1
|
de Carvalho MM, Ellefsen CF, Eltvik AA, Hiorth M, Samuelsen ABC. Chemical structure characterization of polysaccharides using diffusion ordered NMR spectroscopy (DOSY). Carbohydr Polym 2025; 349:123021. [PMID: 39638526 DOI: 10.1016/j.carbpol.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The potential of DOSY NMR spectroscopy to distinguish the linkage pattern of chemically related polysaccharides was evaluated using β-glucans isolated from yeast (Saccharomyces cerevisiae) and mushroom (Pleurotus eryngii). Laminarin from Laminaria digitata was included for chemical shift comparison. Characterization through methylation and 1D/2D NMR analysis showed that all the samples were constituted by →3)-Glcp-(1→; →3,6)-Glcp-(1→; Glcp-(1→ and →6)-Glcp-(1→ linkages. The results obtained allowed the identification of the well-known chemical structure of laminarin. Moreover, DOSY demonstrated that the units →3)-Glcp-(1→ and →6)-Glcp-(1→ from yeast β-glucans, presented the same diffusion time. For the mushrooms β-glucans, the diffusion time of these units were different, confirming that they belong to distinct polysaccharides. The yeast and the mushroom polysaccharide samples presented the same NMR correlations, but after DOSY analysis, different structures could be proposed. Therefore, DOSY NMR spectroscopy could be a tool for the identification of different linkage patterns of polysaccharides belonging to the same group and may be a useful contribution to the chemical structure and biological activity correlation studies of such structures.
Collapse
Affiliation(s)
| | | | - Andrea Angelov Eltvik
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-136 Oslo, Norway.
| | - Marianne Hiorth
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-136 Oslo, Norway.
| | - Anne Berit C Samuelsen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-136 Oslo, Norway.
| |
Collapse
|
2
|
Zhang C, Yuan Y, Xia Q, Wang J, Xu K, Gong Z, Lou J, Li G, Wang L, Zhou L, Liu Z, Luo K, Zhou X. Machine Learning-Driven Prediction, Preparation, and Evaluation of Functional Nanomedicines Via Drug-Drug Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415902. [PMID: 39792782 DOI: 10.1002/advs.202415902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are identified as effective carriers for antineoplastic drugs, with high drug loading. Nanomedicines, PEG-coated indomethacin/paclitaxel nanomedicine (PiPTX), and laminarin-modified indomethacin/paclitaxel nanomedicine (LiDOX), are developed with extended circulation and active targeting functions. Indomethacin/paclitaxel nanomedicine iDOX exhibits pH-responsive drug release in the tumor microenvironment. These nanomedicines enhance anti-tumor effects and reduce side effects, offering a rapid approach to clinical nanomedicine development.
Collapse
Affiliation(s)
- Chengyuan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuchuan Yuan
- School of Medicine, Northwest University, Xi'an, 710068, China
| | - Qiong Xia
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Junjie Wang
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kangkang Xu
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhiwei Gong
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Lou
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Gen Li
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lu Wang
- Department of Pharmacy, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Li Zhou
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhirui Liu
- Department of Pharmacy, Xinan Hospital, Army Medical University, Chongqing, 400038, China
| | - Kui Luo
- Department of Radiology, and Department of Geriatrics, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
3
|
Ciobanu LT, Constantinescu-Aruxandei D, Farcasanu IC, Oancea F. Spent Brewer's Yeast Lysis Enables a Best Out of Waste Approach in the Beer Industry. Int J Mol Sci 2024; 25:12655. [PMID: 39684367 DOI: 10.3390/ijms252312655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain. Cell lysis is a crucial step in the recovery of bioactive compounds such as (glyco)proteins, vitamins, and polysaccharides from yeasts. Besides the soluble intracellular content rich in bioactive molecules, which is released by cell lysis, the yeast cell walls β-glucan, chitin, and mannoproteins present properties that make them good candidates for various applications such as functional food ingredients, dietary supplements, or plant biostimulants. This literature study provides an overview of the lysis methods used to valorize spent brewer's yeast. The content of yeast extracts and yeast cell walls resulting from cellular disruption of spent brewer's yeast are discussed in correlation with the biological activities of these fractions and resulting applications. This review highlights the need for a deeper investigation of molecular mechanisms to unleash the potential of spent brewer's yeast extracts and cell walls to become an important source for a variety of bioactive compounds.
