1
|
Mulargia LI, Lemmens E, Reyniers S, Gebruers K, Wouters AGB, Warren FJ, Goderis B, Delcour JA. Investigation of the link between first-order kinetic models of the in vitro digestion of native starches and the accompanying changes in their crystallinity and structure. Carbohydr Polym 2024; 343:122440. [PMID: 39174085 DOI: 10.1016/j.carbpol.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Starch is the main source of dietary energy for humans. In order to understand the mechanisms governing native starch in vitro digestion, digestion data for six starches [wheat, maize, (waxy) maize, rice, potato and pea] of different botanical sources were fitted with the most common first-order kinetic models, i.e. the single, sequential, parallel and combined models. Parallel and combined models provided the most accurate fits and showed that all starches studied except potato starch followed a biphasic in vitro digestion pattern. The biological relevance of the kinetic parameters was explored by determining changes in crystallinity and molecular structure of the undigested starch residues during in vitro digestion. While the crystallinity of the undigested potato starch residues did not change substantially, a respectively small and large decrease in their amylose content and chain length during in vitro digestion was observed, indicating that amylose was digested slightly preferentially over amylopectin in native starch. However, the molecular structure of the starch residues changed too slowly and/or only to an insufficient extent to relate it to the kinetic parameters of the digested fractions predicted by the models. Such parameters thus need to be interpreted with caution, as their biological relevance still needs to be proven.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Frederick J Warren
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom.
| | - Bart Goderis
- Laboratory for Macromolecular Structural Chemistry, KU Leuven, Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
2
|
Lescher A, Kansou K, Della Valle G, Petite H, Lourdin D. Evaluation of extruded starch foam for glucose-supplying biomaterials. Carbohydr Polym 2024; 340:122319. [PMID: 38858013 DOI: 10.1016/j.carbpol.2024.122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
The survival rate of mesenchymal stem cells (MSC), a crucial factor in tissue engineering, is highly dependent on glucose supply. The purpose of this paper is to study the potential of starch foams as glucose suppliers. It is investigated through in vitro hydrolysis by amyloglucosidase in conditions that respect physiological constraints (37 °C and pH 7.4), including a duration of 21 days, and no stirring. Nine extruded starch foams with amylose contents ranging from 0 to 74 %, with various cell wall thicknesses (50 to 300 μm), and different crystallinities (0-30 %) were hydrolysed. These kinetics were fitted by a model which shows that the maximum rate of hydrolysis varies from 7 to 100 %, and which allows the rate of hydrolysis at 21 days to be calculated precisely. The results reveal the major role of amylose in glucose delivery kinetics, and the secondary roles of crystallinity and cell wall thickness of the foams. Additional hydrolysis of starch films revealed that thickness positively influences the amylose chain reorganisation during hydrolysis, which, in slows down and limits glucose delivery. A simple glucose delivery kinetics analysis procedure is proposed to select samples for testing as MSC glucose suppliers.
Collapse
Affiliation(s)
- A Lescher
- INRAE, UR 1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France.
| | - K Kansou
- INRAE, UR 1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France.
| | - G Della Valle
- INRAE, UR 1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France.
| | - H Petite
- Université de Paris, CNRS, Osteoarticular Biology, Bio-engineering and Bioimaging (B3OA), INSERM, 75010 Paris, France.
| | - D Lourdin
- INRAE, UR 1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France.
| |
Collapse
|
3
|
Cheng D, Tian R, Pan T, Yu Q, Wei L, Liyin J, Dai Y, Wang X, Tan R, Qu H, Lu M. High-performance lung-targeted bio-responsive platform for severe colistin-resistant bacterial pneumonia therapy. Bioact Mater 2024; 35:517-533. [PMID: 38404643 PMCID: PMC10885821 DOI: 10.1016/j.bioactmat.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Polymyxins are the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. However, this last resort has been threatened by the emergence of superbugs carrying the mobile colistin resistance gene-1 (mcr-1). Given the high concentration of matrix metalloproteinase 3 (MMP-3) in bacterial pneumonia, limited plasma accumulation of colistin (CST) in the lung, and potential toxicity of ionic silver (Ag+), we designed a feasible clinical transformation platform, an MMP-3 high-performance lung-targeted bio-responsive delivery system, which we named "CST&Ag@CNMS". This system exhibited excellent lung-targeting ability (>80% in lungs), MMP-3 bio-responsive release property (95% release on demand), and synergistic bactericidal activity in vitro (2-4-fold minimum inhibitory concentration reduction). In the mcr-1+ CST-resistant murine pneumonia model, treatment with CST&Ag@CNMS improved survival rates (70% vs. 20%), reduced bacteria burden (2-3 log colony-forming unit [CFU]/g tissue), and considerably mitigated inflammatory response. In this study, CST&Ag@CNMS performed better than the combination of free CST and AgNO3. We also demonstrated the superior biosafety and biodegradability of CST&Ag@CNMS both in vitro and in vivo. These findings indicate the clinical translational potential of CST&Ag@CNMS for the treatment of lung infections caused by CST-resistant bacteria carrying mcr-1.
