1
|
Sun S, Sun D, Guo L, Cui B, Zou F, Wang J, Sun C, Zhu Y, Li X. Structural and physicochemical properties of corn starch modified by phosphorylase b, hexokinase and alkaline phosphatase. Carbohydr Polym 2025; 349:122979. [PMID: 39643404 DOI: 10.1016/j.carbpol.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
To improve the functional properties of corn starch, phosphorylase b (PB), hexokinase (HK), and alkaline phosphatase (AP) were used to produce enzyme-modified starches (PBMS, HKMS, and APMS). The results showed that enzyme-modified starches had different phosphorus contents and degrees of substitution. The presence of PO bonds and P-O-C bonds further demonstrated that phosphate groups were grafted into starch. The proportions of monostarch phosphate in PBMS, HKMS, and APMS were 77.05 %, 79.33 % and 85.88 %, respectively. The introduction of phosphate groups affected the functional properties of starch. The swelling powers of PBMS, HKMS and APMS increased from 0.99 % to 12.86 %, 10.83 % and 5.95 %, respectively. Compared to native starch (1820 mPa·s), the peak viscosities of PBMS, HKMS and APMS increased to 2655, 2838, and 2021 mPa·s, respectively. Meanwhile, the introduction of phosphate groups endowed phosphorylated starch with better freeze-thaw stability, larger paste transparency, higher solubility, and slower retrogradation rate.
Collapse
Affiliation(s)
- Shuo Sun
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Li Guo
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Feixue Zou
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Jinpeng Wang
- Postdoctoral research work station, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China.
| | - Chunrui Sun
- Postdoctoral research work station, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China.
| | - Yu Zhu
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, China.
| | - Xueling Li
- School of Food and Nutrition, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
2
|
Oulkhir A, Lyamlouli K, Oussfan A, Orange F, Etahiri A, Benhida R. Efficient flotation separation approach of apatite from calcite for phosphate up-grading using phosphorylated starch macromolecules as a selective depressant. Carbohydr Polym 2025; 348:122878. [PMID: 39567121 DOI: 10.1016/j.carbpol.2024.122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024]
Abstract
Physico-chemical similarities of surface proprieties of calcite and apatite make their separation challenging. Effective flotation separation requires sustainable depressants to mitigate environmental consequences associated with traditional chemical reagents. Here, for the first time we explore the potential of phosphorylated starch (PS) derived from potato waste as a green and effective depressant. Starch was modified using a straightforward phosphorylation process, resulting in PS with a remarkable charge density exceeding 6000 mmol kg-1. The PS was then evaluated for its ability to depress apatite, enhancing the separation efficiency of apatite from calcite in phosphate rock beneficiation via reverse flotation. Micro-flotation experiments revealed PS's distinct depression effect on apatite while minimally impacting calcite. Floatability rates of apatite and calcite were 90.45 % and 92.68 %, respectively. Introducing 10 mg/g PS drastically reduced apatite recovery to <19 %, while calcite recovery remained at 78.80 %. The bench-scale flotation tests demonstrated an upgrading of the phosphate rock to 70,64 % Bone Phosphate of Lime (BPL) with a yield of 89,41 %. Mechanistic studies employing zeta potential (ZP), and wettability analysis elucidated the depression mechanism. Apatite retained hydrophilicity post-PS addition and conditioning with ester, while calcite-acquired hydrophobicity even in the presence of PS. Furthermore, PS exhibited substantial adsorption onto the apatite surface through chemical reactions involving the phosphate groups and the activated calcium sites on the apatite. Overall, PS stands out as a promising, eco-friendly, and remarkably efficient depressant for separating apatite from calcite through flotation.
