphere- hydrogel complex for extended release. The complex demonstrated effective sustained release of Mg2+ over a period exceeding 28 days. In vitro cell experiments, CS/PLA@MgO-MgCO3 significantly enhanced migration and osteogenic differentiation of MC3T3-E1. Meanwhile, it can facilitate the generation of blood vessels in HUVECs. In conclusion, the magnesium-loaded microsphere-hydrogel complex achieves excellent dual sustained-release properties with an extended-release cycle while enhancing vascularized osteogenic activity in vitro, showing promising prospects for clinical application in bone defect treatment.
Collapse
Affiliation(s)
- Li Li
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yupeng Wu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Zexian Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yaoxiang Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China
| | - Xiaohan Gao
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yaru Diao
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yanshan Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China
| | - Liqiang Chen
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China; The Climbing Peak Discipline Project of Qingdao, Qingdao, 266003, China.
| | - Jian Sun
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China; The Climbing Peak Discipline Project of Qingdao, Qingdao, 266003, China.
| |
Collapse
|
2
|
Yao J, Zhi H, Shi Q, Zhang Y, Feng J, Liu J, Huang H, Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41324-41336. [PMID: 37602737 DOI: 10.1021/acsami.3c07761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
With the poorly soluble and intrinsically unstable feature, prochloraz (Pro) was confronted with lower bioavailability in the crop defense against fungal erosion. Therefore, it was a challenging project to explore the innovative antifungal compound delivery system for improving bioavailability. The superior adhesive fungicide formulation was supposed to be an efficient pathway to enhance transmembrane permeability and biological activity. According to abundant phenolic hydroxyl groups, tannic acid (TA) was an ideal modified adhesive biomaterial to improve interfacial interactions. The fundamental purpose of this research was focused on the synergistic mechanism of TA-interfacial-modified Pro-ethyl cellulose (EC) nanoparticles for improving bioavailability and biosafety. In the stability test, TA-modified Pro-EC nanoparticles had the capacity to reduce Pro initial release burst, extending a persistent validity and improving anti-photodegradation property. The toxicity index of Pro-EC and Pro-EC-TA was approximately 2.93-fold and 4.96-fold that of Pro technical against Fusarium graminearum (F. graminearum), respectively. Compared with nonmodified EC nanoparticles, TA-modified EC nanoparticles obtained eminent transmembrane permeability and superior adherence ability to F. graminearum, for hydroxyl and carboxyl groups of TA to enhance interaction with target cell membranes. The contents of cellular reactive oxygen species induced by Pro-EC and Pro-EC-TA nanoparticles were about 2.31 times and 3.00 times that of the control check (CK), respectively. Compared to the CK group, the membrane potential and ergosterol values of F. graminearum treated with Pro-EC-TA nanoparticles were drastically reduced by 74.91 and 56.20%, respectively. In the biosafety assay, the maximum half-lethal concentration value of the TA-modified Pro-EC nanoparticles indicated that the acute toxicity of the Pro-EC-TA nanoparticles to adult zebrafish was approximately 8.34-fold reduced compared to that of the Pro technical. These findings demonstrated that the successful interfacial modification of Pro-EC nanoparticles with TA was a highly efficient, environmentally safe, and promising alternative for sustainable agricultural application, thus making the fungicide formulation process more simplified, easier fabrication, and lower cost.
Collapse
Affiliation(s)
- Junwei Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jin Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jingxia Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Hui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
3
|
Shao Y, Wang Y, Hua X, Li Y, Wang D. Polylactic acid microparticles in the range of μg/L reduce reproductive capacity by affecting the gonad development and the germline apoptosis in Caenorhabditis elegans. CHEMOSPHERE 2023; 336:139193. [PMID: 37315859 DOI: 10.1016/j.chemosphere.2023.139193] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Polylactic acid (PLA) accounts for approximately 45% of the global market of biodegradable plastics. Using Caenorhabditis elegans as an animal model, we examined the effect of long-term exposure to PLA microplastic (MP) on reproductive capacity and the underlying mechanism. Brood size, number of fertilized eggs in uterus, and number of hatched eggs were significantly reduced by exposure to 10 and 100 μg/L PLA MP. Number of mitotic cells per gonad, area of gonad arm, and length of gonad arm were further significantly decreased by exposure to 10 and 100 μg/L PLA MP. In addition, exposure to 10 and 100 μg/L PLA MP enhanced germline apoptosis in the gonad. Accompanied with the enhancement in germline apoptosis, exposure to 10 and 100 μg/L PLA MP decreased expression of ced-9 and increased expressions of ced-3, ced-4, and egl-1. Moreover, the induction of germline apoptosis in PLA MP exposed nematodes was suppressed by RNAi of ced-3, ced-4, and egl-1, and strengthened by RNAi of ced-9. Meanwhile, we did not detect the obvious effect of leachate of 10 and 100 μg/L PLA MPs on reproductive capacity, gonad development, germline apoptosis, and expression of apoptosis related genes. Therefore, exposure to 10 and 100 μg/L PLA MPs potentially reduces the reproductive capacity by influencing the gonad development and enhancing the germline apoptosis in nematodes.
