1
|
Du M, Chen Y, Chen L, Din ZU, Chen X, Wang Y, Wang G, Zhu L, Ding W. Synthesis of a novel starch-based emulsion gel with remarkable low-temperature stability via esterification, ozone-oxidation and ion induction. Carbohydr Polym 2025; 352:123165. [PMID: 39843070 DOI: 10.1016/j.carbpol.2024.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
A novel starch-based emulsion gel was designed via octenyl succinic anhydride (OSA) esterification, ozone oxidation, and ion (Ca2+) induction. The gel properties and low-temperature stability of emulsion gel with different oxidation time (0, 5, 10, 15, 25 min; OW-0, 5, 10, 15, 25) were systematically investigated. FTIR revealed that the oxidation of CC and -OH groups in OW-0 by ozone oxidation led to their cleavage into carbonyl groups, and than transformed to carboxyl groups. Moreover, oxidation treatment changed the amorphous and crystal region of starch, resulting in the increasing extensibility, leaching of short chains, and charged groups. The presence of extended starch chains, leaching of short starch chains, and Ca2+ facilitated the formation of the promoting interaction between starch molecular chains, thereby developing a highly cross-linked network structure. Remarkably, a more compact gel network structure was formed through the interaction between water molecules and modified starch in the emulsion gel for OW-15. Furthermore, the gel network structure endowed the emulsion with thick, dense layers on the condensed surface, enhancing its stability at low temperatures. This research provides a novel strategy for designing the starch-based emulsion gel, holding promising applications in the food industry and other scientific fields.
Collapse
Affiliation(s)
- Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yixiao Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Zia-Ud Din
- Department of Microbiology and Biotechnology, Atta urn Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Xi Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guozhen Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lijie Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
2
|
Ren Y, Ye X, Wei L, Li H, Cao J, Safdar B, Liu X. Influence of variation in phase ratio and protein content on physicochemical properties and structure of soy protein isolate-konjac glucomannan double emulsion gels applicable as solid cubic fat substitutes. Food Chem 2025; 465:142023. [PMID: 39566315 DOI: 10.1016/j.foodchem.2024.142023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/25/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
The effects of variations in the ratios of the inner water phase (W1), palm oil phase (O), and outer water phase (W2) in double emulsions (W/O/W), as well as the soy protein concentrations in W2, on the physicochemical properties and structure of double emulsion gels (DEG) used as solid cubic fat substitutes were investigated. Results showed that an increase in the proportion of O led to a 144 % increase in the size of the double emulsion particles, and a 15.38 % decrease in the cohesiveness of the DEG. The large aggregated oil droplets enlarged the network's porosity. High protein content contributed to the formation of a denser DEG network, resulting in a 32.64 % increase in the gel's hardness. Additionally, variations in the W1:O ratio had a highly significant effect on the properties of the DEG. These results conclusively proved the feasibility of improving DEG properties by adjusting the basic emulsion ratios.
Collapse
Affiliation(s)
- Yuqing Ren
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Xinnan Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Lai Wei
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Jinnuo Cao
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - Bushra Safdar
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
3
|
Wang Y, Chen Y, Feng L, Wang F, Liu T, Gu F, Wang F, Huang Q, Zheng J. Mechanistic study of synergetic stabilization of Pickering emulsions by corn glutelin and starch complexes. Food Chem 2025; 463:141558. [PMID: 39393115 DOI: 10.1016/j.foodchem.2024.141558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The hydrophobicity of glutelin, zein, and carotenoids has limited the development of corn-based functional food products. This paper aims to construct emulsions stabilized by multiple corn-derived components using a simple and organic solvent-free method. The emulsions comprised oil droplets dispersed in the water, where glutelin and starch were stabilizers. Optimal stability, smaller droplet sizes, and moderate viscosity were achieved with a glutelin/starch ratio of 1:4. The results of the dynamic rheological measurements of bulk emulsions as well as interfacial properties and microstructure revealed that the stability mechanism of glutelin-starch complex was the interplay of the increased continuous phase viscosity and stronger interfacial viscoelastic films. Thus, these combined factors effectively inhibited the creaming and coalescence of oil droplets. Interfacial films also protected the carotenoids. The results of this study elucidate the stabilization mechanism among different corn-derived components and therefore guide the design of corn-based personalized nutritional systems.