Collapse
Affiliation(s)
- Anass Oulkhir
- Department of Chemical and Biochemical Sciences - Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Center for Scientific Research (CNRS), Nice, France
| | - Karim Lyamlouli
- College of sustainable agriculture and environmental sciences, AgroBioSciences Department (AgBs), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.
| | - Ali Oussfan
- Research and Development Department, Laboratory of Mineralogy and Phosphate Processing, OCP Khouribga, Morocco
| | - François Orange
- University of Côte d'Azur, Common Center for Applied Microscopy (CCMA), 06100 Nice, France
| | - Abderrahmane Etahiri
- Department of Chemical and Biochemical Sciences - Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Rachid Benhida
- Department of Chemical and Biochemical Sciences - Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Center for Scientific Research (CNRS), Nice, France.
| |
Collapse
|
3
|
Ma L, Liu J, Cheng Y, Frank J, Liang J. Structural features, physiological functions and digestive properties of phosphorylated corn starch: A comparative study of four phosphorylating agents and two preparation methods. Int J Biol Macromol 2024; 292:139146. [PMID: 39725116 DOI: 10.1016/j.ijbiomac.2024.139146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Phosphorylation is an important modification to modulate functional and digestive properties of starches. We systematically investigated starch phosphorylation process parameters by using two different preparation methods (slurry and semi-dry conditions) and four commonly used phosphorylating agents, namely sodium tripolyphosphate (STPP), sodium trimetaphosphate (STMP), STMP/STPP (99: 1), and sodium phytate (SP). The effects of phosphorylation on physicochemical characteristics, techno-functionalities, digestive properties and structural features of corn starch were analyzed. Phosphorylation with the semi-dry method resulted in higher phosphorus content, degree of double helix, and degree of starch aggregation and lower amylose content and relative crystallinity than with the slurry method. Phosphorylation using semi-dry conditions, irrespective of the used phosphorylating agent, furthermore decreased the gelatinization temperature, enthalpy, the temperature corresponding to the maximum starch mass loss rate and estimated glycemic index of corn starch, and increased solubility, swelling power, peak viscosity, transmittance, and resistant starch content. Of the phosphorylating agents, independent of the used preparation method, STMP and STMP/STPP resulted in the highest degrees of starch phosphorylation and therefore modulated the physiochemical, functional and digestive properties of corn starch more than STPP and SP. The findings of this systematic comparison provide important information to tailor phosphorylated corn starches to meet specific food requirements.
Collapse
Affiliation(s)
- Lei Ma
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jun Liu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Jianfen Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
4
|
Peng D, Zhang Y, Chen X, Zhang Y, Huang H, Liu H, Xu H. Effect of phosphate-mineralized bacteria on multi-metals migration behavior in vanadium tailing slags: Coexistence of immobilization and mobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135880. [PMID: 39298957 DOI: 10.1016/j.jhazmat.2024.135880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Biomineralization techniques have been utilized to remediate heavy metals (HMs) contaminated environments. However, the effect of microbial-induced phosphate precipitation (MIPP) on HMs behavior in vanadium tailing slags has not been revealed. This study is the first to report the influence of MIPP on multiple HMs including Cd, Cu, Pb and Zn in the slags with and without soil mixing. The results showed that MIPP exhibited excellent ability for Cd immobilization, Cd immobilization rate reached 43.41 % under the optimal parameters within 7 days. Cd immobilization performance was significantly improved and sustained after the slags were covered with soil, resulting from better colonization of phosphate mineralizing bacteria in slag-soil mixtures. Surprisingly, DTPA-Cu, Zn and Pb contents in slags were all increased to varying degrees after MIPP treatment. Leaching solution mineralization tests further suggested that MIPP significantly reduced the concentration of Cd2+, Pb2+, Ca2+, Mg2+ and Al3+, but barely changed Cu2+ and Zn2+ concentrations. Characterization analysis confirmed that formation of phosphates including Cd(PO4)2 and dissolution of minerals including PbZnSiO2 were the reason for HMs immobilization and mobilization in vanadium tailing slags. This study provides new insights for understanding biomineralization technology and using MIPP to remediate HMs contaminated mine waste.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Ying Zhang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
5
|
Li P, Li J, Levin J, Kierulf A, Smoot J, Atkins Z, Khazdooz L, Zarei A, Marshall M, Abbaspourrad A. Edible structuring agent shaped via interfacial precipitation on solid template: Crosslinked starch colloidosome. Carbohydr Polym 2024; 345:122537. [PMID: 39227089 PMCID: PMC11401607 DOI: 10.1016/j.carbpol.2024.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Water-permeable hollow starch particles alter the rheological behavior of their granular suspensions. However, their thin shells can rupture limiting applications. In this study, we used amaranth starch as building blocks (1 μm) to craft a crosslinked superstructure. Pickering emulsions were used as the templates where starch coated the droplets. Emulsions were heated at 75 °C to induce interpenetration of the polymers followed by precipitation in ethanol to trigger colloidal fusion. Particles were then crosslinked by sodium tri-metaphosphate; hollow particles formed after the interior template was removed by hexane. When canola oil was used, the particles ruptured at pH 11.5 due to the repulsion between the strands. In contrast, palm oil, emulsified at 50 °C, formed a rigid core after cooling, locked the starch at the surface and retained the structure. The crosslinked colloidosomes were larger (89 μm) and exhibited higher viscosity, and stronger stability. Larger particles (>100 μm) were produced using higher templating volume. Gentle centrifugation to harvest the particles kept the shells intact. The hollow structure exhibited jamming transition above 10 w/w%, which could serve as a super-thickener. This work demonstrates that microarchitecture plays a critical role in shaping material functionality.
