1
|
Zheng W, Wang H, Huang Q, Li Y, Huang J, Cai W, Lai Y. Ultra-Antifouling Liquid-Like Surfaces for Sustainable Viscous Water-in-Oil Emulsions Separation and Oil Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413751. [PMID: 39648530 DOI: 10.1002/adma.202413751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The demand for efficient separation techniques in industries dealing with high viscosity emulsions has surged due to their widespread applications in various scenarios, including emulsion-based drug delivery systems, the removal of emulsified impurities in formulations and oil spill remediation. However, membrane fouling is a major challenge for conventional separation methods, leading to decreased efficiency and increased maintenance costs. Herein, a novel approach is reported by constructing liquid-like surfaces with double anti-fouling structure, incorporating soft nanomicelles within a rigid, chemically cross-linked network for both anti-membrane-fouling and effective viscous water-in-oil emulsion separation. The coating significantly outperforms perfluorinated and commercial polytetrafluoroethylene (PVDF) membranes, effectively preventing the adhesion of viscous oils like crude oil and pump oil, and alleviating severe membrane fouling. For high-viscosity emulsions (97.3 cP and 52.8 cP), it maintains over 99% separation efficiency after 3 h continuous use. Even after 15 h immersion in strong acids, alkalis, salts, or organic solvents, its separation efficiency remains above 95%. In addition, thanks to the anti-membrane-fouling ability, this work achieved 6 h continuous emulsion separation performance for the first time, demonstrating unparalleled long-term stability. Overall, this study offers valuable insights into the development of innovative coatings for efficient and eco-friendly separation of high-viscosity emulsions.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huicai Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qingshan Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Ya Li
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
2
|
Abutalebi A, Christopher GF. Creating High Yield Stress Particle-Laden Oil/Water Interfaces Using Charge Bidispersity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21086-21096. [PMID: 39325636 DOI: 10.1021/acs.langmuir.4c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Interfacial engineering has been increasingly used to stabilize Pickering emulsions in commercial products and biomedical applications. Pickering emulsion stabilization is aided by interfacial viscoelasticity; however, typically the primary means of stabilization are steric hindrances between high surface concentration shells of particles around the drops. In this work, the concept of creating large interfacial viscoelastic yield stresses with low particle surface concentrations (<50%) using bidisperse charged particle systems is tested to evaluate their potential efficacy in emulsion stabilization. To explore this hypothesis, interfacial rheology and visualization experiments are conducted at o/w interfaces using positively charged amidine, negatively charged carboxylate, and negatively charged sulfate-coated latex spheres and compared to a model based on interparticle forces. Bidisperse particle systems have been observed to create more networked structures than monodisperse systems. For surface concentrations of <50%, bidisperse interfaces created measurable viscoelastic moduli ∼1 order of magnitude larger than monodisperse interfaces. Furthermore, these interfaces have measurable yield stresses on the order of 10-4 Pa·m when monodisperse systems have none. Bidispersity impacts surface viscoelasticity primarily by increasing the overall magnitude of attraction between particles at the interface and not due to changes in the microstructure. The developed model predicts the relative surface fraction that creates the largest moduli and shows good agreement with the experimental data. The results demonstrate the ability to create large viscoelastic moduli for small surface fractions of particles, which may enable stabilization using fewer particles in future applications.
Collapse
Affiliation(s)
- Arsalan Abutalebi
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Gordon F Christopher
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
3
|
Su X, Liu W, Yang B, Yang S, Hou J, Yu G, Feng Y, Li J. Constructing network structures to enhance stability and target deposition of selenium nanoparticles via amphiphilic sodium alginate and alkyl glycosides. Int J Biol Macromol 2024; 267:131588. [PMID: 38615860 DOI: 10.1016/j.ijbiomac.2024.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.