Collapse
Affiliation(s)
- Livia Teodora Ciobanu
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
4
|
Azevedo-Silva J, Amorim M, Tavares-Valente D, Sousa P, Mohamath R, Voigt EA, Guderian JA, Kinsey R, Viana S, Reis F, Pintado ME, Paddon CJ, Fox CB, Fernandes JC. Exploring yeast glucans for vaccine enhancement: Sustainable strategies for overcoming adjuvant challenges in a SARS-CoV-2 model. Eur J Pharm Biopharm 2024:114538. [PMID: 39461571 DOI: 10.1016/j.ejpb.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Vaccine adjuvants are important for enhancing vaccine efficacy, and although aluminium salts (Alum) are the most used, their limited ability to induce specific immune responses has spurred the search for new adjuvants. However, many adjuvants fail during product development due to manufacturability, supply, stability, or safety concerns. This work hypothesizes that protein-free yeast glucans can be used as vaccine adjuvants due to their known immunostimulatory activity and high abundancy. Thus, high molecular weight glucans with over 99% purity, comprising 64-70% β-glucans and 29-35% α-glucans, were extracted from a wild-type yeast and an engineered yeast to produce a steviol glycoside. These glucans underwent carboxymethylation to enhance solubility. Both water-dispersible and particulate glucans were evaluated as adjuvants, either alone or in combination with Alum or squalene stable emulsion (SE), for a SARS-CoV-2 vaccine. The study demonstrated that glucans triggered a robust immune response and enhanced the effects of Alum and SE when used in combination, both in vitro and in vivo. Water-dispersible glucans combined with Alum, and particulate glucans combined with SE, increased the production of specific antibodies against SARS-CoV-2 spike protein and enhanced serum neutralization titers against SARS-CoV-2 pseudovirus. Furthermore, the results indicated that larger molecular weight glucans from engineered yeast exhibited stronger immunogenic activity in comparison to wild-type yeast glucans. In conclusion, appropriately formulated glucans have the potential to be scalable, low-cost vaccine adjuvants, potentially overcoming the limitations of current adjuvants.
Collapse
Affiliation(s)
- João Azevedo-Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Manuela Amorim
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Diana Tavares-Valente
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Pedro Sousa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | - Randolph Mohamath
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Emily A Voigt
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Jeffrey A Guderian
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Robert Kinsey
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Sofia Viana
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3004-504, Coimbra, Portugal; Pharmacy, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro-SM Bispo, Apartado 7006 3046-854, Coimbra, Portugal
| | - Flávio Reis
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3004-504, Coimbra, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal
| | | | - Christopher B Fox
- Access to Advanced Health Institute, Formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - João C Fernandes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005, Porto, Portugal.
| |
Collapse
|
5
|
Ma H, Mueed A, Liu D, Ali A, Wang T, Ibrahim M, Su L, Wang Q. Polysaccharides of Floccularia luteovirens regulate intestinal immune response, and oxidative stress activity through MAPK/Nrf2/Keap1 signaling pathway in immunosuppressive mice. Int J Biol Macromol 2024; 277:134140. [PMID: 39074695 DOI: 10.1016/j.ijbiomac.2024.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
This study explores the novel immunomodulatory effects of polysaccharides from the rare Floccularia luteovirens, a fungus with significant potential yet unexplored bioactive components, traditionally used in Tibetan medicine. This study employs a wide array of analytical techniques, including HPGPC, HPLC, western blotting, ELISA, and 16S rRNA gene sequencing, to comprehensively investigate FLP1's effects. The main structure of FLP1 was characterized by IF-TR and NMR spectrometry. The structural backbone of FLP1 was →3,6)-β-D-Glcp-(1 → and →2,3)-α-D-Manp-(1→. After immunosuppressed mice treated with FLP1, the findings demonstrated that FLP1 stimulated the production of secretory sIgA and secretion of cytokines (IL-4, TNF-α, and IFN-γ) in the intestine of Cy-treated mice, resulting in the activation of the MAPK pathway. Additionally, FLP1 protected oxidative stress by triggering Nrf2/Keap1 pathways and antioxidation enzymes (SOD, MDA, T-AOC, CAT, and GSH-Px). It also enhanced the intestinal barrier function by regulating the villous height ratio and expression of tight-junction protein. Furthermore, FLP1 remarkably reversed the gut microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Oscilliospiraceae, and Lachnospiraceae, and altered the fecal metabolites by increasing LysoPE (0:0/18:0); 0:0/16:0; 18:1(11Z)/0:0, LysoPG (16:0/0:0), LysoPG 18:1 (2n) PE (14:0/20:1), echinenone, 2-(2-Nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide, and suberic acid which is closely related to the immunity function. These results suggested that FLP1 may regulate the intestinal immune response by modulating the gut microbiota and fecal metabolites in immunosuppressed mice thereby activating the immune system.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Daiyao Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Tianci Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| |
Collapse
|
6
|
Dong W, Li Y, Xue S, Wen F, Meng D, Zhang Y, Yang R. Yeast polysaccharides: The environmentally friendly polysaccharides with broad application potentials. Compr Rev Food Sci Food Saf 2024; 23:e70003. [PMID: 39223755 DOI: 10.1111/1541-4337.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Yeast cell wall (YCW) polysaccharides, including β-glucans, mannans, chitins, and glycogens, can be extracted from the waste of beer industry. They are environmentally friendly, abundant, inexpensive raw materials, and have shown broad biological activities and application potentials. The exploitation of yeast polysaccharides is of great importance for environmental protection and resource utilization. This paper reviews the structural features and preparation of YCW polysaccharides. The solubility and emulsification of yeast polysaccharides and the properties of binding metal ions are presented. In addition, biological activities such as blood glucose and lipid lowering, immune regulation, antioxidant, promotion of intestinal health, and promotion of wound healing are proposed, highlighting the beneficial effects of yeast polysaccharides on human health. Through modification, the physical and chemical properties of yeast polysaccharides are changed, which emphasizes the promotion of their biological activities and properties. In addition, the food applications of yeast polysaccharides, including the food packaging film, emulsifier, thickening agent, and fat alternatives, are focused and discussed.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yichen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Shurong Xue