Collapse
Affiliation(s)
- Peilong Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Jieying Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Jacob Levin
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Arkaye Kierulf
- Tate & Lyle Solutions USA LLC, 5450 Prairie Stone Pkwy, Hoffman Estates, IL 60192, USA
| | - James Smoot
- Tate & Lyle Solutions USA LLC, 5450 Prairie Stone Pkwy, Hoffman Estates, IL 60192, USA
| | - Zoe Atkins
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Leila Khazdooz
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Amin Zarei
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Melanie Marshall
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
6
|
Zhou T, Zhang Y, Wang Y, Liu Q, Yang Y, Qiu C, Jiao A, Jin Z. Impact of freeze-thaw cycles on the physicochemical properties and structure-function relationship of potato starch with varying granule sizes in frozen dough. Int J Biol Macromol 2024; 279:134864. [PMID: 39163969 DOI: 10.1016/j.ijbiomac.2024.134864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Starch, as a critical component of dough, significantly influences quality preservation during the freezing process. In particular, the fine structure of potato (B-type) starch in frozen processing is a subject of considerable interest. This study aims to investigate the intrinsic differences of B-type starch and the impact of freeze-thaw (F/T) treatment on its molecular structure and physicochemical properties. Chain length distribution and X-ray photoelectron spectroscopy were utilized to examine the structural characteristics of natural potato starch with different granule sizes. Furthermore, the fine structure, thermal properties, and rheological properties of the isolated starches after F/T treatment were analyzed. The results indicate that potato starch with smaller particle sizes exhibits higher surface CC and PO content along with a higher proportion of very short chains (DP < 6, 8.17 %) and long B chains (DP > 25, 20.68 %). The study found that after F/T treatment, the surface of small-sized starch granules was initially damaged, exhibiting threads on the surface centered on the umbilical point. Following F/T treatment, both the crystallinity (very large (VL): 24.52-18.36 %; small (S): 17.03-16.69 %) and short-range order (VL: 2.97-2.61; S: 2.71-2.35) of starch particle size decreased. Both the amylose content (20.88-14.57 %) and ΔH (10.15-8.62 J/g) of isolated starch after freeze-thaw-treated dough exhibited a decrease to varying degrees. With the exception of the fifth cycle, small-size starch particles exhibited relatively higher G' and G" values and showed significant changes as a result of F/T treatment, demonstrating high hardness and complex viscosity. Clarifying the physicochemical properties of potato starches with different granule sizes is expected to expand their applications in frozen dough.