Collapse
Affiliation(s)
- Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States
| | - Yuying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100101, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Zhao K, Hao Y, Guo X, Chang Y, Shen X. Development and characterization of quinoa protein-fucoidan emulsion gels with excellent rheological properties for 3D printing and curcumin encapsulation stability. Food Chem 2025; 471:142819. [PMID: 39798380 DOI: 10.1016/j.foodchem.2025.142819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Using of low-fat emulsion gels stabilized by quinoa protein (QP) for 3D food printing was limited by their defective rheological properties. The study was to explore the feasibility of using fucoidan (FU) to improve the printability and curcumin encapsulation stability of QP emulsion gel. The gels with 0.5-0.75 % FU incorporated were proved to be the most promising ink. Rheological analysis confirmed their great printing potential from the three-stages simulated 3D printing process. The incorporation of FU into emulsions induced more QP molecules adsorbed at the oil-water interface and smaller droplets size. When gel was induced by gluconate δ-lactone, these electrostatic interactions transformed into electrostatic attraction, resulting in a denser gel network. Adding FU to the gel improved its textural properties. Moreover, the gels with FU incorporated exerted better curcumin storage stability. This study provides a simple way to develop and improve the edible 3D printing inks for future food manufacturing.
Collapse
Affiliation(s)
- Kuo Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yilin Hao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xin Guo
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanjiao Chang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Tao Y, Cai J, Wang P, Zhou L, Chai J, Wang Z, Xu X. Improving the rheological and tribological properties of emulsion-filled gel by ultrasound-assisted cross-linked myofibrillar protein emulsion: Insight into the simulation of oral processing. ULTRASONICS SONOCHEMISTRY 2025; 112:107205. [PMID: 39700886 PMCID: PMC11718346 DOI: 10.1016/j.ultsonch.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to investigate the effect of ultrasound-assisted cross-linking of myofibrillar protein (MP) emulsions on the enhancement of rheological and tribological properties of emulsion-filled gel. The micro-morphology, texture, water hold capacity (WHC), chemical forces, linear shear rheological behavior, large amplitude oscillatory shear (LAOS), oil-released content, and simulated oral friction of the water-filled gel (WP-G), the original MP fabricated emulsion-filled gel (NP-G), the crosslinked MP fabricated emulsion-filled gel (NPG-G), and the ultrasound treated crosslinked MP fabricated emulsion-filled gel (NPGU-G) were determined. Results indicated that emulsion as filler phase significantly improved the rheological and tribological properties of the gel, especially for the ultrasound-assisted MP emulsion-filled gel (NPGU-G) group, the smaller droplet size of emulsion contributed to the density and structural uniformity of the gel. Based on the excellent hydrophobic interaction between emulsion droplets and protein matrix, the NPGU-G group presented enhanced hardness, gumminess, chewiness, hydrophobic interaction, creep-recovery behavior, and the retarded transition of nonlinear response. Furthermore, the lower oil-released content and reduced friction coefficient in the NPGU-G group also indicated that the smaller emulsion droplets contributed to the gel quality and mouth lubrication. Consequently, this study demonstrated that ultrasound-assisted cross-linked MP emulsion with smaller droplets can be successfully filled into gel structures, form a denser network structure, and improve the quality of the emulsion-filled gel.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Zhong Y, Wang B, Li B, Zhao D, Lv W, Xiao H. Octenyl succinic anhydride starch enhanced 3D printability of corn starch-based emulsion-filled gels incorporating egg yolk. Int J Biol Macromol 2025; 284:138110. [PMID: 39608524 DOI: 10.1016/j.ijbiomac.2024.138110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This work investigated the effect of octenyl succinic anhydride starch (OSAS) on the 3D printing performance of corn starch-based emulsion-filled gels containing egg yolk. The influence of OSA-S concentration on emulsion droplet size, ζ-potential and stability, as well as the printing performance, rheological properties and microstructure of gel were discussed. The results indicated that the addition of OSA-S significantly improved the accuracy of the printed objects, with the best accuracy of the models printed using OSA-1.6 and OSA-2.0 inks. Emulsion tests showed that increasing the OSA-S content reduced the droplet size, increased its ζ-potential, and enhanced the stability of the emulsion. Rheological analyses showed that the energy storage modulus, loss modulus, and apparent viscosity of the gels were slightly enhanced with increasing OSA-S content. Microstructural analysis showed that OSA-S increased the density of the gel microstructural network. In addition, the addition of OSA-S enhanced the thermal stability of the gels and facilitated the transition of water molecule states from free water to bound water. The melting temperature of the gel gradually increased from 135.72 °C to 147.52 °C with the increase of OSA content. This study aims to develop promising 3D printing ink to facilitate its industrial applications.