Collapse
Affiliation(s)
- Xiaona Su
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Shujuan Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Jinjian Hou
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Gaobo Yu
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Jiacheng Li
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| |
Collapse
|
4
|
Dai H, Li K, Yang D. Controllable Regulation of Diesel Oil-in-Water Pickering Emulsion Stability by Multiresponsive Recyclable Magnetic Polymer Brush Microvessels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17715-17727. [PMID: 38551105 DOI: 10.1021/acsami.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
To ensure safety and efficiency in the production and transportation of fuel oil, there is an urgent demand to develop intelligent emulsifiers to deal with this challenge. Fe3O4@PDA-P(NIPAM-b-MAA-b-LMA) (MNPDNML) microspheres were prepared by modifying polydopamine and the triblock polymer brush P(NIPAM-b-MAA-b-LMA) on the surface of Fe3O4 nanoparticles via oxidative autopolymerization and SI-RAFT polymerization. Therefore, the MNPDNML microspheres exhibited sensitive stimulus-responsive behavior to pH, temperature, near-infrared (NIR) laser radiation, and magnetic fields. The stability state of the emulsion could be modulated by changing pH, temperature, magnetic field, and NIR radiation, and the reversible switching of emulsification/breaking behavior could be reached at least 10 times. This "intelligent emulsifier" exhibited high emulsification efficiency, long-term stability, and on-demand emulsification/breaking properties. It was notable that MNPDNML microspheres showed excellent emulsification ability for olive oil, kerosene, gasoline, and crude oil, which allowed the material to be widely used in the controlled transportation and separation of fuel oil.
Collapse
Affiliation(s)
- Hui Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610500, PR China
| | - Dongxu Yang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
| |
Collapse
|
5
|
Yu J, Shang Q, Zhang M, Hu L, Jia P, Zhou Y. Tung oil-based waterborne UV-curable coatings via cellulose nanofibril stabilized Pickering emulsions for self-healing and anticorrosion application. Int J Biol Macromol 2024; 256:128114. [PMID: 37979750 DOI: 10.1016/j.ijbiomac.2023.128114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In this study, waterborne UV-curable coatings with self-healing properties based on transesterification were prepared using renewable biomass resources for anti-corrosion application. Tung oil (TO)-based oligomer (TMHT) was synthesized through Diels-Alder reaction of TO with maleic anhydride, subsequent ring opening reaction with hydroxyethyl acrylate (HEA), and final neutralize reaction with triethylamine. A series of waterborne UV-curable coatings were prepared from cellulose nanofibrils (CNF) stabilized TMHT-based Pickering emulsions after drying and UV light-curing processes. It is suggested that CNF significantly improved the storage stability of Pickering emulsions. The obtained waterborne UV-curable coatings with CNF of 1-3 wt% exhibited remarking coating and mechanical performance (pencil hardness up to 5 H, adhesion up to 2 grade, flexibility of 2 mm, tensile strength up to 11.6 MPa, etc.), great transmittance (82.3 %-80.8 %) and great corrosion resistance (|Z|0.01Hz up to 5.4 × 106 Ω·cm2). Because of the presence of the dynamic ester bonds in TMHT, the coatings exhibited excellent self-healing performance (78.05 %-56.34 %) at 150 °C without catalyst and external force. More importantly, the |Z|0.01Hz of the self-healing coating was higher than that of the scratched coating, indicating that the self-healing performance could extend the service life of the coating in corrosion resistant application.
Collapse
Affiliation(s)
- Jinni Yu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| | - Qianqian Shang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China.
| | - Meng Zhang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China.
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| |
Collapse
|
6
|
Dong L, Li J, Zhang D, Chen X, Guan Y, Wang Z, Li Y. Coupling Carbon-Based Composite Phase Change Materials with a Polyurethane Sponge for Sustained and Efficient Solar-Driven Cleanup of Viscous Crude Oil Spill. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37517-37529. [PMID: 37497553 DOI: 10.1021/acsami.3c07360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The efficient cleanup of crude oil spills is a worldwide problem due to their high viscosity and low fluidity. Under the assistance of solar radiation, adsorbents with in situ heating function are becoming the ideal candidates to solve this problem. In this study, a new strategy coupling a polyurethane (PU) sponge with phase change materials (PCMs) is proposed to realize the efficient utilization of solar energy and crude oil cleanup. Wormlike carbon nanotubes/mesoporous carbon (CNTs/MC) with a core-shell structure was used to encapsulate polyethylene glycol (PEG), which was then introduced into the PU sponge for photothermal conversion and thermal storage. After coating with a polydimethylsiloxane (PDMS) layer, the sponge was further endowed with hydrophobic characteristics. Additionally, PDMS can function as a binder between PEG@CNTs/MC and sponge skeleton. The resulting PEG@CNTs/MC/PU/PDMS (named as PEG@CMPP) exhibited excellent photothermal conversion and high absorption capacity for high-viscosity crude oil. Most importantly, thanks to the heat storage properties of PEG, the stored heat can be sustainably transferred to the surrounding crude oil to promote its continuous absorption even under insufficient light intensity conditions. The crude oil absorption capacity of PEG@CMPP-3 reached approximately 0.96 g/cm3 even after the light source was removed, which manifested the distinctive advantages compared to the conventional photothermal adsorbent. The proposed approach integrates the high efficiency of solar-assisted heating and energy-conserving advantage, thereby providing a feasible strategy for highly efficient remediation of viscous crude oil spills.