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
7
|
Liu D, Mueed A, Ma H, Wang T, Su L, Wang Q. Pleurocinus ostreatus Polysaccharide Alleviates Cyclophosphamide-Induced Immunosuppression through the Gut Microbiome, Metabolome, and JAK/STAT1 Signaling Pathway. Foods 2024; 13:2679. [PMID: 39272445 PMCID: PMC11394083 DOI: 10.3390/foods13172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it also contained galactose (2.97%), mannose (5.02%), fucose (0.3%), arabinose (0.21%), ribose (0.04%), galactose acid (0.17%), and glucose acid (1.45%). After POP-1 was administered to immunosuppressed mice, results showed that POP-1 increased the body weight, spleen, and thymus index and enhanced T lymphocyte proliferation in mice. POP-1 up-regulated the expression of CD3+, CD4+, and CD8+ lymphocytes and the ratio of CD4+/CD8+ in the mouse spleen to increase immunoglobulin (IgM, IgG, and IgA) and secrete cytokines (IL-2, IL-6, TNF-α, and IFN-γ) through activation of the JAK/STAT1 signaling pathway. Moreover, POP-1 remarkably reversed the gut-microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Muribaculaceae, Lactobacillaceae, Blautia, and Ligilactobacillus and altered the fecal metabolites by increasing hexahomomethionine, DG(8:0/20:4(5Z, 8Z, 11Z, 14Z)-OH(20)/0:0, 2-((3-aminopyridin-2-yl)methylene)hydrazinecarbothioamide, Ginkgoic acid, and carboxy-ethyl-hydroxychroman, which is closely related to the immunity function. This study indicates that P. ostreatus polysaccharide effectively restores immunosuppressive activity and can be a functional ingredient in food and pharmaceutical products.
Collapse
Affiliation(s)
- Daiyao Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - He Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Tianci Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ling Su
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Soto ER, Rus F, Ostroff GR. Yeast Particle Encapsulation of Azole Fungicides for Enhanced Treatment of Azole-Resistant Candida albicans. J Funct Biomater 2024; 15:203. [PMID: 39194641 DOI: 10.3390/jfb15080203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Addressing the growing problem of antifungal resistance in medicine and agriculture requires the development of new drugs and strategies to preserve the efficacy of existing fungicides. One approach is to utilize delivery technologies. Yeast particles (YPs) are 3-5 µm porous, hollow microspheres, a byproduct of food-grade Saccharomyces cerevisiae yeast extract manufacturing processes and an efficient and flexible drug delivery platform. Here, we report the use of YPs for encapsulation of tetraconazole (TET) and prothioconazole (PRO) with high payload capacity and stability. The YP PRO samples were active against both sensitive and azole-resistant strains of Candida albicans. The higher efficacy of YP PRO versus free PRO is due to interactions between PRO and saponifiable lipids in the YPs. Encapsulation of PRO in glucan lipid particles (GLPs), a highly purified form of YPs that do not contain saponifiable lipids, did not result in enhanced PRO activity. We evaluated the co-encapsulation of PRO with a mixture of the terpenes: geraniol, eugenol, and thymol. Samples co-encapsulating PRO and terpenes in YPs or GLPs were active on both sensitive and azole-resistant C. albicans. These approaches could lead to the development of more effective drug combinations co-encapsulated in YPs for agricultural or GLPs for pharmaceutical applications.
Collapse
Affiliation(s)
- Ernesto R Soto
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florentina Rus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Liu JJ, Hou YK, Wang X, He WW, Huang XJ, Yin JY, Nie SP. Dynamics of α-glucan from Agrocybe cylindracea water extract at different developmental stages and its structure characteristics. Int J Biol Macromol 2024; 269:131799. [PMID: 38677677 DOI: 10.1016/j.ijbiomac.2024.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides are the important bioactive macromolecules in Agrocybe cylindracea, but their changes are as yet elusive during developmental process. This study investigated the dynamic changes of polysaccharides from A. cylindracea fruiting body water extract at four developmental stages and its structure characteristics. Results revealed that the polysaccharides from A. cylindracea water extract significantly increased at the pileus expansion stage and the increased fraction could be α-glucan. The further purification and identification indicated that this α-glucan was a glycogen. It had typical morphology of β particles with a molecular weight of 1375 kDa. Its backbone comprised α-D-(1 → 4)-Glcp and α-D-(1 → 4,6)-Glcp residues at a ratio of 5:1, terminated by α-D-Glcp residue. Rheological behavior suggested that it was a Newtonian fluid at the concentration of 1 %. In addition, despite both the glycogen and natural starch were composed of D-glucose, they exhibited the entirely distinct Maltese cross characteristic and unique crystalline structure. This study is the first to demonstrate the presence of abundant glycogen in the pileus expansion stage of A. cylindracea, which provides new insights on the change patterns of fungal polysaccharides.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
10
|
Lee HJ, Park BR, Chewaka LS. A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer's Spent Yeast and Cultured Yeast Cells. Foods 2024; 13:1567. [PMID: 38790867 PMCID: PMC11121356 DOI: 10.3390/foods13101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast, crucial in beer production, holds great potential owing to its ability to transform into a valuable by-product resource, known as brewer's spent yeast (BSY), with potentially beneficial physiological effects. This study aimed to compare the composition and soluble polysaccharide content of Brewer's spent yeast with those of cultured yeast strains, namely Saccharomyces cerevisiae (SC) and S. boulardii (SB), to facilitate the utilization of BSY as an alternative source of functional polysaccharides. BSY exhibited significantly higher carbohydrate content and lower crude protein content than SC and SB cells. The residues recovered through autolysis were 53.11%, 43.83%, and 44.99% for BSY, SC, and SB, respectively. Notably, the polysaccharide content of the BSY residue (641.90 μg/mg) was higher than that of SC (553.52 μg/mg) and SB (591.56 μg/mg). The yields of alkali-extracted water-soluble polysaccharides were 33.62%, 40.76%, and 42.97% for BSY, SC, and SB, respectively, with BSY comprising a comparable proportion of water-soluble saccharides made with SC and SB, including 49.31% mannan and 20.18% β-glucan. Furthermore, BSY demonstrated antioxidant activities, including superoxide dismutase (SOD), ABTS, and DPPH scavenging potential, suggesting its ability to mitigate oxidative stress. BSY also exhibited a significantly higher total phenolic compound content, indicating its potential to act as an effective functional food material.