Collapse
Affiliation(s)
- Yuanliang Zhong
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Bingzheng Li
- Guangxi Key laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dan Zhao
- Chinese Academy of Agricultural Mechanization Sciences Group Co., Ltd, Beijing 100083, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Hou Y, Ning X, Liu Z, Li R, Fan Y, Li N, Li X, Xu X, Li K, Liu Q. Strong self-association of chitosan microgels at interface mediated high stabilities in Pickering emulsion. Int J Biol Macromol 2024; 289:138796. [PMID: 39689789 DOI: 10.1016/j.ijbiomac.2024.138796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The spontaneous self-organization of naturally-occurring polysaccharide particles into a thick and robust gel network at interface in Pickering emulsion is challenging. Inspired by the phenomenon that chitosan microgels (CSMs) with a certain size could self-associate into a solidified gel phase upon freezing, here we tentatively used CSMs to construct a highly-stable Pickering emulsion. CSMs can form a stable Langmuir's layer at the water/oil interface through the network deformation and re-arrangement of dangling chains, while the subsequent negative polymer coating can avoid the bridging resulting from the cross-association for CSMs on different emulsion droplets upon freezing. The experimental results indicated that the emulsion showed excellent features, including the wide pH range stability (3-12), long-term storage stability (> 3 months), thermal stability (121 °C, 30 min). Moreover, CSMs could self-associate into a reliable gel layer around the oil droplet in freezing, leading to the better freeze-thaw stability (1-3 cycles). The negative coating not only facilitates the formation of interfacial gel network around each emulsion droplet, but also produces huge steric hindrance and electrostatic repulsion to suppress the coalescence. This work provides a different way to modulate the interfacial structure, thus developing a more stable polysaccharide-based Pickering emulsion.
Collapse
Affiliation(s)
- Yarui Hou
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xuan Ning
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Zeqi Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Ran Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yiyuan Fan
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Na Li
- College of Biological Sciences and Technology, Taiyuan Normal University, No. 319 Daxue Street, Yuci District, Jinzhong 030619, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China.
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
8
|
Zhang J, Zheng Y, Guo B, Sun D, Xiao Y, Yang Z, Liu R, Chen J, Wu B, Zhao P, Ruan J, Weitz DA, Chen D. Jammed Pickering Emulsion Gels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409678. [PMID: 39540290 DOI: 10.1002/advs.202409678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Emulsion gels with specific rheological properties have widespread applications in foods, cosmetics, and biomedicines. However, the constructions of water-in-oil emulsion gels are still challenging, due to the limited interactions available in the continuous oil phase. Here, a versatile strategy is developed to prepare a new type of emulsion gels, called Jammed Pickering emulsion gels (JPEGs). In the JPEG system, SiO2 NPs in the oil phase serve as colloidal surfactants to stabilize water-in-oil Pickering emulsions, while positively-charged NH2-PEG-NH2 molecules in the water phase cross-link negatively-charged SiO2 NPs at the water/oil interface, making NP-stabilized water droplets hard to deform and thus jamming the emulsion system to form emulsion gels. The strategy to prepare JPEGs is versatile and applicable to diverse oil phases. The designed JPEGs possess many advantages, including good biocompatibility for widespread applications, shear-thinning rheological properties for easy processing, good stability Over a wide temperature range and Against centrifugation, good adhesion to wet tissues for tissue engineering, and well-controlled sustained release Under intestinal conditions. The developed JPEGs are demonstrated to be a promising delivery platform and the strategy to achieve JPEGs will trigger more innovations of material design.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Yuan Zheng
- College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Baoling Guo
- Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, P. R. China
| | - Dongpeng Sun
- College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Yao Xiao
- College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Ze Yang
- College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Rongrong Liu
- College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jingyi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Baiheng Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
9
|