Collapse
Affiliation(s)
- Tongtong Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yucong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qing Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Kaster JB, Cruz EPD, Silva FTD, Hackbart HCDS, Siebeneichler TJ, Camargo TM, Radünz M, Fonseca LM, Zavareze EDR. Bioactive aerogels based on native and phosphorylated potato (Solanum tuberosum L.) starches incorporated with star fruit extract (Averrhoa carambola L.). Int J Biol Macromol 2024; 272:132907. [PMID: 38862318 DOI: 10.1016/j.ijbiomac.2024.132907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
The aim of this study was to develop a star fruit extract (SFE) and incorporate it into aerogels based on native and phosphorylated potato starches. The phosphorylation of starch enhances its properties by incorporating phosphate groups that increase the spaces between starch molecules, resulting in a more resilient, intact aerogel with enhanced water absorption. The bioactive aerogels based on potato starch and 10, 15, and 20 % (w/w) of SFE were characterized by their morphological and thermogravimetric properties, infrared spectra, water absorption capacity, loading capacity, and antioxidant activity. Epicatechin was the major compound present in SFE. The thermal stability of SFE increased when incorporated into phosphorylated starch aerogels at a concentration of 20 %. The water absorption capacity was higher in phosphorylated starch aerogels (reaching 1577 %) than in their native counterparts (reaching 1100 %). Native starch aerogels with 15 and 20 % SFE exhibited higher antioxidant activity against hydroxyl free radicals compared to phosphorylated starch aerogels, achieving 79.9 % and 86.4 % inhibition for the hydroxyl and nitric oxide radicals, respectively. The ideal choice of freeze-dried aerogel depends on the desired effect, either to act as an antioxidant agent by releasing bioactive compounds from SFE or as a water-absorbent agent in food products.
Collapse
Affiliation(s)
- Jéssica Bosenbecker Kaster
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.
| | - Francine Tavares da Silva
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Helen Cristina Dos Santos Hackbart
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Tatiane Jéssica Siebeneichler
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Taiane Mota Camargo
- Bioprocess Technology Laboratory, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Marjana Radünz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
8
|
Deng B, Chen J, Li S, Liu J, Zhou Z, Qin Z, Wang H, Su M, Li L, Bai Z. An antibacterial packaging film based on amylose starch with quaternary ammonium salt chitosan and its application for meat preservation. Int J Biol Macromol 2024; 261:129706. [PMID: 38272422 DOI: 10.1016/j.ijbiomac.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
A new generation of food packaging films is gradually replacing traditional plastic packaging films because of their biodegradability, safety, and some functional properties such as anti-bacterial and oxidant resistance. In the present work, an antibacterial packing film based on amylose starch and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) was prepared for meat preservation. The interfacial bonding mechanism between amylose, HTCC, and glutaraldehyde (GA) was determined experimentally and through molecular dynamics (MD) simulation. The macromolecular chains of amylose starch and HTCC became entangled via inter-molecular H-bonds and then cross-linked with GA via the Schiff base reaction. The interaction of amylose starch and HTCC improved the mechanical properties of the amylose films. Compared with the amylose films, the tensile strength and elongation at break of the optimal HTCC/amylose films reached to 16.13 MPa (an increase of 206.65 %) and 53.86 % (an increase of 109.49 %). The HTCC/amylose films were found to provide obvious bacteriostatic performance, a relatively low cytotoxicity, the lower transmittance in the UV region, and thus the ability to enhance the preservation of fresh meat. These excellent characteristics therefore suggest that HTCC/amylose films might be promising candidates for application in antibacterial food packaging films.
Collapse
Affiliation(s)
- Bin Deng
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Chen
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shaobo Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongkai Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhu Qin
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huixing Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Li Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| | - Zongchun Bai
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| |
Collapse
|
9
|
Chen K, Wei P, Jia M, Wang L, Li Z, Zhang Z, Liu Y, Shi L. Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods 2024; 13:558. [PMID: 38397535 PMCID: PMC10888398 DOI: 10.3390/foods13040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Starchy foods are an essential part of people's daily diet. Starch is the primary substance used by plants to store carbohydrates, and it is the primary source of energy for humans and animals. In China, a variety of plants, including edible medicinal plants, such as Pueraria root, yam tuber and coix seed, are rich in starch. However, limited by their inherent properties, kudzu starch and other starches are not suitable for the modern food industry. Natural starch is frequently altered by physical, chemical, or biological means to give it superior qualities to natural starch as it frequently cannot satisfy the demands of industrial manufacturing. Therefore, the deep processing market of modified starch and its products has a great potential. This paper reviews the modification methods which can provide excellent functional, rheological, and processing characteristics for these starches that can be used to improve the physical and chemical properties, texture properties, and edible qualities. This will provide a comprehensive reference for the modification and application of starch from medicinal and edible plants.
