1
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
2
|
Tong Y, Liu B, Yu Y, Wang Y, Yan Q, Huang D, Zhu Y, Xiang Y. Construction of Cyclodextrin-Based Covalent Organic Frameworks for Efficient Encapsulation of Menthol. Chemistry 2024; 30:e202402500. [PMID: 39269248 DOI: 10.1002/chem.202402500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The application of flavoring ingredients like menthol in the food industry is hindered by their high volatility and poor thermal stability, which lead to significant losses during processing and storage. Encapsulation of flavors into porous materials to obtain inclusion complexes (ICs) has proved to be an efficient strategy. In the present study, we synthesized a series of relatively food-safe three-dimensional anionic cyclodextrin-based covalent organic frameworks (CD-COFs) with spiroborate linkages using a facile microwave-assisted method. The high surface area and newly formed cavities of COFs significantly enhanced the encapsulation efficiency of menthol compared to native CD materials. Our findings revealed that γ-CD-COF-Li, with Li+ as the counterion, achieved superior encapsulation efficiency of 25.9 %, outperforming γ-CD-COF-Na, γ-CD-COF-K and α-CD-COF-Li under the same conditions. Thermal stability measurements show that the menthol/γ-CD-COF-Li-ICs effectively stabilize menthol against heat evaporation at elevated temperatures due to the strengthened interaction between menthol and γ-CD-COF-Li. The promising results of this research suggest that rapid advancements in COF technology will provide new opportunities for enhancing the stability of flavoring ingredients in the food industry.
Collapse
Affiliation(s)
- Yuxing Tong
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Ben Liu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Yang Yu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Yixin Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Qunshan Yan
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
3
|
Yu M, Qu C, Li D, Jiang Z, Liu J, Yang F, Liu C, Yue W, Wu Q. Study on the effects of endogenous polyphenols on the structure, physicochemical properties and in vitro digestive characteristics of Euryales Semen starch based on multi-spectroscopies, enzyme kinetics, molecular docking and molecular dynamics simulation. Int J Biol Macromol 2024; 282:137245. [PMID: 39505170 DOI: 10.1016/j.ijbiomac.2024.137245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Euryales Semen (ES) is a highly nutritious food with low digestibility, which is closely associated with its endogenous phenolic compounds. In this study, five phenolic compounds (naringenin, isoquercitrin, gallic acid, epicatechin and quercetin) with high concentrations in ES were selected to prepare starch-polyphenol complexes. Subsequently, the effects of endogenous polyphenols on the structure, physicochemical properties and digestion characteristics of ES starch were studied using multiple techniques. The addition of phenolic compounds markedly reduced the in vitro digestibility, swelling power, gelatinization enthalpy, while increased the solubility of ES starch. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that phenolic compounds interacted with the starch through non-covalent bonds. Five phenolic compounds inhibited α-amylase activity through a mixed competitive inhibition mechanism, with the inhibition potency ranked as follows: quercetin > epicatechin > gallic acid > isoquercitrin > naringenin. The spectroscopic analysis and molecular dynamics simulations confirmed that five phenolic compounds interacted with the amino acid residues of α-amylase through hydrogen bonding and hydrophobic interactions, caused α-amylase static fluorescence quenching, and altered its conformation and microenvironment. This study provides a better understanding of the interaction mechanisms between ES starch and polyphenols, and supports the development of ES as a food that lowers sugar levels.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dishuai Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chanchan Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qinan Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Hernandez-Bautista M, Falfán-Córtes RN, Gómez-Aldapa CA, Castro-Rosas J, Salgado-Delgado R, Palma-Rodríguez HM, Vargas-Torres A. Microencapsulation of Hibiscus sabdariffa extract in taro starch: Determination of optimal conditions of bioactive compound retention using response surface methodology. Int J Biol Macromol 2024:137145. [PMID: 39488323 DOI: 10.1016/j.ijbiomac.2024.137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Hibiscus sabdariffa (HS) extract contains a large amount of bioactive compounds with antioxidant, anticarcinogenic, and antihypertensive effects. The extraction of total phenols, flavonoids, and anthocyanins is more efficient at boiling temperature (~91 °C) than that performed at room temperature (~27 °C). In this study, a central composite rotatable design (CCRD) was used to optimize the inlet temperature conditions of a spray dryer and the concentration of taro starch solids to obtain microcapsules with the highest retention of bioactive compounds in hibiscus extracts. Optimized microcapsules (OM) were obtained at an inlet temperature of 118 °C and solid concentration of 26.5 %. Low moisture content (4.54 %) and water activity (0.2) and high content of total phenols (3374.91 mg GAE/100 g), flavonoids (372.81 mg QE/100 g), monomeric anthocyanins (36.74 mg C-3-GE/100 g), and angiotensin-converting enzyme inhibitory activity (80.01 %), were determined in OM using response surface methodology. OM showed a range of spherical agglomerate sizes (10--32 μm). These results indicate that CCRD is a good tool for establishing the optimal conditions for solid concentration and drying temperature to maximize the protection of bioactive compounds using taro starch as the wall material.