Collapse
Affiliation(s)
| | | | - Legesse Shiferaw Chewaka
- Department of Agro-Food Resource, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju 54875, Republic of Korea; (H.J.L.); (B.-R.P.)
| |
Collapse
|
11
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
12
|
Sousa P, Tavares-Valente D, Pereira CF, Pinto-Ribeiro I, Azevedo-Silva J, Madureira R, Ramos ÓL, Pintado M, Fernandes J, Amorim M. Circular economyeast: Saccharomyces cerevisiae as a sustainable source of glucans and its safety for skincare application. Int J Biol Macromol 2024; 265:130933. [PMID: 38508554 DOI: 10.1016/j.ijbiomac.2024.130933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Inês Pinto-Ribeiro
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
13
|
Castor RB, do Nascimento MH, Gorlach-Lira K. Exploring fungal bioemulsifiers: insights into chemical composition, microbial sources, and cross-field applications. World J Microbiol Biotechnol 2024; 40:127. [PMID: 38451356 DOI: 10.1007/s11274-024-03883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/01/2024] [Indexed: 03/08/2024]
Abstract
The demand for emulsion-based products is crucial for economic development and societal well-being, spanning diverse industries such as food, cosmetics, pharmaceuticals, and oil extraction. Formulating these products relies on emulsifiers, a distinct class of surfactants. However, many conventional emulsifiers are derived from petrochemicals or synthetic sources, posing potential environmental and human health risks. In this context, fungal bioemulsifiers emerge as a compelling and sustainable alternative, demonstrating superior performance, enhanced biodegradability, and safety for human consumption. From this perspective, the present work provides the first comprehensive review of fungal bioemulsifiers, categorizing them based on their chemical nature and microbial origin. This includes polysaccharides, proteins, glycoproteins, polymeric glycolipids, and carbohydrate-lipid-protein complexes. Examples of particular interest are scleroglucan, a polysaccharide produced by Sclerotium rolfsii, and mannoproteins present in the cell walls of various yeasts, including Saccharomyces cerevisiae. Furthermore, this study examines the feasibility of incorporating fungal bioemulsifiers in the food and oil industries and their potential role in bioremediation events for oil-polluted marine environments. Finally, this exploration encourages further research on fungal bioemulsifier bioprospecting, with far-reaching implications for advancing sustainable and eco-friendly practices across various industrial sectors.
Collapse
Affiliation(s)
- Rádamis Barbosa Castor
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Maria Helena do Nascimento
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Krystyna Gorlach-Lira
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
14
|
Bzducha-Wróbel A, Farkaš P, Bieliková S, Čížová A, Sujkowska-Rybkowska M. How do the carbon and nitrogen sources affect the synthesis of β-(1,3/1,6)-glucan, its structure and the susceptibility of Candida utilis yeast cells to immunolabelling with β-(1,3)-glucan monoclonal antibodies? Microb Cell Fact 2024; 23:28. [PMID: 38243245 PMCID: PMC10799355 DOI: 10.1186/s12934-024-02305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The need to limit antibiotic therapy due to the spreading resistance of pathogenic microorganisms to these medicinal substances stimulates research on new therapeutic agents, including the treatment and prevention of animal diseases. This is one of the goals of the European Green Deal and the Farm-To-Fork strategy. Yeast biomass with an appropriate composition and exposure of cell wall polysaccharides could constitute a functional feed additive in precision animal nutrition, naturally stimulating the immune system to fight infections. RESULTS The results of the research carried out in this study showed that the composition of Candida utilis ATCC 9950 yeast biomass differed depending on growth medium, considering especially the content of β-(1,3/1,6)-glucan, α-glucan, and trehalose. The highest β-(1,3/1,6)-glucan content was observed after cultivation in deproteinated potato juice water (DPJW) as a nitrogen source and glycerol as a carbon source. Isolation of the polysaccharide from yeast biomass confirmed the highest yield of β-(1,3/1,6)-glucan after cultivation in indicated medium. The differences in the susceptibility of β-(1,3)-glucan localized in cells to interaction with specific β-(1,3)-glucan antibody was noted depending on the culture conditions. The polymer in cells from the DPJW supplemented with glycerol and galactose were labelled with monoclonal antibodies with highest intensity, interestingly being less susceptible to such an interaction after cell multiplication in medium with glycerol as carbon source and yeast extract plus peptone as a nitrogen source. CONCLUSIONS Obtained results confirmed differences in the structure of the β-(1,3/1,6)-glucan polymers considering side-chain length and branching frequency, as well as in quantity of β-(1,3)- and β-(1,6)-chains, however, no visible relationship was observed between the structural characteristics of the isolated polymers and its susceptibility to immunolabeling in whole cells. Presumably, other outer surface components and molecules can mask, shield, protect, or hide epitopes from antibodies. β-(1,3)-Glucan was more intensely recognized by monoclonal antibody in cells with lower trehalose and glycogen content. This suggests the need to cultivate yeast biomass under appropriate conditions to fulfil possible therapeutic functions. However, our in vitro findings should be confirmed in further studies using tissue or animal models.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-787, Warsaw, Poland.