Collapse
Affiliation(s)
- Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuxing Wang
- Medical School, Southeast University, Nanjing, China
| | - Xin Hua
- Medical School, Southeast University, Nanjing, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
4
|
Chitosan nanoparticles efficiently enhance the dispersibility, stability and selective antibacterial activity of insoluble isoflavonoids. Int J Biol Macromol 2023; 232:123420. [PMID: 36708890 DOI: 10.1016/j.ijbiomac.2023.123420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Natural isoflavonoids have attracted much attention in the treatment of oral bacterial infections and other diseases due to their excellent antibacterial activity and safety. However, their poor water solubility, instability and low bioavailability seriously limited the practical application. In this study, licoricidin-loaded chitosan nanoparticles (LC-CSNPs) were synthesized by self-assembly for improving the dispersion of licoricidin (LC) and strengthening antibacterial and anti-biofilm performance. Compared to free LC, the minimum inhibitory concentration of LC-CSNPs against Streptococcus mutans decreased >2-fold to 26 μg/mL, and LC-CSNPs could ablate 70 % biofilms at this concentration. The enhanced antibacterial activity was mainly attributed to the spontaneous surface adsorption of LC-CSNPs on cell membranes through electrostatic interactions. More valuably, LC-CSNPs had no inhibitory effect on the growth of probiotic. Mechanism study indicated that LC-CSNPs altered the transmembrane potential to cause bacterial cells in a hyperpolarized state, generating ROS to cause cells damage and eventually apoptosis. This work demonstrated that the chitosan-based nanoparticles have great potential in enhancing the dispersibility and antibacterial activity of insoluble isoflavonoids, offering a promising therapeutic strategy for oral infections.
Collapse
|
5
|
dos Santos RB, Funguetto-Ribeiro AC, Maciel TR, Fonseca DP, Favarin FR, Nogueira-Librelotto DR, de Gomes MG, Nakamura TU, Rolim CMB, Haas SE. In vivo and in vitro per se effect evaluation of Polycaprolactone and Eudragit® RS100-based nanoparticles. Biomed Pharmacother 2022; 153:113410. [DOI: 10.1016/j.biopha.2022.113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
|
6
|
Zhou A, Yang K, Wu X, Liu G, Zhang TC, Wang Q, Luo F. Functionally-Designed Chitosan-based hydrogel beads for adsorption of sulfamethoxazole with light regeneration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Wang T, Qin J, Cheng J, Li C, Du J. Intelligent design of polymersomes for antibacterial and anticancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1822. [PMID: 35673991 DOI: 10.1002/wnan.1822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Carette X, Mincheva R, Herbin M, Cabecas Segura P, Wattiez R, Noirfalise X, Thai C, Leclere P, Godfroid T, Boudifa M, Kerdjoudj H, Jolois O, Raquez JM. Microwave Atmospheric Plasma: A Versatile and Fast Way to Confer Antimicrobial Activity toward Direct Chitosan Immobilization onto Poly(lactic acid) Substrate. ACS APPLIED BIO MATERIALS 2021; 4:7445-7455. [DOI: 10.1021/acsabm.1c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xavier Carette
- Laboratory of Polymeric and Composite Materials (LPCM), University of Mons, Place du Parc, 23, B-7000, Mons, Belgium
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials (LPCM), University of Mons, Place du Parc, 23, B-7000, Mons, Belgium
| | - Morgane Herbin
- Laboratory of chemistry of plasma-surface interaction (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Materia-Nova Research Center, Parc Initialis, B-7000 Mons, Belgium
| | - Paloma Cabecas Segura
- Department of Proteomics and Microbiology, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Xavier Noirfalise
- Laboratory of chemistry of plasma-surface interaction (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Materia-Nova Research Center, Parc Initialis, B-7000 Mons, Belgium
| | - Cuong Thai
- Laboratory for Chemistry of Novel Materials (CMN), University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Philippe Leclere
- Laboratory for Chemistry of Novel Materials (CMN), University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Thomas Godfroid
- Laboratory of chemistry of plasma-surface interaction (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Mohamed Boudifa
- Centre du textile Belge (CENTEXBEL), 4460 Grâce-Hollogne, Belgium
- CRITT-MDTS, 08000 Charleville-Mézières, France
| | - Halima Kerdjoudj
- Laboratory for Chemistry of Novel Materials (CMN), University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Olivier Jolois
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Santé (FED4231), Université de Reims Champagne-Ardenne, 51097 Reims, France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), University of Mons, Place du Parc, 23, B-7000, Mons, Belgium
| |
Collapse
|