Collapse
Affiliation(s)
- Limei Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Junfeng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Dan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| |
Collapse
|
7
|
Giwa A, Chalermthai B, Shaikh B, Taher H. Green dispersants for oil spill response: A comprehensive review of recent advances. MARINE POLLUTION BULLETIN 2023; 193:115118. [PMID: 37300957 DOI: 10.1016/j.marpolbul.2023.115118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Green dispersants are so-called "green" because they are renewable (from bio-based sources), non-volatile (from ionic liquids), or are from naturally available solvents (vegetable oils). In this review, the effectiveness of different types of green dispersants, namely, protein isolates and hydrolysates from fish and marine wastes, biosurfactants from bacterial and fungal strains, vegetable-based oils such as soybean lecithin and castor oils, as well as green solvents like ionic liquids are reviewed. The challenges and opportunities offered by these green dispersants are also elucidated. The effectiveness of these dispersants varies widely and depends on oil type, dispersant hydrophilicity/hydrophobicity, and seawater conditions. However, their advantages lie in their relatively low toxicity and desirable physico-chemical properties, which make them potentially ecofriendly and effective dispersants for future oil spill response.
Collapse
Affiliation(s)
- Adewale Giwa
- Chemical and Water Desalination Engineering Program, Mechanical & Nuclear Engineering (MNE) Department, College of Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates.
| | - Bushra Chalermthai
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bismah Shaikh
- Sustainable Energy Development Research Group, Sustainable Energy and Power Systems Research Center, Research Institute for Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Hanifa Taher
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Synthesis of functionalized janus hybrid nanosheets for one-step construction of pickering emulsion and selective photodegradation of water-soluble dyes. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
He F, Zhao X, Yang S, Wen Q, Feng Y, Yu G, Li J. Coexistence of aggregates and flat states of hydrophobically modified sodium alginate at an oil/water interface: A molecular dynamics study. Int J Biol Macromol 2023; 231:123233. [PMID: 36642363 DOI: 10.1016/j.ijbiomac.2023.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 01/14/2023]
Abstract
Hydrophobically modified sodium alginate stabilizes benzene in water emulsions. The stability of the emulsion is related to the interface properties at the mesoscopic scale, but the details of the polymer adsorption, conformation and organization at oil/water interfaces at the microscopic scale remain largely elusive. In this study, hydrophobically modified sodium alginate was used as a representative of amphiphilic polymers for prediction of distribution of HMSA at the oil/water interface by coarse-grained molecular dynamics simulation. The result showed that driven by the interaction energy between the hydrophobic segment and benzene, HMSA will actively accumulate at the oil/water interface. The HMSA molecules parallel to the oil/water interface prevent the hydrophobic segments in the micelles from approaching the oil/water interface, so that the micelles can exist stably by steric hindrance. This study would be helpful to understand the aggregation behavior of amphiphilic polymers at the oil/water interface, these results can have applications in diverse sectors such as drug, food industry, where polymers are used to stabilize emulsions.