Collapse
Affiliation(s)
- Monserrat Hernandez-Bautista
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| | - Reyna N Falfán-Córtes
- Cátedra CONACyT, México, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - Carlos A Gómez-Aldapa
- Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Químicas, Instituto de Ciencias Básicas e Ingeniería, Carretera Pachuca-Tulancingo km 4.5, Mineral de la Reforma, Hidalgo C.P. 42183, Mexico
| | - Javier Castro-Rosas
- Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Químicas, Instituto de Ciencias Básicas e Ingeniería, Carretera Pachuca-Tulancingo km 4.5, Mineral de la Reforma, Hidalgo C.P. 42183, Mexico
| | - Rene Salgado-Delgado
- Tecnológico Nacional de México/Instituto Tecnológico de Zacatepec, Calzada Tecnológico No. 27, C.P.62780 Zacatepec de Hidalgo, Morelos, Mexico
| | - Heidi M Palma-Rodríguez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico.
| | - Apolonio Vargas-Torres
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| |
Collapse
|
5
|
Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024; 13:2453. [PMID: 39123644 PMCID: PMC11312236 DOI: 10.3390/foods13152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The efficacy of many edible bioactive agents is limited by their low water dispersibility and chemical instability in foods, as well as by their poor bioaccessibility, low absorption, and metabolism within the human gastrointestinal tract. Whey proteins are amphiphilic molecules that can be used to construct a variety of edible carrier systems that can improve the performance of bioactive ingredients. These carrier systems are being used by the food and biomedical industries to encapsulate, protect, and deliver a variety of bioactive agents. In this article, we begin by providing an overview of the molecular and functional characteristics of whey proteins, and then discuss their interactions with various kinds of bioactive agents. The ability of whey proteins to be used as building blocks to assemble different kinds of carrier systems is then discussed, including nanoparticles, hydrogels, oleogels, bigels, nanofibers, nanotubes, and nanoemulsions. Moreover, applications of these carrier systems are highlighted. Different kinds of whey protein-based carriers can be used to encapsulate, protect, and deliver bioactive agents. Each kind of carrier has its own characteristics, which make them suitable for different application needs in foods and other products. Previous studies suggest that whey protein-based carriers are particularly suitable for protecting chemically labile bioactive agents and for prolonging their release profiles. In the future, it is likely that the applications of whey protein-based carriers in the food and pharmaceutical fields will expand.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| |
Collapse
|
6
|
Chen L, Li X, Li W, Hao X, Wu S, Zhang M, Zheng F, Zhang N. Structural, physicochemical, and digestive properties of enzymatic debranched rice starch modified by phenolic compounds with varying structures. Int J Biol Macromol 2024; 274:133262. [PMID: 38901511 DOI: 10.1016/j.ijbiomac.2024.133262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The physicochemical properties of starch and phenolic acid (PA) complexes largely depend on the effect of non-covalent interactions on the microstructure of starch. However, whether there are differences and commonalities in the interactions between various types of PAs and starch remains unclear. The physicochemical properties and digestive characteristics of the complexes were investigated by pre-gelatinization of 16 structurally different PAs and pullulanase-modified rice starches screened. FT-IR and XRD results revealed that PA complexed with debranched rice starch (DRS) through hydrogen bonding and hydrophobic interaction. Benzoic/phenylacetic acid with polyhydroxy groups could enter the helical cavities of the starch chains to promote the formation of V-shaped crystals, and cinnamic acid with p-hydroxyl structure acted between starch chains in a bridging manner, both of which increased the relative crystallinity of DRS, with DRS-ellagic acid increasing to 20.03 %. The digestion and hydrolysis results indicated that the acidification and methoxylation of PA synergistically decreased the enzyme activity leading to a decrease in the digestibility of the complexes, and the resistant starch content of the DRS-vanillic acid complexes increased from 28.27 % to 71.67 %. Therefore, the selection of structurally appropriate PAs can be used for the targeted preparation of starch-based foods and materials.
Collapse
Affiliation(s)
- Linlin Chen
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Xintong Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Wei Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xi Hao
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Songyao Wu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ming Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Fengming Zheng
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
7
|
Wiącek AE, Sujka M. Physicochemical Characteristics of Porous Starch Obtained by Combined Physical and Enzymatic Methods-Part 2: Potential Application as a Carrier of Gallic Acid. Molecules 2024; 29:3570. [PMID: 39124975 PMCID: PMC11314488 DOI: 10.3390/molecules29153570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Wettability measurements were performed for aqueous dispersions of native and modified corn, potato, and pea starch granules deposited on glass plates by the thin layer method using test liquids of a different chemical nature (polar water and formamide or non-polar diiodomethane). High values of the determination coefficient R2 confirm that the linear regression model describes the relationship between the wetting time and the square of the penetration distance very well, indicating the linear nature of the Washburn relationship. A change in free energy (enthalpy) during the movement of the liquid in the porous layer was determined for all starches before and after modification in contact with test liquids. Wetting times for polar liquids increased significantly (from 3 to 4 fold), especially for corn starch. The lower the value of the adhesive tension, the easier the wetting process takes place, and consequently, the adsorption process is facilitated. Adhesive tension for polar substances applies to the adsorption of hydrophilic substances, while in the case of apolar substances, adhesive tension applies to the adsorption of hydrophobic substances. For the adsorption of gallic acid on starch, the relationships obtained for polar substances are crucial. The adsorption of gallic acid by forming hydrogen bonds or, more generally, donor-acceptor (acid-base) bonds is definitely higher for corn starch than other starches. Therefore, this starch has the most significant potential for use as a carrier of gallic acid or, more broadly, compounds from the polyphenol group.
Collapse
Affiliation(s)
- Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq.3, 20-031 Lublin, Poland
| | - Monika Sujka
- Department of Analysis and Food Quality Assessment, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
8
|
Skrdla PJ, Coscia BJ, Gavartin J, Browning A, Shelley J, Sanders JM. Complexation Mechanisms of Aqueous Amylose: Molecular Dynamics Study Using 3-Pentadecylphenol. Mol Pharm 2024; 21:3540-3552. [PMID: 38900044 DOI: 10.1021/acs.molpharmaceut.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Molecular dynamics (MD) simulations of linear amylose fragments containing 10 to 40 glucose units were used to study the complexation of the prototypical compound, 3-pentadecylphenol (PDP)─a natural product with surfactant-like properties─in aqueous solution. The amylose-PDP binding leverages mainly hydrophobic interactions together with excluded volume effects. It was found that while the most stable complexes contained PDP inside the helical structure of the amylose in the expected guest-host (inclusion) complexation manner, at higher temperatures, the commonly observed PDP-amylose complexes often involved more nonspecific interactions than inclusion complexation. In the case where a stoichiometric excess of PDP was added to the simulation box, self-aggregation of the small molecule precluded its ability to enter the internal helical part of the oligosaccharide, and as a result, inclusion complexation became ineffective. MD simulation trajectories were analyzed preliminarily using cluster analysis (CA), followed by more rigorous solvent accessible surface area (SASA) determination over the temperature range spanning from 277 to 433 K. It was found that using the SASA of PDP corrected for its intrinsic conformational changes, together with a generic hidden Markov model (HMM), an adequate quantification of the different types of PDP-amylose aggregates was obtained to allow further analysis. The enthalpy change associated with the guest-host binding equilibrium constant (Kgh) in aqueous solution was estimated to be -75 kJ/mol, which is about twice as high as one might expect based on experimentally measured values of similar complexes in the solid state where the (unsolvated) helical structure of amylose remains rigid. On the other hand, the nonspecific binding (Kns) enthalpy change associated with PDP-amylose interactions in the same solution environment was found to be about half of the inclusion complexation value.