Su CY, Li D, Wang LJ. From micropores to mechanical strength: Fabrication and characterization of edible corn starch-sodium alginate double network hydrogels with Ca2+ cross-linking. Food Chem 2024; 467:142276. [PMID: 39631354 DOI: 10.1016/j.foodchem.2024.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This study explores the fabrication and characterization of corn starch‑sodium alginate double network hydrogels using two distinct calcium ion cross-linking methods: the gluconolactone immersed method (GIM) and the calcium chloride immersed method (CCIM). We investigated the ionic cross-linking mechanism of these hydrogels and compared their microstructure and mechanical properties. Our results highlight significant differences between GIM and CCIM hydrogels, with the CCIM method producing a more uniform and compact network. At the same calcium ion concentration, CCIM hydrogel exhibited higher mechanical strength and viscoelasticity properties compared to GIM hydrogel. The rapid release of Ca2+ in CCIM allowed for complete cross-linking with sodium alginate, forming a uniform 3D network structure. In contrast, the slow released Ca2+ in GIM resulted in a heterogeneous structure with a tough outer shell and incomplete internal cross-linking. Specifically, the CCIM hydrogel showed a compact network structure and the highest mechanical strength at a calcium chloride concentration of 1.6% (w/v). This study demonstrates that the Ca2+ release rate significantly impacts the microstructure and mechanical properties of double network hydrogels prepared by the immersion method. With this preparation strategy, corn starch‑sodium alginate edible gels that provided higher strength could be fabricated.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Gu Y, Xu W, Guo Y, Gao Y, Zhu J. Development and characterization of tilapia skin collagen-inulin oleogel as the potential fat substitute in beef patty formulations. Int J Biol Macromol 2024; 280:135785. [PMID: 39304057 DOI: 10.1016/j.ijbiomac.2024.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The effects of inulin addition, olive oil content, and ultrasonic treatment on the rheological, texture, and structural properties of collagen-based oleogels were investigated in this study. Furthermore, the fat substitution ability of the oleogel in low-fat beef patties was evaluated. Initially, a uniform and dense network cross-linked structure was found when the ratio of collagen to inulin complex was 1:5. The oleogel sample exhibited good stability and oil binding ability with an additional amount of 50 % olive oil. Ultrasonic treatment improved the stability of the oleogel structure in all samples. Additionally, the addition of inulin reduced cooking loss in beef patties. Beef patties prepared at a 50 % fat substitution level showed physical properties that were the least different from those of pure adipose tissue (control group), which could significantly reduce the content of saturated fatty acids and improve the storage stability of beef patties. This study provided guidance for the application of collagen-inulin oleogel in food processing.
Collapse
Affiliation(s)
- Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Weiwei Xu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanjie Guo
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Yongfang Gao
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
11
|
Sun J, Li J, Liu J, Liu H, Gao Y. Using natural starch granules to disperse solid beeswax into micron-sized droplets in emulsion. Int J Biol Macromol 2024; 282:137093. [PMID: 39486731 DOI: 10.1016/j.ijbiomac.2024.137093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Use of beeswax together with starch to manufacture emulsion for fruit preservation has attracted wide attention in food packaging. In this paper, esterified starch (M-PS) granules prepared from natural potato starch were used to replace nanocrystals to prepare beeswax emulsion. The swelling property of M-PS granules was used to solve the problem of uneven dispersion of beeswax. Atomic force microscope (AFM) images showed that the network gel structure formed by M-PS granules limited the movement of beeswax droplets, and the droplet size was <1.0 μm. When the beeswax emulsion was added to the starch paste, the resulting starch-beeswax composite emulsion had a stable gel structure. Bananas were coated with the composite emulsion. After 7 days of storage, compared with the test data of bare bananas, the weight loss rate decreased by 42 %, the titratable acidity increased by 21 %, and the vitamin C was higher by 20 % of coated bananas. The formed coating effectively inhibited the decline of banana quality.
Collapse
Affiliation(s)
- Jie Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Juanjuan Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
12
|
Gao L, Haesaert G, Van Bockstaele F, Vermeir P, Eeckhout M. Effects of Genotype, Nitrogen, and Sulfur Complex Fertilization on the Nutritional and Technological Characteristics of Buckwheat Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20603-20614. [PMID: 38828918 DOI: 10.1021/acs.jafc.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The present study investigated the effect of nitrogen fertilization (NF) at the levels of 0, 45, and 90 kg·ha-1 combined with selected sulfur complex fertilization (SCF) levels of 0 and 45 kg·ha-1 on the nutritional and technological characteristics of buckwheat flour from five varieties. The results showed that the genotype was a critical factor affecting the chemical composition and physicochemical properties of buckwheat flour. NF significantly increased protein, total starch, and amylose content as well as mineral composition but decreased particle size, color value, and water hydration properties. However, SCF enhanced the ash content and decreased the protein content but had no significant effect on the pasting temperature. In addition, the combination of NF and SCF significantly reduced granule size, water solubility, viscosity, and rheological properties with increasing fertilization levels. This study can guide the cultivation of buckwheat with the desired physicochemical properties and provide information for buckwheat-based products in the food industry.