Collapse
Affiliation(s)
- Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaozhi Liyin
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yunqi Dai
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Li C. Structural basis for rice starch multi-digestible fractions revealed by consecutive reaction kinetics model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4203-4210. [PMID: 36641546 DOI: 10.1002/jsfa.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Starch-based foods (e.g. rice) usually contain multiple starch fractions with distinct digestion rate constants, although their nature is currently unknown. The present study applied the recently developed consecutive reaction kinetics model to fit the in vitro digestion curves for starch fractions deconvoluted from the overall digestograms to differentiate their binding and catalysis rates to starch digestive enzymes. The fitting parameters were then correlated with starch molecular structures obtained from published data to understand starch structural features determining the binding and catalytic rate constants. RESULTS Binding and catalysis rates for the rapidly (RDF) and slowly digestible starch fraction (SDF) were controlled by distinct starch structural features. Typically, (i) the binding rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, whereas it was positively correlated with the relative length of amylopectin intermediate chains; (ii) the catalysis rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, relative length of amylose intermediate chains and amount of amylopectin long chains, whereas it was positively correlated with starch molecular size as well as relative length of amylopectin intermediate chains; (iii) and the catalysis rate constant for SDF was negatively correlated with the amount of amylopectin long chains, whereas it was positively correlated with starch molecular size. CONCLUSION These results provide a better understanding of the nature of different starch digestible fractions and the development of foods such as rice with slow starch digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Li C, Li S. A procedure for determining the number and pattern of digestible starch fractions in multiphasic food digestograms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1651-1659. [PMID: 36326592 DOI: 10.1002/jsfa.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant-based foods are frequently heterogenous systems, containing multiple starch fractions with distinct digestion rate constants. An unbiased determination of the number and digestion pattern of these fractions is a prerequisite for understanding the digestive characteristics of food. RESULTS A non-linear least-squares procedure based on a conditional selection of simple first-order kinetics or a combination of parallel and sequential kinetics models was developed. The procedure gave robust results fitting manually generated data, and was applied to in vitro experimental digestion data of retrograded rice starches. By correlating fitting parameters with starch structural parameters, it showed that rice starches with a lower amylose content, longer amylose chains, and amylopectin intermediate chains had more digestible starch fractions after long-term retrogradation. CONCLUSION This procedure enables the structural basis of starch digestibility and the development of food products with slow starch digestibility to be better understood. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Forestier M, Sopade P. Kinetics of starch digestion in potato (Solanum tuberosum) flours: Innovative modelling and relationships with particle size. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Srikaeo K, Saeva K, Sopade PA. Understanding starch digestibility of rice: A study in brown rice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khongsak Srikaeo
- Faculty of Food and Agricultural Technology Pibulsongkram Rajabhat University Muang Phitsanulok 65000 Thailand
| | - Kanyarin Saeva
- Faculty of Food and Agricultural Technology Pibulsongkram Rajabhat University Muang Phitsanulok 65000 Thailand
| | - Peter A Sopade
- Food Process Engineering Consultants, Abeokuta Cottage, Tia Lane, Forest Lake, QLD, 4078 Australia
| |
Collapse
|
8
|
Meraz M, Vernon-Carter E, Bello-Perez L, Alvarez-Ramirez J. Mathematical modeling of gastrointestinal starch digestion-blood glucose-insulin interactions. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Li C, Yu W, Zhang X, Zou W, Liu H. Definition of starch components in foods by first-order kinetics to better understand their physical basis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Sopade PA. Homogeneities in
in vitro
starch digestion of compositionally heterogenous white wheat breads. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peter Adeoye Sopade
- Food Process Engineering Consultants Abeokuta Cottage, Tia Lane Forest Lake QLD 4078 Australia
| |
Collapse
|
11
|
Olawoye B, Fagbohun OF, Popoola OO, Gbadamosi SO, Akanbi CT. Understanding how different modification processes affect the physiochemical, functional, thermal, morphological structures and digestibility of cardaba banana starch. Int J Biol Macromol 2022; 201:158-172. [PMID: 34998875 DOI: 10.1016/j.ijbiomac.2021.12.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/19/2021] [Indexed: 01/06/2023]
Abstract
In this study, starch was isolated from cardaba banana starch and was subjected to modification by heat-moisture treatment, citric acid, octenyl succinic anhydride, and sodium hexametaphosphate. Both the native and modified cardaba banana starches were examined for chemical, functional, pasting, thermal, morphological, structural, and antioxidant properties, as well as in vitro starch digestibility. Modification significantly influenced the properties of the cardaba banana starch. Cross-linking treatment improved the water, oil absorption, alkaline hydration capacity, swelling power, solubility and paste clarity of the starch. The final viscosity of the banana starch paste was increased alongside succinic anhydride modification which in turn enhanced the suitability of the starch in the production of high viscous products. Both FTIR spectra and X-ray diffractograms confirmed the starch had a C-type starch which was not affected by modification. Modification led to a decrease in relative crystallinity of the starch with succinylation having the maximum effect. The starch fractions; both SDS and RS significantly increased due to modification while the hydrolysis and glycemic index of the starch were significantly decreased by chemical modification. In conclusion, both physical and chemical modification of cardaba banana starch produced a starch that can serve as functional food or functional food ingredients.