Collapse
|
9
|
Raza H, Zhou Q, Cheng KW, He J, Wang M. Synergistic impact of ultrasound-high pressure homogenization on the formation, structural properties, and slow digestion of the starch-phenolic acid complex. Food Chem 2024; 445:138785. [PMID: 38387320 DOI: 10.1016/j.foodchem.2024.138785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The modification of starch digestibility can be achieved through the formation of complexes with polyphenols. We studied the combined impacts of ultrasound and high-pressure homogenization (UT-HPH) on the structure and in vitro digestibility of rice starch-chlorogenic acid complexes. The development of V-type complexes was supported by our findings, which also showed that synergistic UT-HPH therapy exhibited the highest absorbance value for the complexing index (0.882). Significant alterations in digestibility were also observed in the complexes, with the content of RDS decreasing from 49.27% to 27.06%, the content of slowly SDS increasing from 25.69% to 35.35%, and the percentage of RS increasing from 25.05% to 37.59%. Furthermore, a high positive correlation was found by applying the Pearson correlation coefficient in our research between RS, weight, PSD, and CI. This study presents a sustainable processing approach for utilizing chlorogenic acid in starch-rich food systems.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK 1958, Denmark
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Liang X, Chen L, McClements DJ, Zhao J, Zhou X, Qiu C, Long J, Ji H, Xu Z, Meng M, Gao L, Jin Z. Starch-guest complexes interactions: Molecular mechanisms, effects on starch and functionality. Crit Rev Food Sci Nutr 2024; 64:7550-7562. [PMID: 36908227 DOI: 10.1080/10408398.2023.2186126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Starch is a natural, abundant, renewable and biodegradable plant-based polymer that exhibits a variety of functional properties, including the ability to thicken or gel solutions, form films and coatings, and act as encapsulation and delivery vehicles. In this review, we first describe the structure of starch molecules and discuss the mechanisms of their interactions with guest molecules. Then, the effects of starch-guest complexes on gelatinization, retrogradation, rheology and digestion of starch are discussed. Finally, the potential applications of starch-guest complexes in the food industry are highlighted. Starch-guest complexes are formed due to physical forces, especially hydrophobic interactions between non-polar guest molecules and the hydrophobic interiors of amylose helices, as well as hydrogen bonds between some guest molecules and starch. Gelatinization, retrogradation, rheology and digestion of starch-based materials are influenced by complex formation, which has important implications for the utilization of starch as a functional and nutritional ingredient in food products. Controlling these interactions can be used to create novel starch-based food materials with specific functions, such as texture modifiers, delivery systems, edible coatings and films, fat substitutes and blood glucose modulators.
Collapse
Affiliation(s)
- Xiuping Liang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, China
| | | | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, China
| | - Licheng Gao
- Faculty of Bioscience Engineering, Ghent University, Belgium, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Lai S, Xie H, Hu H, Ouyang K, Li G, Zhong J, Hu X, Xiong H, Zhao Q. V-type granular starches prepared by maize starches with different amylose contents: An investigation in structure, physicochemical properties and digestibility. Int J Biol Macromol 2024; 266:131092. [PMID: 38527678 DOI: 10.1016/j.ijbiomac.2024.131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
V-type granular starches (VGSs) were prepared via an ethanol-alkaline (EA) method using maize starch with different amylose contents, specifically, high amylose (HAM), normal maize starch (MS), and waxy maize starch (WS). The X-ray diffraction pattern of the native starch was completely transformed into a V-type pattern after the EA treatment, indicating a structural change in the starch granules. The VGSs prepared by HAM had highest relative crystallinity (31.8°), while the VGSs prepared by WS showed amorphous diffraction pattern. Excessive NaOH, however, would disrupt the formation of V-type structures and cause granular shape rupture. The quantity of double-helical structures, particularly those formed by amylopectin at the starch granules' periphery, significantly decreased. Conversely, single-helical structures formed by amylose increased. A notable rise in the relative crystallinity of V crystals. Four VGS samples, characterized by granular integrity, were chosen for the next investigation of physicochemical and digestive properties. VGS prepared from HAM exhibited higher granular integrity, lower cold-water swelling extent (59.0 and 161.0 cP), improved thermal stability (the value of breakdown as lower as 57.67 and 186.67 cP), and higher resistance to digestion (RS content was up to 10.38 % and 9.00 % higher than 5.86 % and 5.66 % of VGS prepared from WS and MS). The results confirmed that amylose content has a substantial impact on the microstructural and physicochemical properties of VGSs.