| | - Pavol Farkaš
- Department of Glycobiotechnology, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia.
| | - Sandra Bieliková
- Department of Glycomaterials, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia
| | - Alžbeta Čížová
- Department of Glycomaterials, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia
| | - Marzena Sujkowska-Rybkowska
- Department of Botany, Warsaw, Institute of Biology, University of Life Sciences, Nowoursynowska 159C Street, 02-787, Warsaw, Poland
| |
Collapse
|
15
|
Bastos R, Marín-Montesinos I, Ferreira SS, Mentink-Vigier F, Sardo M, Mafra L, Coimbra MA, Coelho E. Covalent connectivity of glycogen in brewer's spent yeast cell walls revealed by enzymatic approaches and dynamic nuclear polarization NMR. Carbohydr Polym 2024; 324:121475. [PMID: 37985041 PMCID: PMC10695155 DOI: 10.1016/j.carbpol.2023.121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Yeast cell walls undergo modifications during the brewing process, leading to a remodelling of their architecture. One significant change is the increased insolubility of the cell wall glycogen pool, likely due to the formation of covalent bonds between glycogen and cell wall polysaccharides. To verify this hypothesis, we extracted the brewer's spent yeast with 4 M KOH, obtaining an insoluble glucan fraction (AE.4 M) primarily composed of (α1 → 4)- and (1 → 3)-linked Glc residues. Dynamic nuclear polarization solid-state NMR of AE.4 M revealed distinct glucan resonances that helped to differentiate between α- and β glucosyl (1 → 4)-linked residues, and confirm covalent linkages between (β1 → 3)-glucans and glycogen through a (β1 → 4)-linkage. The hydrolysis with different endo-glucanases (zymolyase, cellulase, and lichenase) was used to obtain solubilized high molecular weight glycogen fractions. NMR analysis showed that covalent links between glycogen and (β1 → 6)-glucans through (α1 → 6) glycosidic linkage, with branching at the C6 position involving (β1 → 3), and (β1 → 6)-glucans. HPAEC-PAD analysis of the enzymatically released oligosaccharides confirmed covalent linkages of (β1 → 3), (β1 → 6)-, and (β1 → 4)-glucan motifs with (α1 → 4)-glucans. This combination of multiple enzymatic approaches and NMR methods shed light into the role of yeast cell wall glycogen as a structural core covalently linked to other cell wall components during the brewing process.
Collapse
Affiliation(s)
- Rita Bastos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ildefonso Marín-Montesinos
- CICECO-Aveiro Institute of Materials, Department of Chemistry University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sónia S Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, 32310, FL, United States.
| | - Mariana Sardo
- CICECO-Aveiro Institute of Materials, Department of Chemistry University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luís Mafra
- CICECO-Aveiro Institute of Materials, Department of Chemistry University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Yang F, Shang S, Qi M, Xiang Y, Wang L, Wang X, Lin T, Hao D, Chen J, Liu J, Wu Q. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int J Biol Macromol 2023; 253:127131. [PMID: 37776921 DOI: 10.1016/j.ijbiomac.2023.127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shang Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengfei Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajinjing Xiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lingmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
17
|
Arslan NP, Dawar P, Albayrak S, Doymus M, Azad F, Esim N, Taskin M. Fungi-derived natural antioxidants. Crit Rev Food Sci Nutr 2023:1-24. [PMID: 38156661 DOI: 10.1080/10408398.2023.2298770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.