Collapse
Affiliation(s)
- Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Qiyan Wen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
10
|
Zhao X, Yang S, He F, Liu H, Mai K, Huang J, Yu G, Feng Y, Li J. Light-dimerization telechelic alginate-based amphiphiles reinforced Pickering emulsion for 3D printing. Carbohydr Polym 2023; 299:120170. [PMID: 36876785 DOI: 10.1016/j.carbpol.2022.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Functional Pickering emulsions that depend on the interparticle interactions hold promise for building template materials. A novel coumarin-grafting alginate-based amphiphilic telechelic macromolecules (ATMs) undergoing photo-dimerization enhanced particle-particle interactions and changed the self-assembly behavior in solutions. The influence of self-organization of polymeric particles on the droplet size, microtopography, interfacial adsorption and viscoelasticity of Pickering emulsions were further determined by multi-scale methodology. Results showed that stronger attractive interparticle interactions of ATMs (post-UV) endowed Pickering emulsion with small droplet size (16.8 μm), low interfacial tension (9.31 mN/m), thick interfacial film, high interfacial viscoelasticity and adsorption mass, and well stability. The high yield stress, outstanding extrudability (n1 < 1), high structure maintainability, and well shape retention ability, makes them ideal inks for direct 3D printing without any additions. The ATMs provides an increased capacity to produce stable Pickering emulsions with tailoring their interfacial performances and, providing a platform for fabricating and developing alginate-based Pickering emulsion-templated materials.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Haifang Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Keyang Mai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
11
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
12
|
Xiong C, Cao X, Zhao X, Yang S, Huang J, Feng Y, Yu G, Li J. Stability and photo demulsification of oil-in-seawater Pickering emulsion based on Fe3+ induced amphiphilic alginate. Carbohydr Polym 2022; 289:119399. [DOI: 10.1016/j.carbpol.2022.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
|
13
|
Li H, Wu C, Yin Z, Wu J, Zhu L, Gao M, Zhan X. Emulsifying properties and bioavailability of clove essential oil Pickering emulsions stabilized by octadecylaminated carboxymethyl curdlan. Int J Biol Macromol 2022; 216:629-642. [PMID: 35810853 DOI: 10.1016/j.ijbiomac.2022.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023]
Abstract
In the present study, clove essential oil (CEO) Pickering emulsions were stabilized by octadecylamine-modified carboxymethyl curdlan (CMCD-ODA) at different pH values. The droplet size and negatively charged zeta potential of the CMCD-ODA emulsions decreased as the pH increased from 3.0 to 11.0. Rheology results indicated that the CMCD-ODA polymer/emulsion prepared at pH 5.0 showed higher apparent viscosity and viscoelasticity than other pH conditions, which might prevent droplets from flocculating. The Pickering emulsions obtained at pH 5.0 were spherical droplets with a uniform size distribution and a mean diameter of 9.54 μm, and they exhibited excellent stability during 28 days of storage. The morphological structures of the emulsions investigated by confocal laser scanning microscopy and scanning electron microscopy indicated that the CMCD-ODA Pickering emulsion obtained at pH 5.0 was stabilized by loading amphiphilic CMCD-ODA polymer around the spherical oil droplets and forming a weak gel network structure. The CEO-loaded CMCD-ODA emulsions had higher antioxidant capacity than free CEO after 28 days of storage at pH 5.0. Given the good emulsion stability, antioxidant activity, and great antibacterial effect, the CEO-loaded carboxymethyl curdlan Pickering emulsion has promising applications in food, cosmetic, and biomedicine industries.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanchao Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Zhu
- A & F Biotech. Ltd., Burnaby, BC V5A3P6, Canada
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Cao X, Xiong C, Zhao X, Yang S, Wen Q, Tang H, Zeng Q, Feng Y, Li J. Tuning self-assembly of amphiphilic sodium alginate-decorated selenium nanoparticle surfactants for antioxidant Pickering emulsion. Int J Biol Macromol 2022; 210:600-613. [PMID: 35513095 DOI: 10.1016/j.ijbiomac.2022.04.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Delivering effectively zero-valent selenium nanoparticles (SeNPs) and develop its functions in more fields is still a challenge. Herein, a novel template for the preparation and stabilization of SeNP-based surfactants was developed, amphiphilic sodium alginate (APSA), which can self-assemble into micelles in an aqueous solution. Primarily, physicochemical properties of SeNPs stabilized by APSA with different molecular weights were compared and the interaction mechanism of APSA/SeNPs was investigated. Moreover, a functional Pickering emulsion (PE) was presented using the SeNP-based surfactants. Results showed that high molecular weight-stabilized SeNPs had small particle size (54.72 nm) and great stability due to the hydrogen bonding between Se atoms and APSA. The "soft" particle-decorated SeNPs with interface activity formed a dense interfacial layer on the oil-water interface, which exhibited excellent antioxidant properties. The contents of lipid hydrogen peroxide (LH) and malondialdehyde (MDA) were significantly reduced by 88.7% and 63.4%. Overall, SeNPs stabilized by APSA have great application potential as an emulsifier and antioxidant in industrial field.
Collapse
Affiliation(s)
- Xinyu Cao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chuang Xiong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qiyan Wen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Haiyun Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qu Zeng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
15
|
|