Collapse
Affiliation(s)
- Sixing Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hao Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Genyuan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Junbai Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
12
|
Ghandehari-Alavijeh S, Can Karaca A, Akbari-Alavijeh S, Assadpour E, Farzaneh P, Saidi V, Jafari SM. Application of encapsulated flavors in food products; opportunities and challenges. Food Chem 2024; 436:137743. [PMID: 37852072 DOI: 10.1016/j.foodchem.2023.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Flavors are considered among the most important components of food formulations since they can predominantly affect the consumer acceptance and satisfaction. However, most flavors are highly volatile and inherently sensitive to pH, light, thermal processes, and chemical reactions such as oxidation and hydrolysis. Encapsulation is used as an effective strategy for protecting flavors from environmental conditions and extending their shelf life. Moreover, release characteristics of flavors can be modified via application of appropriate carriers and wall materials. This review focuses on the use of encapsulated flavors in various food products. Various factors affecting flavor retention during encapsulation, flavor release mechanisms, profiles and kinetics are discussed. Finally, the challenges associated with the use of encapsulated flavors in food products (in situ) and to model systems (in vitro), their storage stability, product requirements and problems related to the market are presented.
Collapse
Affiliation(s)
- Somayeh Ghandehari-Alavijeh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parisa Farzaneh
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
13
|
He T, Zhao L, Wang L, Liu L, Liu X, Dhital S, Hu Z, Wang K. Gallic acid forms V-amylose complex structure with starch through hydrophobic interaction. Int J Biol Macromol 2024; 260:129408. [PMID: 38228203 DOI: 10.1016/j.ijbiomac.2024.129408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
This study aimed to investigate the role of amylose and amylopectin in the formation of starch-polyphenol complex and elucidate the interaction mechanisms. Gallic acid (GA) was used to complex with maize starch with various amylose contents. Results showed GA formed V-type crystals with normal maize starch (NMS) and high amylose maize starch (HAMS), while higher relative crystallinity was exhibited in HAMS-GA complexes than NMS counterparts. Molecular structure analysis revealed more amylose in GA-starch complexes than in treated starch counterparts without GA, and this was more apparent in HAMS than NMS, implying amylose is preferred to complex with GA than amylopectin. FTIR detected higher R1047/1022 value in starch-GA complexes than their starch counterparts without GA, suggesting increased short-range ordered structrure of complexes. Typical signatures of hydrophobic interactions were further revealed by isothermal titration calorimetry, indicating the complexation of GA to starch is mainly through hydrophobic bonds. More binding sites were observed for HAMS (72.50) than NMS (11.33), which proves the preferences of amylose to bind with GA. Molecular dynamics simulated the complexation of GA to amylose, and confirmed hydrophobic bond is the main interaction force. These findings would provide guidance for precise design and utilization of starch-polyphenol complexes in functional foods.
Collapse
Affiliation(s)
- Ting He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Sushil Dhital
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
14
|
Shi L, Li Z, Yang Z, Ren Z, Zhang Y, Weng W. Adsorption characteristics of V-type starch for off-odors of sea cucumber intestinal peptides in solid-phase environment. Food Chem 2024; 433:137171. [PMID: 37657162 DOI: 10.1016/j.foodchem.2023.137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
With the concern of the strong fishy odor of sea cucumber intestinal peptides, the deodorization potential of V-type starch with a flexible cavity was investigated. By gas chromatography-mass spectrometry and electronic nose, it was confirmed that V-type starch effectively deodorized key off-odor compounds (isobutyric acid, butanoic acid, 1-octen-3-ol, nonanal, and trimethylamine), and the optimum deodorization performance (adsorption ratio of 92.45%) was achieved after 8 h adsorption at the sea cucumber intestinal peptide to starch ratio of 1:15 (w/w). In the Fourier transform infrared spectrum of the V-type starch inclusion complexes, a new characteristic peak was observed at 1563 cm-1 when the sea cucumber intestinal peptide to starch ratio was 1:1 (w/w). The presence of this peak was attributed to the complexation between V-type starch and trimethylamine. For the first time, we demonstrated that the V-type starch could deodorize aquatic products, and this study contributes to the application of starch materials.
Collapse
Affiliation(s)
- Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhouru Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhaoqing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China.
| |
Collapse
|
15
|
Liang X, Chen L, McClements DJ, Peng X, Xu Z, Meng M, Jin Z. Bioactive delivery systems based on starch and its derivatives: Assembly and application at different structural levels. Food Chem 2024; 432:137184. [PMID: 37633137 DOI: 10.1016/j.foodchem.2023.137184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Starch and modified starch, spanning various structural levels, are comprehensively reviewed, with a special emphasis on the advancement of starch and its derivative-based delivery systems for bioactive substances. The pivotal aspect highlighted is the controlled release of active ingredients by starch-based delivery systems with distinct hierarchical structures. At the molecular level, diverse categories of starch degradation products, such as dextrin and highly branched starch, serve as versatile amphiphilic carriers for encapsulating active ingredients. At the level of helical structure, the distinctive configuration of the starch-guest complex partly determines the mechanism of controlled release for diverse active components. At the crystal and particle structural level, starch assumes the role of a carrier, effectively modulating the release of active substances, and enhances the innate physiological activity of different active components. As a natural polymer molecule, starch can also generate hydrogel materials in polymer form, expanding its utility in the fields of food, materials, and even medicine.
Collapse
Affiliation(s)
- Xiuping Liang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China; Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
16
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
17
|
Guo J, Hang A, Qu Y, Li X, Zhang L, Wang M, Li S, He X, Zhang L, Hao L. Fabrication and release property of self-assembled garlic essential oil-amylose inclusion complex by pre-gelatinization coupling with high-speed shear. Int J Biol Macromol 2024; 254:127822. [PMID: 37926302 DOI: 10.1016/j.ijbiomac.2023.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Our aim was to investigate the preparation of self-assembled garlic essential oil-amylose inclusion complexes (SGAs) using garlic essential oil (GEO) and corn starch (CS), and evaluated their release properties. SGAs were fabricated by pre-gelatinization coupling with high-speed shear at different GEO-CS mass ratios. When the mass ratio of GEO to pre-gelatinized corn starch was set at 15 % (SGA-15 %), with a fixed shear rate of 9000 rpm and a shear time of 30 min, the allicin content was 0.573 ± 0.023 mg/g. X-ray diffraction (XRD) results revealed a starch V-type crystalline structure in SGAs with peaks at 13.0°, 18.0°, and 20.0° (2θ). Fourier Transform Infrared (FTIR) spectra of SGAs displayed a shift in the characteristic peak of diallyl trisulfide from 987.51 cm-1 to 991.45 cm-1. Scanning electron microscope (SEM) images revealed that SGAs exhibited lamellar structures covered with small granules. SGAs exhibited higher residual mass (approximately 12 %) than other samples. The resistant starch content of SGAs increased from 10.1 % to 18.4 % as GEO contents varied from 5 % to 15 %. In vitro digestion tests showed that about 53.21 % of allicin remained in SGA-15 % after 8 h. Therefore, this dual treatment can be a new method for fabricating controlled-release inclusion complexes of guest molecules.
