1
|
Tang Y, Zhou M, Mao Z, Zhu B, Zhou F, Ye X, Chen Y, Ding Z. Structure of a polysaccharide MDP2-1 from Melastoma dodecandrum Lour. and its anti-inflammatory effects. Int J Biol Macromol 2024; 265:131015. [PMID: 38521298 DOI: 10.1016/j.ijbiomac.2024.131015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The anti-inflammatory activity of polysaccharides derived from Melastoma dodecandrum Lour. was evaluated in pyretic mice and HEK-Blue™ hTLR4 cells. The testing led to the identification of MDP2-1, which was then investigated for its structural characteristics and anti-inflammatory effects. Results showed that MDP2-1 had a molecular weight of 29.234 kDa and primarily consisted of galactose, arabinose, rhamnose, glucose, glucuronic acid, and galacturonic acid. Its main backbone was composed of →4)-α-D-GalpA-(1→, →2)-α-L-Rhap-(1→, →3,4)-α-D-GalpA-(1→, →2,4)-α-D-GlcpA-(1→, and its side chains were connected by →4)-α-D-Galp-(1→, α-D-Galp-(1→, →4)-β-D-Glcp-(1→, and α-L-Araf-(1→. In vivo experiments on mice demonstrated that MDP2-1 attenuated LPS-induced acute lung injury, and in vitro experiments on RAW264.7 cells showed that MDP2-1 reduced the levels of inflammatory mediators and mitigated LPS-induced inflammatory damage by inhibiting the activation of the TLR4 downstream NF-κB/MAPK pathway. These findings suggest that MDP2-1 is a novel anti-inflammatory agent for therapeutic interventions.
Collapse
Affiliation(s)
- Youying Tang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
2
|
Sun K, Li Z, Lian M, Li Q, Wang R, Gu Y, Lei P, He H, Xu H, Sha F, Sun L. Characterization of a novel exopolysaccharide from Acinetobacter rhizosphaerae with ability to enhance the salt stress resistance of rice seedlings. Int J Biol Macromol 2024; 256:128438. [PMID: 38042318 DOI: 10.1016/j.ijbiomac.2023.128438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
We here describe the isolation of a novel exopolysaccharide from Acinetobacter rhizosphaerae, named ArEPS. The structure of ArEPS was characterized by analysis of the monosaccharide composition, molecular weight, infrared spectrum, methylation, and nuclear magnetic resonance spectrum. ArEPS was found to be an acidic heteropolysaccharide composed of glucose, galactose, galacturonic acid, glucuronic acid, mannose, and glucosamine; the molecular weight was 1533 kDa. Structural analysis showed that the main-chain structure of ArEPS predominantly comprised 1,3,6-β-Glcp, 1,3,4-α-Galp, 1,2-β-Glcp, 1,4-β-GlcpA, 1,4-β-GalpA, and the side-chain structure comprised 1,6-β-Glcp, 1,3-β-Galp, 1-α-Glcp, 1-β-Galp, 1-α-Manp, 1,4,6-α-Glcp, 1,2,4-β-Glcp, 1,2,3-β-Glcp, and 1,3-β-GlcpN. ArEPS significantly enhanced the tolerance of rice seedlings to salt stress. Specifically, plant height, fresh weight, chlorophyll content, and the K+/Na+ ratio increased by 51 %, 63 %, 29 %, and 162 %, respectively, and the malondialdehyde content was reduced by 45 % after treatment with 100 mg/kg ArEPS compared to treatment with 100 mM NaCl. Finally, based on the quadratic regression between fresh weight and ArEPS addition, the optimal ArEPS addition level was estimated to be 135.12 mg/kg. These results indicate the prospects of ArEPS application in agriculture.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China
| | - Zhen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Mengyu Lian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Quan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hongjie He
- Westa College, Southwest University, Chongqing 400715, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Feng Sha
- Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China; School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Tang H, Zha Z, Tan Y, Li Y, Jiao Y, Yang B, Xiong Q, Yin H, Wang H. Extraction and characterization of polysaccharide from fermented mycelia of Coriolus versicolor and its efficacy for treating nonalcoholic fatty liver disease. Int J Biol Macromol 2023; 248:125951. [PMID: 37499724 DOI: 10.1016/j.ijbiomac.2023.125951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Coriolus versicolor, a popular traditional Chinese medicinal herb, is widely used in China to treat spleen and liver diseases; however, the beneficial effects of C. versicolor polysaccharides (CVPs) on nonalcoholic fatty liver disease (NAFLD) remain elusive. Herein we isolated and purified a novel CVP (molecular weight, 17,478 Da) from fermented mycelium powder. This CVP was composed of mannose, galacturonic acid, glucose, galactose, xylose, and fucose at a molar ratio of 22:1:8:15:10:3. Methylation, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses indicated that the CVP backbone consisted of →1)-β-D-Man-(6,4→1)-α-D-Gal-(3→1)-α-D-Man-(4→1)-α-D-Gal-(6→, with branches of →1)-α-D-Glc-(6→1)-α-D-Man-(4,3→1)-β-D-Xyl-(2→1)-β-D-Glc on the O-6 position of →1)-β-D-Man-(6,4→ of the main chain. The secondary branches linked to the O-4 position of →1)-α-D-Man-(4,3→ with the chain of →1)-α-D-Fuc-(4→1)-α-D-Man. Further, CVP treatment alleviated the symptoms of NAFLD in an HFD-induced mice model. CVP altered gut microbiota, predominantly suppressing microbes associated with bile acids both in the serum and cecal contents. In vitro data showed that CVP reduced HFD-induced hyperlipidemia via farnesoid X receptor. Our results improve our understanding of the mechanisms underlying the cholesterol- and lipid-lowering effects of CVP and indicate that CVP is a promising candidate for NAFLD therapy.