Collapse
Affiliation(s)
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Meryem Doymus
- Vocational School of Health Services of Hinis, Ataturk University, Erzurum, Turkey
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Sousa P, Tavares-Valente D, Amorim M, Azevedo-Silva J, Pintado M, Fernandes J. β-Glucan extracts as high-value multifunctional ingredients for skin health: A review. Carbohydr Polym 2023; 322:121329. [PMID: 37839841 DOI: 10.1016/j.carbpol.2023.121329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
β-Glucans, which are naturally present in cereals, yeast, and mushrooms, have gained attention as a potential natural source for functional foods and pharmaceuticals. Due to the availability of β-glucans from several sources, different extraction methods can be employed to obtain high purity extracts that can be further modified to enhance their solubility or other biological properties. Apart from their known ability to interact with the immune system, β-glucans possess specific properties that could benefit overall skin health and prevent age-related signs, including soothing and antioxidant activities. As a result, the use of β-glucans to mitigate damage caused by environmental stressors or skin-related issues that accelerate skin aging or trigger chronic inflammation may represent a promising, natural, eco-friendly, and cost-effective approach to maintaining skin homeostasis balance. This review outlines β-glucan extraction methodologies, molecular structure, functionalization approaches, and explores skin-related benefits of β-glucans, along with an overview of related products in the market.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
19
|
Wu Y, Li P, Jiang Z, Sun X, He H, Yan P, Xu Y, Liu Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym 2023; 319:121163. [PMID: 37567689 DOI: 10.1016/j.carbpol.2023.121163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based β-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based β-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based β-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based β-glucan. Subsequently, we further summarized the current preparation methods of yeast-based β-glucan carriers and the strategies for preparing yeast-based β-glucan drug delivery systems. In addition, we focus on discussing the applications of β-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the β-glucan drug delivery system are introduced.
Collapse
Affiliation(s)
- Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Zongzhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaolei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Huqiang He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
20
|
Fernandes PAR, Coimbra MA. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr Polym 2023; 314:120965. [PMID: 37173007 DOI: 10.1016/j.carbpol.2023.120965] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Over the last years, polysaccharides have been linked to antioxidant effects using both in vitro chemical and biological models. The reported structures, claimed to act as antioxidants, comprise chitosan, pectic polysaccharides, glucans, mannoproteins, alginates, fucoidans, and many others of all type of biological sources. The structural features linked to the antioxidant action include the polysaccharide charge, molecular weight, and the occurrence of non-carbohydrate substituents. The establishment of structure/function relationships can be, however, biased by secondary phenomena that tailor polysaccharides behavior in antioxidant systems. In this sense, this review confronts some basic concepts of polysaccharides chemistry with the current claim of carbohydrates as antioxidants. It critically discusses how the fine structure and properties of polysaccharides can define polysaccharides as antioxidants. Polysaccharides antioxidant action is highly dependent on their solubility, sugar ring structure, molecular weight, occurrence of positive or negatively charged groups, protein moieties and covalently linked phenolic compounds. However, the occurrence of phenolic compounds and protein as contaminants leads to misleading results in methodologies often used for screening and characterization purposes, as well as in vivo models. Despite falling in the concept of antioxidants, the role of polysaccharides must be well defined according with the matrices where they are involved.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Tymecka M, Hac-Wydro K, Obloza M, Bonarek P, Kaminski K. The Use of a Barley-Based Well to Define Cationic Betaglucan to Study Mammalian Cell Toxicity Associated with Interactions with Biological Structures. Pharmaceutics 2023; 15:2009. [PMID: 37514195 PMCID: PMC10385077 DOI: 10.3390/pharmaceutics15072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Among potential macromolecule-based pharmaceuticals, polycations seem particularly interesting due to their proven antimicrobial properties and use as vectors in gene therapy. This makes an understanding of the mechanisms of these molecules' interaction with living structures important, so the goal of this paper was to propose and carry out experiments that will allow us to characterize these phenomena. Of particular importance is the question of toxicity of such structures to mammalian cells and, in the work presented here, two lines, normal fibroblasts 3T3-L1 and A549 lung cancer, were used to determine this. In this work, three well-defined cationic derivatives of barley-derived betaglucans obtained in a reaction with glycidyltrimethylammonium chloride (BBGGTMAC) with different degrees of cationization (50, 70, and 100% per one glucose unit) and electrostatic charge were studied. The studies address interactions of these polymers with proteins (bovine serum proteins and BSA), nucleic acids (DNA), glycosaminoglycans (heparin), and biological membranes. The results described in this study make it possible to indicate that toxicity is most strongly influenced by interactions with biological membranes and is closely related to the electrostatic charge of the macromolecule. The presentation of this observation was the goal of this publication. This paper also shows, using fluorescently labeled variants of polymers, the penetration and impact on cell structure (only for the polymer with the highest substitution binding to cell membranes is observed) by using confocal and SEM (for the polymer with the highest degree of substitution, and the appearance of additional structures on the surface of the cell membrane is observed). The labeled polymers are also tools used together with dynamic light scattering and calorimetric titration to study their interaction with other biopolymers. As for the interactions with biological membranes, lipid Langmuir monolayers as model membrane systems were used.