Collapse
Affiliation(s)
- Jinbiao Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Anan Hang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yinghui Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinyu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhang
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing 100010, PR China
| | - Mengjiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shumin Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xihong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Liming Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing 100010, PR China.
| |
Collapse
|
18
|
Hedayati S, Tarahi M, Azizi R, Baeghbali V, Ansarifar E, Hashempur MH. Encapsulation of mint essential oil: Techniques and applications. Adv Colloid Interface Sci 2023; 321:103023. [PMID: 37863014 DOI: 10.1016/j.cis.2023.103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Mint essential oil (MEO) is an outstanding antibacterial and antioxidant agent, that can be considered as a promising natural preservative, flavor, insecticide, coolant, and herbal medicine. However, the low solubility and volatility of MEO limits its extensive applications. In order to utilize MEO in different products, it is essential to develop treatments that can overcome these limitations. More recently, encapsulation technology has been developed as a promising method to overcome the shortcomings of MEO. In which, sensitive compounds such as essential oils (EOs) are entrapped in a carrier to produce micro or nanoparticles with increased stability against environmental conditions. Additionally, encapsulation of EOs makes transportation and handling easier, reduces their volatility, controls their release and consequently improves the efficiency of these bioactive compounds and extends their industrial applications. Several encapsulation techniques, such as emulsification, coacervation, ionic gelation, inclusion complexation, spray drying, electrospinning, melt dispersion, melt homogenization, and so on, have been emerged to improve the stability of MEO. These encapsulated MEOs can be also used in a variety of food, bioagricultural, pharmaceutical, and health care products with excellent performance. Therefore, this review aims to summarize the physicochemical and functional properties of MEO, recent advances in encapsulation techniques for MEO, and the application of micro/nanocapsulated MEO in different products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Rezvan Azizi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, UK
| | - Elham Ansarifar
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Maibam BD, Nickhil C, Deka SC. Preparation, physicochemical characterization, and in vitro starch digestibility on complex of Euryale ferox kernel starch with ferulic acid and quercetin. Int J Biol Macromol 2023; 250:126178. [PMID: 37558035 DOI: 10.1016/j.ijbiomac.2023.126178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The objective of the current research was to analyze the physicochemical, structural, and in vitro starch digestibility of Euryale ferox kernel starch (EFKS) in complexation with ferulic acid (FA) and quercetin (QR). XRD results have shown that FA and QR were attached to starch resulting crystalline complexes. SEM image showed a smooth, compact structure, indicating FA and QR assist in the reorganization of starch molecules. The 1H NMR spectra of starch-polyphenols complexes showed multiple additional peaks between 6.00 and 9.00 ppm due to the benzene ring and phenolic hydroxyl groups imparted from polyphenols. The shifting and emergence of the characteristic peak observed in the DSC thermogram confirmed that polyphenols were successfully attached to starch. Complexation alters colors, reduced swelling power, and increased the solubility of the complexes. Following the complexation of FA and QR, the content of resistant starch exhibited a significant rise, escalating from 7.69 % (control sample) to 49.39 % (10 % FA) and 54.68 % (10 % QR). This led to a notable reduction in the predicted glycemic index (pGI).The higher resistant starch in the complex is attributed due to the combined effects of the reordered structure of the complexes and the inhibitory activity of polyphenols against starch digestive enzymes. Therefore, EFKS-FA and EFKS-QR complex can be used as a functional ingredient for a low glycemic index food.
Collapse
Affiliation(s)
- Baby Devi Maibam
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, P, in-784028, India
| | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, P, in-784028, India.
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam, P, in-784028, India.