Collapse
Affiliation(s)
- Babatunde Olawoye
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria.
| | - Oladapo Fisoye Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Oyo State, Nigeria; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Oyekemi Olabisi Popoola
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria
| | | | - Charles Taiwo Akanbi
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria; Department of Food Science and Technology, Obafemi Awolowo University Ile-Ife, Nigeria
| |
Collapse
|
12
|
Butterworth PJ, Bajka BH, Edwards CH, Warren FJ, Ellis PR. Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends Food Sci Technol 2022; 120:254-264. [PMID: 35210697 PMCID: PMC8850932 DOI: 10.1016/j.tifs.2021.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Starch is a principal dietary source of digestible carbohydrate and energy. Glycaemic and insulinaemic responses to foods containing starch vary considerably and glucose responses to starchy foods are often described by the glycaemic index (GI) and/or glycaemic load (GL). Low GI/GL foods are beneficial in the management of cardiometabolic disorders (e.g., type 2 diabetes, cardiovascular disease). Differences in rates and extents of digestion of starch-containing foods will affect postprandial glycaemia. SCOPE AND APPROACH Amylolysis kinetics are influenced by structural properties of the food matrix and of starch itself. Native (raw) semi-crystalline starch is digested slowly but hydrothermal processing (cooking) gelatinises the starch and greatly increases its digestibility. In plants, starch granules are contained within cells and intact cell walls can limit accessibility of water and digestive enzymes hindering gelatinisation and digestibility. In vitro studies of starch digestion by α-amylase model early stages in digestion and can suggest likely rates of digestion in vivo and expected glycaemic responses. Reports that metabolic responses to dietary starch are influenced by α-amylase gene copy number, heightens interest in amylolysis. KEY FINDINGS AND CONCLUSIONS This review shows how enzyme kinetic strategies can provide explanations for differences in digestion rate of different starchy foods. Michaelis-Menten and Log of Slope analyses provide kinetic parameters (e.g., K m and k cat /K m ) for evaluating catalytic efficiency and ease of digestibility of starch by α-amylase. Suitable kinetic methods maximise the information that can be obtained from in vitro work for predictions of starch digestion and glycaemic responses in vivo.
Collapse
Key Words
- AMY1, human salivary α-amylase gene
- AMY2, human pancreatic α-amylase gene
- Alpha-amylase
- BMI, body mass index
- CE, catalytic efficiency
- CVD, cardiovascular disease
- Enzyme kinetics
- Fto, alpha-oxoglutarate-dependent dioxygenase gene
- GI, glycaemic index
- GIT, gastrointestinal tract
- GL, glycaemic load
- GLUT2, glucose transporter 2
- Gene copy number
- HI, hydrolysis index
- IC50, inhibitor concentration causing 50% inhibition
- LOS, logarithm of slope plot
- Metabolic significance
- RDS, rapidly digestible starch
- RS, resistant starch
- Resistant starch
- SCFAs, short chain fatty acids
- SDS, slowly digestible starch
- SGLT1, sodium-dependent glucose co-transporter
- Starch digestion
- XRD, X-ray diffraction
Collapse
Affiliation(s)
- Peter J. Butterworth
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Balázs H. Bajka
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Frederick J. Warren
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Peter R. Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|