Collapse
Affiliation(s)
- Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Pinghui Wei
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Meiqi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Lihao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Zihan Li
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| |
Collapse
|
10
|
Deng B, Gu J, Zhang S, Huang J, Zhang X, Zhou J, Wang W, Fan B, Liu J, Li L, Su M, Li B. Low-Cytotoxicity, Broad-Spectrum Corn Starch-Based Antibacterial Particles that Inhibit Multidrug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:256-268. [PMID: 38109849 DOI: 10.1021/acsabm.3c00848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Antimicrobial resistance is a serious problem in biomedical applications that seriously increases the risk of medical failure. Therefore, developing highly efficient antibacterial agents that inhibit the growth of multidrug-resistant bacteria is a long-standing research goal. In this report, a low-cytotoxicity and highly efficient alternative to antibiotics was designed and prepared using edible corn starch as the scaffold and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) as the antimicrobial agent. The HTCC/starch particles were found to have a positively charged surface over a wide pH range and to possess broad-spectrum and highly efficient antimicrobial properties. These particles inhibited the growth of standard Gram-positive and Gram-negative bacteria from the China Pharmacopoeia and a clinical multidrug-resistant bacterial strain. Moreover, after treating the HTCC/starch particles with simulated gastric fluid (SGF, pH 1.2) for 4 h, the growth of clinical multidrug-resistant Escherichia coli (NT 2036) was inhibited effectively, indicating that these particles tolerate a gastric acid environment. Although the mass of SGF-treated HTCC/starch particles required to achieve similar antibacterial activity was ∼20-fold that of chloramphenicol or ampicillin, antibiotic-containing products require considerable amounts of pharmaceutical excipients to prepare. Therefore, the HTCC/starch particles described herein are potentially cost-effective alternatives to antibiotics that resolve the antimicrobial resistance issue, especially for inhibiting the growth of pathogenic intestinal bacteria.
Collapse
Affiliation(s)
- Bin Deng
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Gu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shuaifeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jin Huang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuehan Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junming Zhou
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wei Wang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
| |
Collapse
|
11
|
Swami K, Sahu BK, Nagargade M, Kaur K, Pathak AD, Shukla SK, Stobdan T, Shanmugam V. Starch wall of urea: Facile starch modification to residue-free stable urea coating for sustained release and crop productivity. Carbohydr Polym 2023; 317:121042. [PMID: 37364943 DOI: 10.1016/j.carbpol.2023.121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Quick leaching of urea fertilizer encourages different coatings, but achieving a stable coating without toxic linkers is still challenging. Here, the naturally abundant bio-polymer, i.e., starch, has been groomed to form a stable coating through phosphate modification and the support of eggshell nanoparticles (ESN) as a reinforcement agent. The ESN offers a calcium ion binding site for the phosphate to cause bio-mimetic folding. This coating retains hydrophilic ends in the core and gives an excellent hydrophobic surface (water contact angle 123°). Further, the phosphorylated starch+ESN led the coating to release only ∼30 % of the nutrient in the initial ten days and sustained for up to 60 days to show ∼90 % release. The stability of the coating has been attributed to its resistance to major soil factors viz., acidity and amylase degradation. The ESN also increases elasticity, cracking control, and self-repairing capacity by serving as buffer micro-bots. The coated urea enhanced the yield of rice grain by ∼10%.