| |
Collapse
|
20
|
Li S, Feng D, Li E, Gilbert RG. Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites. Foods 2023; 12:foods12102076. [PMID: 37238894 DOI: 10.3390/foods12102076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Zeaxanthin is a natural xanthophyll carotenoid and the main macular pigment that protects the macula from light-initiated oxidative damage, but it has poor stability and low bioavailability. Absorption of this active ingredient into starch granules as a carrier can be used to improve both zeaxanthin stability and controlled release. Optimization using three variables judged important for optimizing the system (reaction temperature of 65 °C, starch concentration of 6%, and reaction time of 2 h) was conducted for incorporation of zeaxanthin into corn starch granules, aiming for high zeaxanthin content (2.47 mg/g) and high encapsulation efficiency (74%). Polarized-light microscopy, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that the process partially gelatinized corn starch; additionally, it showed the presence of corn starch/zeaxanthin composites, with the zeaxanthin successfully trapped in corn starch granules. The half-life time of zeaxanthin in corn starch/zeaxanthin composites increased to 43 days as compared with that of zeaxanthin alone (13 days). The composites show a rapid increase in zeaxanthin release with in vitro intestinal digestion, which is favorable for possible use in living systems. These findings could have application in designing effective starch-based carriers of this bioactive ingredient with enhanced storage stability and improved intestines-targeted controlled-release delivery.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Duo Feng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Luo D, Xie Q, Chen C, Mu K, Wang Z, Gu S, Xue W. Increasing the pressure during high pressure homogenization regulates the starch digestion of the resulting pea starch-gallic acid complexes. Int J Biol Macromol 2023; 235:123820. [PMID: 36842741 DOI: 10.1016/j.ijbiomac.2023.123820] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
The pea starch-gallic acid (PS-GA) complexes were prepared using high pressure homogenization (HPH), then the effect and underlying mechanism of pressure on multi-scale structure and digestibility of complexes were investigated. Results showed that HPH promoted the formation of PS-GA complexes, reaching the maximum complex index of 7.74 % at the pressure of 90 MPa, and the main driving force were hydrophobic interactions and hydrogen bonding. The interaction between PS and GA facilitated the formation of surface reticular structures to encapsulate gallic acid molecules, further entangled into bigger size aggregates. The enhancement of rearrangement and aggregation of starch chains during HPH developed a dense hierarchical structure of PS-GA complexes, including short-range ordered structure, V-type crystal structure, lamellar and fractal structure, thus increasing gelatinization temperature. The digestibility of PS-GA complexes substantially changed in reducing rapidly digestible starch content from 29.67 % to 17.07 %, increasing slowly digestible starch from 53.69 % to 56.25 % and resistant starch from 16.63 % to 26.67 %, respectively. Moreover, the resulting complexes exhibited slower digestion rates compared with native PS. Furthermore, the regulating mechanism of pressure during HPH on starch digestibility was the formation of ordered multi-scale structure and inhibition of GA on digestive enzymes.
Collapse
Affiliation(s)
- Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kaiyu Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhaomin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
22
|
Zhou J, Kong L. Encapsulation and retention profile of thymol in the preformed “empty” V‐type starch inclusion complex. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Affiliation(s)
- Jingyi Zhou
- Department of Human Nutrition and Hospitality ManagementThe University of Alabama TuscaloosaAlabamaUSA
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality ManagementThe University of Alabama TuscaloosaAlabamaUSA
| |
Collapse
|
23
|
Liu H, Yao Y, Zhang Y, Zheng B, Zeng H. Ultrasonication-mediated formation of V-type lotus seed starch for subsequent complexation with butyric acid. Int J Biol Macromol 2023; 236:124000. [PMID: 36906196 DOI: 10.1016/j.ijbiomac.2023.124000] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
V-type starches comprise single helical structures that can be complexed with other small hydrophobic molecules. The development of the subtypes of these assembled V-conformations is dependent on the helical state of the amylose chains during complexation, which is influenced by the pretreatment employed. In this work, the effect of preultrasonication on the structure and in vitro digestibility of preformed V-type lotus seed starch (VLS) and its potential for complexing with butyric acid (BA), was investigated. The results showed that ultrasound pretreatment did not affect the crystallographic pattern of the V6-type VLS. The optimal ultrasonic intensities increased the crystallinity and molecular ordering of the VLSs. With an increase in the preultrasonication power, the pores on the VLS gel surface decreased in size and were more densely distributed. The VLSs formed at 360 W were less vulnerable to digestive enzymes than their untreated counterparts. Additionally, their highly porous structures could accommodate numerous BA molecules, and thus generated inclusion complexes via hydrophobic interactions. These findings would provide valuable insights into the ultrasonication-mediated formation of VLSs and suggest their potential application as carriers for the delivery of BA molecules to the gut.
Collapse
Affiliation(s)
- Huifang Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingning Yao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
24
|
Zhou J, Kong L. Complexation with pre-formed “empty” V-type starch for encapsulation of aroma compounds. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Effect of fatty acid chain length on physicochemical properties of starch nanocomposites obtained via nanoprecipitation. Int J Biol Macromol 2023; 230:123415. [PMID: 36708900 DOI: 10.1016/j.ijbiomac.2023.123415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
To evaluate the effect of elaborate difference in the hydrophobicity of core material on encapsulation process and physicochemical properties of the composites, composites of starch and FA with various chain lengths (C:12-22) were prepared via nanoprecipitation. X-ray diffraction analyses revealed that all composites had a Vh-amylose crystalline unit cell, but the chain length of FA did not induce a clear change in crystallinity or the hydrodynamic mean diameter of the composites. As the chain length of FA increased from 12 to 22, FA content in the composites increased from 1.69 to 14.85 mg/g composite. The absorption analyses of Rose Bengal on the composite surfaces revealed that their hydrophobicity increased with increasing chain length of FA. The incorporation of FA enhanced the emulsification activity of the composites, and this result revealed that the composites could be applied as an emulsification agent. For longer FA, composite storage stability increased, but the release of FA by in vitro digestion was delayed.
Collapse
|
26
|
Zhuang J, Liu H, You L, Xu F, Zeng H, Zeng S. Influence of ultrasonic-microwave power on the structure and in vitro digestibility of lotus seed starch-glycerin monostearin complexes after retrogradation. Int J Biol Macromol 2023; 228:59-67. [PMID: 36563815 DOI: 10.1016/j.ijbiomac.2022.12.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The digestibility of starches with high amylose content can be modulated by the complexation with lipids, which is largely influenced by physical modification methods. In the current work, the impact of ultrasound-microwavre synergistic treatment on the structure and in vitro digestibility of lotus seed starch-glycerin monostearin complexes (LS-GMSc) after retrogradation were investigated. Results showed that 400 W of ultrasound treatment combined with microwave was more conducive to the formation of LS-GMSc, which increased the microcrystalline region and ordering degree of starch. However, excessively high ultrasound intensity weakened V-type diffraction and promoted amylose recrystallization. Investigation of the micromorphology and thermal properties revealed that the existence of V-complexes retarded starch retrogradation, and this effect was significantly enhanced after appropriate ultrasound (400 W) treatment. The digestion showed that 400 W of ultrasound treatment improved the digestive resistance of starch complexes and increased the content of resistant starch. These results are significant to the theoretical foundation and functional application of V-type complexes on anti-gelling and anti-digestion.