Collapse
Affiliation(s)
- Huiling Tang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yanfang Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuan Li
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Yuzhi Jiao
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Baowei Yang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
4
|
Liu M, Shan S, Gao X, Shi Y, Lu W. The effect of sweet tea polysaccharide on the physicochemical and structural properties of whey protein isolate gels. Int J Biol Macromol 2023; 240:124344. [PMID: 37028627 DOI: 10.1016/j.ijbiomac.2023.124344] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
In this study, we investigated the effect of sweet tea polysaccharide (STP) on the physicochemical and structural properties of heat-induced whey protein isolate (WPI) gels, and explored the potential mechanism. The results indicated that STP promoted the unfolding and cross-linking of WPI to form a stable three-dimensional network structure, and significantly improved the strength, water-holding capacity and viscoelasticity of WPI gels. However, the addition of STP was limited to 2 %, too much STP would loosen the gel network and affect the gel properties. The results of FTIR and fluorescence spectroscopy suggested that STP affected the secondary and tertiary structures of WPI, promoted the movement of aromatic amino acids to the protein surface and the conversion of α-helix to β-sheet. In addition, STP reduced the surface hydrophobicity of the gel, increased the free sulfhydryl content, and enhanced the hydrogen bonding, disulfide bonding, and hydrophobic interactions between protein molecules. These findings can provide a reference for the application of STP as a gel modifier in the food industry.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Yudong Shi
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China; Inner Mongolia Mengniu Dairy Co., Ltd., Inner Mongolia, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
5
|
Zhang H, Yue Y, Zhang Q, Liang L, Li C, Chen Y, Li W, Peng M, Yang M, Zhao M, Cao X, Zhong L, Du J, Wang Y, Zhou X, Shu Z. Structural characterization and anti-inflammatory effects of an arabinan isolated from Rehmannia glutinosa Libosch. Carbohydr Polym 2023; 303:120441. [PMID: 36657836 DOI: 10.1016/j.carbpol.2022.120441] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Considering that natural polysaccharides are potential anti-inflammatory agents, in this study, an arabinan (RGP70-2) was isolated and purified from Rehmannia glutinosa Libosch. (R. glutinosa) and its structure was characterized. RGP70-2 was a homogeneous polysaccharide with a molecular weight of 6.7 kDa, with the main backbone comprising →5)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →2,3,5)-α-L-Araf-(1→, and →2,5)-α-L-Araf-(1 → linkages and the side chain comprising an α-L-Araf-(1 → linkage. In vivo experiments showed that RGP70-2 inhibited ROS production and downregulated the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). In vitro experiments showed that RGP70-2 decreased levels of pro-inflammatory cytokines, inhibited ROS production, and attenuated NF-κB-p65 translocation from the cytoplasm to the nucleus. Our results showed that RGP70-2 may delay inflammation by regulating the ROS-NF-κB pathway. Thus, RGP70-2 has potential applications as an anti-inflammatory agent in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Han Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yimin Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, China National Analytical Center, Guangzhou 510006, China; Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou 510006, China
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Gao Y, Abuduaini G, Yang C, Zhang S, Zhang Y, Fan H, Teng X, Bao C, Liu H, Wang D, Liu T. Isolation, purification, and structural elucidation of Stropharia rugosoannulata polysaccharides with hypolipidemic effect. Front Nutr 2022; 9:1092582. [PMID: 36590213 PMCID: PMC9800831 DOI: 10.3389/fnut.2022.1092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Stropharia rugosoannulata is a widely grown edible mushroom with a high nutritional value. S. rugosoannulata polysaccharides is one of the most important bioactive components of S. rugosoannulata and has a wide range of activities. A S. rugosoannulata polysaccharides, named SRF-3, was derived from the S. rugosoannulata extraction by freeze-thaw combine with hot water extraction method, then prepareed with DEAE-cellulose column and Sephacryl S-200 HR gel column, and its hypolipidemic activity was determined. The structural characteristics of SRF-3 were analyzed by infrared spectral scanning (FT-IR), ultra-high performance liquid chromatography (UHPLC), acid hydrolysis, methylation analysis, nuclear magnetic resonance (NMR), and Gas Chromatography-Mass Spectrometer (GC-MS). SRF-3 is composed of mannose, galactose, methyl galactose and fructose with ratios of 16, 12, 58 and 12, respectively. In addition, the average relative molecular mass of SRF-3 is approximately 24 kDa. The main chain of SRF-3 is mainly composed of repeating α-D-1,6-Galp and α-D-1,6-Me-Galp units, with branches in the O-2 position of Gal. The structure is presumed to be a mannogalactan, with a small amount of t-β-D-Manp present as a side chain. Hypolipidemic activity assay showed that SRF-3 had good antioxidant and hypolipidemic effects in vitro, suggesting that SRF-3 have potential application in reducing liver fat accumulation.