Collapse
Affiliation(s)
- Malgorzata Tymecka
- Doctoral School of Exact and Natural Sciences, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Katarzyna Hac-Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Obloza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
22
|
Reis SF, Fernandes PAR, Martins VJ, Gonçalves S, Ferreira LP, Gaspar VM, Figueira D, Castelo-Branco D, Mano JF, Coimbra MA, Coelho E. Brewer's Spent Yeast Cell Wall Polysaccharides as Vegan and Clean Label Additives for Mayonnaise Formulation. Molecules 2023; 28:3540. [PMID: 37110775 PMCID: PMC10146781 DOI: 10.3390/molecules28083540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Brewer's spent yeast (BSY) mannoproteins have been reported to possess thickening and emulsifying properties. The commercial interest in yeast mannoproteins might be boosted considering the consolidation of their properties supported by structure/function relationships. This work aimed to attest the use of extracted BSY mannoproteins as a clean label and vegan source of ingredients for the replacement of food additives and protein from animal sources. To achieve this, structure/function relationships were performed by isolating polysaccharides with distinct structural features from BSY, either by using alkaline extraction (mild treatment) or subcritical water extraction (SWE) using microwave technology (hard treatment), and assessment of their emulsifying properties. Alkaline extractions solubilized mostly highly branched mannoproteins (N-linked type; 75%) and glycogen (25%), while SWE solubilized mannoproteins with short mannan chains (O-linked type; 55%) and (1→4)- and (β1→3)-linked glucans, 33 and 12%, respectively. Extracts with high protein content yielded the most stable emulsions obtained by hand shaking, while the extracts composed of short chain mannans and β-glucans yielded the best emulsions by using ultraturrax stirring. β-Glucans and O-linked mannoproteins were found to contribute to emulsion stability by preventing Ostwald ripening. When applied in mayonnaise model emulsions, BSY extracts presented higher stability and yet similar texture properties as the reference emulsifiers. When used in a mayonnaise formulation, the BSY extracts were also able to replace egg yolk and modified starch (E1422) at 1/3 of their concentration. This shows that BSY alkali soluble mannoproteins and subcritical water extracted β-glucans can be used as replacers of animal protein and additives in sauces.
Collapse
Affiliation(s)
- Sofia F. Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.R.); (P.A.R.F.); (V.J.M.); (S.G.); (M.A.C.)
| | - Pedro A. R. Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.R.); (P.A.R.F.); (V.J.M.); (S.G.); (M.A.C.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (L.P.F.); (V.M.G.); (J.F.M.)
| | - Vítor J. Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.R.); (P.A.R.F.); (V.J.M.); (S.G.); (M.A.C.)
| | - Sara Gonçalves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.R.); (P.A.R.F.); (V.J.M.); (S.G.); (M.A.C.)
| | - Luís P. Ferreira
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (L.P.F.); (V.M.G.); (J.F.M.)
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (L.P.F.); (V.M.G.); (J.F.M.)
| | - Diogo Figueira
- Mendes Gonçalves SA, Zona Industrial, Lote 6, 2154-909 Golegã, Portugal; (D.F.); (D.C.-B.)
| | - Diogo Castelo-Branco
- Mendes Gonçalves SA, Zona Industrial, Lote 6, 2154-909 Golegã, Portugal; (D.F.); (D.C.-B.)
| | - João F. Mano
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (L.P.F.); (V.M.G.); (J.F.M.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.R.); (P.A.R.F.); (V.J.M.); (S.G.); (M.A.C.)
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.R.); (P.A.R.F.); (V.J.M.); (S.G.); (M.A.C.)
| |
Collapse
|
23
|
Freitas R, Peixoto A, Ferreira E, Miranda A, Santos LL, Ferreira JA. Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnol Adv 2023; 65:108144. [PMID: 37028466 DOI: 10.1016/j.biotechadv.2023.108144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Cancer remains a leading cause of death worldwide due to the lack of safer and more effective therapies. Cancer vaccines developed from neoantigens are an emerging strategy to promote protective and therapeutic anti-cancer immune responses. Advances in glycomics and glycoproteomics have unveiled several cancer-specific glycosignatures, holding tremendous potential to foster effective cancer glycovaccines. However, the immunosuppressive nature of tumours poses a major obstacle to vaccine-based immunotherapy. Chemical modification of tumour associated glycans, conjugation with immunogenic carriers and administration in combination with potent immune adjuvants constitute emerging strategies to address this bottleneck. Moreover, novel vaccine vehicles have been optimized to enhance immune responses against otherwise poorly immunogenic cancer epitopes. Nanovehicles have shown increased affinity for antigen presenting cells (APCs) in lymph nodes and tumours, while reducing treatment toxicity. Designs exploiting glycans recognized by APCs have further enhanced the delivery of antigenic payloads, improving glycovaccine's capacity to elicit innate and acquired immune responses. These solutions show potential to reduce tumour burden, while generating immunological memory. Building on this rationale, we provide a comprehensive overview on emerging cancer glycovaccines, emphasizing the potential of nanotechnology in this context. A roadmap towards clinical implementation is also delivered foreseeing advances in glycan-based immunomodulatory cancer medicine.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal; Health School of University Fernando Pessoa, 4249-004 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal.