Collapse
Affiliation(s)
- Jie Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huifang Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longnong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangqing Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Guo J, Gutierrez A, Tan L, Kong L. Considerations and Strategies for Optimizing Health Benefits of Resistant Starch. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Su X, Xu Y, Xu Z, Hurley K, Feng Y, Yin Y. Encapsulation of hop (Humulus lupulus L.) essential oil for controlled release in the non-alcoholic beverage application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Guo J, Shi L, Kong L. Structure-digestibility relationship of starch inclusion complex with salicylic acid. Carbohydr Polym 2023; 299:120147. [PMID: 36876776 DOI: 10.1016/j.carbpol.2022.120147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Amylose, the linear component of starch, can complex with small molecules to form single helical inclusion complexes of 6, 7, or 8 glucosyl units per helical turn, known as V6, V7, and V8. In this study, starch-salicylic acid (SA) inclusion complexes with different amounts of residual SA were obtained. Their structural characteristics and digestibility profiles were obtained with complementary techniques and an in vitro digestion assay. Upon complexation with excess SA, V8 type starch inclusion complex was formed. When excess SA crystals were removed, the V8 polymorphic structure could remain, while further removing intra-helical SA converted the V8 conformation to V7. Furthermore, the digestion rate of the resulted V7 was lowered as indicated by increased resistant starch (RS) content, which could be due to its tight helical structure, whereas the two V8 complexes were highly digestible. Such findings could have practical implications for novel food product development and nanoencapsulation technology.
Collapse
Affiliation(s)
- Jiayue Guo
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
30
|
Chen J, Cai H, Yang S, Zhang M, Wang J, Chen Z. The formation of starch-lipid complexes in instant rice noodles incorporated with different fatty acids: Effect on the structure, in vitro enzymatic digestibility and retrogradation properties during storage. Food Res Int 2022; 162:111933. [DOI: 10.1016/j.foodres.2022.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022]
|
31
|
Ma S, Zhu Q, Yao S, Niu R, Liu Y, Qin Y, Zheng Y, Tian J, Li D, Wang W, Liu D, Xu E. Efficient Retention and Complexation of Exogenous Ferulic Acid in Starch: Could Controllable Bioextrusion Be the Answer? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14919-14930. [PMID: 36395416 DOI: 10.1021/acs.jafc.2c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The starch-phenolics complexes are widely fabricated as functional foods but with low phenolics retention limited by traditional liquid reaction and washing systems. In this study, ferulic acid (FA, 5%) was exogenously used in the crystalline form, and it reacted with starch in a high-solid extrusion environment, which was simultaneously controlled by thermostable α-amylase (0-252 U/g). Moderate enzymolysis (21 or 63 U/g) decreased the degree of the starch double helix and significantly increased the FA retention rate (>80%) with good melting and distribution. Although there were no significantly strong chemical bonds (with only 0.17-2.39% FA bound to starch hydrolysate), the noncovalent interactions, mainly hydrogen bonds, van der Waals forces, and electrostatic interactions, were determined by 1H NMR and molecular dynamics simulation analyses. The phased release of total FA (>50% in the stomach and ∼100% in the intestines) from bioextrudate under in vitro digestion conditions was promoted, which gives a perspective for handing large loads of FA and other phenolics based on starch carrier.
Collapse
Affiliation(s)
- Shuohan Ma
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Yu Qin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
| | - Yuxue Zheng
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo315100, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo315100, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo315100, China
| |
Collapse
|
32
|
Shin HY, Lee JH, Kim JY. Formation mechanism of nanocomposites between starch and stearic acid via nanoprecipitation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Preparation, characterization and antioxidant activity of inclusion complex loaded with puerarin and corn peptide. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Sun S, Hua S, Hong Y, Gu Z, Cheng L, Ban X, Li Z, Li C, Zhou J. Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch-fatty acid complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5837-5848. [PMID: 35426124 DOI: 10.1002/jsfa.11933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The formation of starch-lipid complexes is of interest to food processing and human nutrition. Fatty acid (FA) structure is important for the formation and structure of starch-FA complexes. However, there is limited research regarding the complexing behavior between amylose and different kinds of FAs, as well as the relationship between fine structures and digestibility of the formed complexes. This study aimed to investigate the behavior, fine structure, and digestibility of complexes formed between high amylose maize starch (HMS) and FA having various chain lengths and unsaturation degrees. RESULTS Complexes containing different FA structures showed V6III -type crystals. Complexes containing 18-carbon unsaturated FAs displayed significantly higher complexing index (P < 0.05) than other complexes. Complexes containing 12-carbon FAs and 18-carbon FAs with one unsaturation degree showed a higher degree of structural order and resistant starch (RS) content than other complexes. The 12-carbon FAs exhibited a higher binding degree with helical cavity of amylose than other FAs. Additionally, 10-carbon and 18-carbon saturated FAs tended to combine with HMS outside amylose helices more than other FAs. Laser confocal micro-Raman imaging revealed that the physically embedded 10-carbon and 18-carbon saturated FAs showed heterogeneous distribution in complexes, and that the complexed 18-carbon FAs with one unsaturation degree exhibited homogeneous distribution. CONCLUSION The behavior, structural order and digestibility of complexes could be regulated by FA structure. The 12-carbon FAs and 18-carbon FAs with one unsaturation degree were more suitable for the production of HMS-FA complexes with higher structural order and RS content than other FAs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shenglin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Shuxian Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
35
|
Tarazi Riess H, Shani Levi C, Lesmes U. Inclusion of phenolic bioactives in high amylose corn starch for gastro-intestinal delivery. Front Nutr 2022; 9:981408. [PMID: 36091235 PMCID: PMC9452773 DOI: 10.3389/fnut.2022.981408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Starch is a staple food component with intricate architectures, some of which can be utilized as polysaccharidic delivery vehicles for bioactive compounds. This work describes the use of high amylose corn starch (HACS) to fabricate V-amylose inclusion complexes entrapping capsaicin or curcumin. In line with past studies, X-ray diffraction, differential scanning calorimetry, static laser scattering and scanning electron microscopy help affirm the formation of V6III-type complexes. Such HACS complexes entrap capsaicin and curcumin in structures with higher levels of crystallinity compared to HACS alone (14.61 ± 0.08%, 14.65 ± 0.08% vs. 10.24 ± 0.24%, respectively), high levels of encapsulation efficiency (88.77 ± 5.7% and 66.3 ± 0.99%, respectively) but without significant differences in colloid sizes between the various inclusion complexes (58.25 ± 1.34 μm or 58.98 ± 2.32 μm, respectively). In turn, in vitro gastro-intestinal digestion of HACS complexes with capsaicin or curcumin revealed both, phenolic bioactives significantly (p < 0.05) attenuated the intestinal breakdown of HACS. Interestingly, this attenuated HACS digestibility was accompanied by high gastric retention of the payloads and their sustained release during 2 h of exposure to intestinal conditions. Altogether, this work presents starch-based delivery systems that can entrap phenolic bioactives, release the payload in the intestine and possibly attenuate starch breakdown (because of its increased crystallinity). Thus, this work offers a platform for infusing foods with bioactive phenolics and stall the breakdown of starch.