Collapse
Affiliation(s)
- Yinlu Gao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Gulijiannaiti Abuduaini
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Chenhe Yang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xu Teng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Chenligen Bao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,*Correspondence: Dawei Wang,
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,Tingting Liu,
| |
Collapse
|
7
|
Separation and Structural Characterization of a Novel Exopolysaccharide from Rhizopus nigricans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227756. [PMID: 36431857 PMCID: PMC9696503 DOI: 10.3390/molecules27227756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The present study aims to analyze the structural characterization and antioxidant activity of a novel exopolysaccharide from Rhizopus nigricans (EPS2-1). For this purpose, EPS2-1 was purified through DEAE-52, Sephadex G-100, and Sephadex G-75 chromatography. The structural characterization of EPS2-1 was analyzed using high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), methylation analysis, nuclear magnetic resonance (NMR) spectra, transmission electron microscope (TEM), and atomic force microscope (AFM). The results revealed that EPS2-1 is composed of mannose (Man), galactose (Gal), glucose (Glc), arabinose (Ara), and Fucose (Fuc), and possesses a molecular weight of 32.803 kDa. The backbone of EPS2-1 comprised →2)-α-D-Manp-(1→ and →3)-β-D-Galp-(1→, linked with the O-6 position of (→2,6)-α-D-Manp-(1→) of the main chain is branch α-D-Manp-(1→6)-α-D-Manp-(1→, linked with the O-6 positions of (→3)-β-D-Galp-(1→) of the main chain are branches →4)-β-D-Glcp-(1→ and →3)-β-D-Galp-(1→, respectively. Finally, we demonstrated that EPS2-1 also shows free radical scavenging activity and iron ion reducing ability. At the same time, EPS2-1 could inhibit the proliferation of MFC cells and increase the cell viability of RAW264.7 cells. Our results suggested that EPS2-1 is a novel polysaccharide, and EPS2-1 has antioxidant activity. In addition, EPS2-1 may possess potential immunomodulatory and antitumor activities. This study promoted the application of EPS2-1 as the functional ingredients in the pharmaceutical and food industries.
Collapse
|
8
|
Effects of ultrasound-assisted Fenton treatment on structure and hypolipidemic activity of apricot polysaccharides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Sweet tea (Rubus Suavissmus S. Lee) polysaccharides promote the longevity of Caenorhabditis elegans through autophagy-dependent insulin and mitochondrial pathways. Int J Biol Macromol 2022; 207:883-892. [PMID: 35351545 DOI: 10.1016/j.ijbiomac.2022.03.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
Abstract
The fine structure of sweet tea polysaccharide (STP-60a) has been characterized. However, the biological activity of STP-60a has not been extensively explored. This study aims to evaluate the anti-aging activity of STP-60a using Caenorhabditis elegans (C. elegans) as a model and to investigate the underlying molecular mechanism. 400 μg/mL of STP-60a increased the mean lifespan of C. elegans by 22.88%, reduced the lipofuscin content by 33.01%, and improved the survival rate under heat stress and oxidative stress by 32.33% and 27.63%, respectively. Further research in lifespan-related mutants revealed that STP-60a exerted anti-aging effects mainly through insulin and mitochondrial signaling pathways. Through qRT-PCR and microscopic imaging of transgenic nematodes, we found that 400 μg/mL of STP-60a increased the expression of daf-16, skn-1, and hsf-1 downstream of the insulin pathway by 1.68-fold, 1.88-fold, and 1.03-fold, respectively, and promoted the accumulation of daf-16 and skn-1 in the nucleus. STP-60a also significantly regulated the function of the mitochondrial respiratory chain and unfolded protein recovery system. Furthermore, STP-60a activated the autophagy level in C. elegans, and the mutation of daf-2 or clk-1 inhibited the upregulation of autophagy genes by STP-60a, suggesting that autophagy acted as an effector of the insulin and mitochondrial pathways during STP-60a antiaging.
Collapse
|