Collapse
Affiliation(s)
- Kanchan Swami
- Institute of Nanoscience and Technology, Mohali, Punjab 140306, India
| | | | - Mona Nagargade
- Indian Institute of Sugarcane Research, Lucknow 226002, India
| | - Kamaljit Kaur
- Institute of Nanoscience and Technology, Mohali, Punjab 140306, India; University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | | | - Tsering Stobdan
- Defence Institute of High Altitude Research, Leh, Ladakh 194101, India
| | | |
Collapse
|
12
|
Fan B, Gu J, Deng B, Guo W, Zhang S, Li L, Li B. Positively Charged-Amylose-Entangled Au-Nanoparticles Acting as Protein Carriers and Potential Adjuvants to SARS-CoV-2 Subunit Vaccines. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37330942 DOI: 10.1021/acsami.3c05295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The COVID-19 pandemic continues to spread worldwide. To protect and control the spread of SARS-CoV-2, varieties of subunit vaccines based on spike (S) proteins have been approved for human applications. Here, we report a new subunit vaccine design strategy that functions as both an antigen carrier and an adjuvant in immunization to elicit high-level immune responses. The complex of 2-hydroxypropyl-trimethylammonium chloride chitosan and amylose entangles Au nanoparticles (HTCC/amylose/AuNPs) forming 40 nm nanocarriers with a positive charge. The obtained positively charged nanoparticles reveal many merits, including the larger S protein loading capacity in PBS buffer, higher cellular uptake ability, and lower cell cytotoxicity, supporting their potential as safe vaccine nanocarriers. Two functionalized nanoparticle subunit vaccines are prepared via loading full-length S proteins derived from SARS-CoV-2 variants. In mice, both prepared vaccines elicit high specific IgG antibodies, neutralize antibodies, and immunoglobulin IgG1 and IgG2a. The prepared vaccines also elicit robust T- and B-cell immune responses and increase CD19+ B cells, CD11C+ dendritic cells, and CD11B+ macrophages at the alveoli and bronchi of the immunized mice. Furthermore, the results of skin safety tests and histological observation of organs indicated in vivo safety of HTCC/amylose/AuNP-based vaccines. Summarily, our prepared HTCC/amylose/AuNP have significant potential as general vaccine carriers for the delivery of different antigens with potent immune stimulation.
Collapse
Affiliation(s)
- Baochao Fan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Jun Gu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Bin Deng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Weilu Guo
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Pharmaceutical, Nanjing Tech University, Nanjing 210000, China
| | - Shuaifeng Zhang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Li Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Bin Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
13
|
Wang Q, Zhang H, Xu Y, Bao S, Liu C, Yang S. The molecular structure effects of starches and starch phosphates in the reverse flotation of quartz from hematite. Carbohydr Polym 2023; 303:120484. [PMID: 36657853 DOI: 10.1016/j.carbpol.2022.120484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Native starches and their phosphates with various molecular structures was introduced as the depressant to realize the flotation of quartz from hematite in this study. The present starch phosphates (WSP, NSP, GSP) were modified by the reaction between phosphate and three different corn starches (WS, NS, G50). The synthesis and characterization of starch phosphates found that starch with high amylopectin content was easily modified into starch phosphates. Microflotation tests showed that starch phosphates exhibited stronger depressing abilities of hematite flotation than native starches. Zeta potential measurement showed that both starches and starch phosphates could positively shift the zeta potential of hematite, while starch phosphates had more effects than starches. XPS and MDS indicated that the chemisorption occurred between Fe of hematite surface and CO groups of starch-based depressants. In addition, starch phosphates could adsorb onto the hematite surface through PO groups. MDS also presented that the adsorption strength of starch phosphate was mainly determined by the type and number of generating chelating rings, and the molecular structure of starch significantly affected the formation of chelate rings. The proposed adsorption model insights will significantly promote the development of starch-based depressants for iron ore flotation and other mineral processing applications.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Haofeng Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yanling Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shenxu Bao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Cheng Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Siyuan Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing 102600, China.
| |
Collapse
|
14
|
Chen Y, Yao Y, Gu Z, Peng Y, Cheng L, Li Z, Li C, Chen Z, Hong Y. Effects of different waxy rice varieties and their starch on the taste quality of zongzi. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Adewale P, Yancheshmeh MS, Lam E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr Polym 2022; 291:119590. [DOI: 10.1016/j.carbpol.2022.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
16
|
Zhang T, Yue Y, Hou M, Tong Y, Lu Z, Yang L, Liu P. Oxidation and ordering of fine structure of corn starch under an ultrahigh magnetic field. Carbohydr Polym 2022; 297:120029. [DOI: 10.1016/j.carbpol.2022.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
|