Collapse
|
36
|
Encapsulation and release kinetics of ethylene into “pre-formed” V-type starch and granular cold-water-soluble starch. Carbohydr Polym 2022; 287:119360. [DOI: 10.1016/j.carbpol.2022.119360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
|
37
|
Jia Y, Kong L, Zhang B, Fu X, Huang Q. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles. Int J Biol Macromol 2022; 207:791-800. [PMID: 35346682 DOI: 10.1016/j.ijbiomac.2022.03.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
High internal phase emulsions (HIPEs) stabilized by debranched starch-capric acid (DBS-CA) complex nanoparticles were fabricated and their performance was evaluated. DBS-CA was prepared through enzymatic debranching and solid encapsulation methods, and displayed V-type crystalline structure. Contact angle measurements show enhanced hydrophobicity of DBS-CA compared to native starch. The DBS-CA nanoparticles have an average size of 463.77 nm and tended to be aggregating as analyzed by scanning electron microscope and dynamic light scattering particle size analysis. When used as a particulate emulsifier, DBS-CA could stabilize HIPEs with oil volume fraction as high as 80%. The HIPEs showed pH-dependent properties; good storage stability and mechanical strength were achieved within pH range from 3 to 11, especially under alkaline conditions. It was proposed that smaller particle size and higher surface charging were responsible for the more tightly connected gel structure and thus their performance. This study demonstrates a novel approach to fabricate food-grade Pickering HIPEs, which may have many promising potential applications in the food industry.
Collapse
Affiliation(s)
- Yuhan Jia
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
38
|
Self-assembled and assembled starch V-type complexes for the development of functional foodstuffs: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Caldera F, Nisticò R, Magnacca G, Matencio A, Khazaei Monfared Y, Trotta F. Magnetic Composites of Dextrin-Based Carbonate Nanosponges and Iron Oxide Nanoparticles with Potential Application in Targeted Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:754. [PMID: 35269242 PMCID: PMC8911700 DOI: 10.3390/nano12050754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Magnetically driven nanosponges with potential application as targeted drug delivery systems were prepared via the addition of magnetite nanoparticles to the synthesis of cyclodextrin and maltodextrin polymers crosslinked with 1,1'-carbonyldiimidazole. The magnetic nanoparticles were obtained separately via a coprecipitation mechanism involving inorganic iron salts in an alkaline environment. Four composite nanosponges were prepared by varying the content of magnetic nanoparticles (5 wt% and 10 wt%) in the cyclodextrin- and maltodextrin-based polymer matrix. The magnetic nanosponges were then characterised by FTIR, TGA, XRD, FESEM, and HRTEM analysis. The magnetic properties of the nanosponges were investigated via magnetisation curves collected at RT. Finally, the magnetic nanosponges were loaded with doxorubicin and tested as a drug delivery system. The nanosponges exhibited a loading capacity of approximately 3 wt%. Doxorubicin was released by the loaded nanosponges with sustained kinetics over a prolonged period of time.
Collapse
Affiliation(s)
- Fabrizio Caldera
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Roberto Nisticò
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giuliana Magnacca
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Adrián Matencio
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Yousef Khazaei Monfared
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| | - Francesco Trotta
- Department of Chemistry, NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (G.M.); (A.M.); (Y.K.M.)
| |
Collapse
|
40
|
Zhang J, Hassane Hamadou A, Chen C, Xu B. Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: a systematic review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34730038 DOI: 10.1080/10408398.2021.1998761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In comparison to conventional encapsulation methods of phenolic compounds (PCs), pH-driven method is green, simple and requires low energy consumption. It has a huge potential for industrial applications, and can overcome more effectively the aqueous solubility, stability and bioavailability issues related to PCs by changing pH to induce the encapsulation of PCs. This review aims to shed light on the use of pH-driven method for encapsulating PCs. The preparation steps and principles governing pH-driven method using various carriers and delivery systems are provided. A comparison of pH-driven with other methods is also presented. To circumvent the drawbacks of pH-driven method, improvement strategies are proposed. The essence of pH-driven method relies simultaneously on alkalization and acidification to bind PCs and carriers. It is used for the development of nanoemulsions, liposomes, edible films, nanoparticles, nanogels and functional foods. As a result of pH-driven method, PCs-loaded carriers may have smaller size, high encapsulation efficiency, more sustained-release and good bioavailability, due mainly to effects of pH change on the structure and properties of PCs as well as carriers. Finally, modification of wall materials and type of acidifier are considered as efficient approaches to improve the pH-driven method.
Collapse
Affiliation(s)
- Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|