| |
Collapse
|
24
|
Reis SF, Martins VJ, Bastos R, Lima T, Correia VG, Pinheiro BA, Silva LM, Palma AS, Ferreira P, Vilanova M, Coimbra MA, Coelho E. Feasibility of Brewer's Spent Yeast Microcapsules as Targeted Oral Carriers. Foods 2023; 12:246. [PMID: 36673340 PMCID: PMC9857821 DOI: 10.3390/foods12020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Brewer's spent yeast (BSY) microcapsules have a complex network of cell-wall polysaccharides that are induced by brewing when compared to the baker's yeast (Saccharomyces cerevisiae) microcapsules. These are rich in (β1→3)-glucans and covalently linked to (α1→4)- and (β1→4)-glucans in addition to residual mannoproteins. S. cerevisiae is often used as a drug delivery system due to its immunostimulatory potential conferred by the presence of (β1→3)-glucans. Similarly, BSY microcapsules could also be used in the encapsulation of compounds or drug delivery systems with the advantage of resisting digestion conferred by (β1→4)-glucans and promoting a broader immunomodulatory response. This work aims to study the feasibility of BSY microcapsules that are the result of alkali and subcritical water extraction processes, as oral carriers for food and biomedical applications by (1) evaluating the resistance of BSY microcapsules to in vitro digestion (IVD), (2) their recognition by the human Dectin-1 immune receptor after IVD, and (3) the recognition of IVD-solubilized material by different mammalian immune receptors. IVD digested 44-63% of the material, depending on the extraction process. The non-digested material, despite some visible agglutination and deformation of the microcapsules, preserved their spherical shape and was enriched in (β1→3)-glucans. These microcapsules were all recognized by the human Dectin-1 immune receptor. The digested material was differentially recognized by a variety of lectins of the immune system related to (β1→3)-glucans, glycogen, and mannans. These results show the potential of BSY microcapsules to be used as oral carriers for food and biomedical applications.
Collapse
Affiliation(s)
- Sofia F. Reis
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vitor J. Martins
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Bastos
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Lima
- I3S, Institute for Research in Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Viviana G. Correia
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Benedita A. Pinheiro
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Lisete M. Silva
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Angelina S. Palma
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Paula Ferreira
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel Vilanova
- I3S, Institute for Research in Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC, Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Manuel A. Coimbra
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Zhou Y, Feng X, Xu H, Guo J, Yang C, Kong L, Zhang Z. The application of natural product-delivering micro/nano systems in the treatment of inflammatory bowel disease. J Mater Chem B 2023; 11:244-260. [PMID: 36512384 DOI: 10.1039/d2tb01965e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Inflammatory bowel disease (IBD) is a type of recurrent intestinal diseases. Natural product molecules have been gradually developed into an important source of anti-inflammatory drugs for treating IBD owing to their high anti-inflammatory activity, well known safety, structural specificity and therapeutic mechanism diversity. However, most of the natural products are restricted by poor solubility in actual application. How to achieve satisfactory bioavailability during the treatment of IBD is one of the urgent problems to be solved in the current research. Micro/nano drug delivery systems could improve the solubility of drugs with targeted delivery of anti-inflammatory drugs to the colon with responsive release property. Therefore, using micro/nano drug delivery systems, the problems mentioned above involving natural product molecules in the treatment of IBD could be solved. According to the compositions of the intestinal tract and inflammatory characteristics of IBD, the strategies of using micro/nano drug delivery systems for natural products could be summarized in two steps: targeted delivery and responsive release. In this review, the targeted and responsive release strategies of the micro/nano drug delivery systems combined with their anti-inflammatory effects in IBD animal models to illustrate that the proposed strategies could be potential treatments for symptomatic IBD are described.
Collapse
Affiliation(s)
- Yixuan Zhou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Xingxing Feng
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, P. R. China
| | - Hongbo Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Jing Guo
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China. .,Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
26
|
β-glucans obtained from beer spent yeasts as functional food grade additive: Focus on biological activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Reis SF, Messias S, Bastos R, Martins VJ, Correia VG, Pinheiro BA, Silva LM, Palma AS, Coimbra MA, Coelho E. Structural differences on cell wall polysaccharides of brewer's spent Saccharomyces and microarray binding profiles with immune receptors. Carbohydr Polym 2022; 301:120325. [DOI: 10.1016/j.carbpol.2022.120325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
28
|
Structural characterization and emulsifier property of yeast mannoprotein enzymatically prepared with a β-1,6-glucanase. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Avramia I, Amariei S. Formulation of Fast Dissolving β-Glucan/Bilberry Juice Films for Packaging Dry Powdered Pharmaceuticals for Diabetes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2040. [PMID: 35956516 PMCID: PMC9370384 DOI: 10.3390/plants11152040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to develop fast dissolving films based on β-glucan and bilberry juice due to the bioactive potential of β-glucan and antidiabetic effect of bilberry juice. The benefit of incorporation of bioactive compounds into the films is due to the removal of unnecessary excipients and to confer protection as well as increase stability and shelf life to the packaged product. Due to the fast dissolving requirements of the European Pharmacopeia, which reduced the dissolution time from 180 to 60 s, indicating less than a minute, hygroscopic materials, such as sodium alginate and a suitable plasticizer, such as glycerin were incorporated. Moreover, the influence of ingredients and surfactants, such as soybean oil was studied in the design of fast dissolving films. Additionally, the steady state rate water vapor transmission rate (WVTR), water vapor permeability (WVP), and FT-IR spectroscopy tests were performed at high resolution to ensure the reliability of the films and composition as well as to validate the results. Our data suggest that the addition of surfactants contributed to the development of fast dissolving films without influencing the diffusion of water vapor. Low levels of WVTR and short dissolution time made from β-glucan and bilberry juice are a convenient candidate for packaging dry powdered pharmaceuticals for diabetes.
Collapse
Affiliation(s)
- Ionut Avramia
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
30
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|