Collapse
Affiliation(s)
- Licheng Gao
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analysis, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Su CY, Li D, Sun W, Wang LJ, Wang Y. Green, tough, and heat-resistant: A GDL-induced strategy for starch-alginate hydrogels. Food Chem 2024; 449:139188. [PMID: 38579652 DOI: 10.1016/j.foodchem.2024.139188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Hydrogels fabricated by non-covalent interaction garnered significant attention for their eco-friendly and robust mechanical attributes, and are often used in food, medicine and other fields. Although starch-alginate hydrogels exhibit high adhesion and are environmentally sustainable, their applications are limited due to their low elasticity and hardness. Addressing this challenge, we introduce a solvent-induced strategy using glucolactone (GDL) to fabricate hydrogels with enhanced strength and thermal resilience. Utilizing corn starch with varying amylose contents, sodium alginate and calcium carbonate to prepare a double network structure. This GDL-induced hydrogel outperforms most previous starch-based hydrogels in mechanical robustness and thermal stability. Typical starch-alginate hydrogel had a homogeneous network structure and exhibited a high tensile stress of 407.57 KPa, and a high enthalpy value of 1857.67 J/g. This investigation furnishes a facile yet effective method for the synthesis of hydrogels with superior mechanical and thermal properties, thereby broadening the design landscape for starch-based hydrogels.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
| | - Weihong Sun
- College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
14
|
Viadel A, Laguna L, Tárrega A. Rheological and sensory properties of chickpea and quinoa pastes and gels for plant-based product development. J Texture Stud 2024; 55:e12858. [PMID: 39138119 DOI: 10.1111/jtxs.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
The aim of this study was to investigate the modification of mechanical, rheological, and sensory properties of chickpea pastes and gels by incorporating other ingredients (olive oil or quinoa flour), to develop plant-based alternatives that meet consumer demands for healthy, natural, and enjoyable food products. The pastes and gels were made with different amounts of chickpea flour (9% and 12%, respectively). For each product, a first set of products with different oil content and a second set with quinoa flour (either added or replaced) were produced. The viscoelastic properties of the pastes and the mechanical properties of the gels were measured. Sensory evaluation and preference assessment were carried out with 100 participants using ranking tests. The study found remarkable differences in rheological, mechanical, and sensory properties of chickpea products upon the inclusion of oil and quinoa flour. The addition of oil increased the viscosity and decreased the elastic contribution to the viscoelasticity of the pastes, while it improved the firmness and plasticity in gels. It also increased the creaminess and preference of both pastes and gels. Replacing chickpea with quinoa flour resulted in less viscous pastes and gels with less firmness and more plasticity. In terms of sensory properties, the use of quinoa as a replacement ingredient resulted in less lumpiness in the chickpea paste and less consistency and more creaminess in both the pastes and gels, which had a positive effect on preference. The addition of quinoa increased the viscosity of pastes and the firmness and stiffness of gels. It increased the consistency and creaminess of both pastes and gels. Quinoa flour and/or olive oil are suitable ingredients in the formulation of chickpea-based products. They contribute to the structure of the system, providing different textural properties that improve acceptance.
Collapse
Affiliation(s)
- Andrés Viadel
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Laura Laguna
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Amparo Tárrega
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| |
Collapse
|
15
|
Shen J, Chen Y, Li X, Zhou X, Ding Y. Enhanced probiotic viability in innovative double-network emulsion gels: Synergistic effects of the whey protein concentrate-xanthan gum complex and κ-carrageenan. Int J Biol Macromol 2024; 270:131758. [PMID: 38714282 DOI: 10.1016/j.ijbiomac.2024.131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
In this study, the whey protein concentrate and xanthan gum complex obtained by specific pH treatment, along with κ-carrageenan (KC), were used to encapsulate Lactobacillus acidophilus JYLA-191 in an emulsion gel system. The effects of crosslinking and KC concentration on the visual characteristics, stability, mechanical properties, and formation mechanism of emulsion gels were investigated. The results of optical imaging, particle size distribution, and rheology exhibited that with the addition of crosslinking agents, denser and more homogeneous emulsion gels were formed, along with a relative decrease in the droplet size and a gradual increase in viscosity. Especially when the concentration of citric acid (CA) was 0.09 wt%, KC was 0.8 wt%, and K+ was present in the system, the double-network emulsion gel was stable at high temperatures and in freezing environments, and the swelling ratio was the lowest (9.41%). Gastrointestinal tract digestive treatments and pasteurization revealed that the probiotics encapsulated in the double-network emulsion gel had a higher survival rate, which was attributed to the synergistic cross-linking of CA and K+ biopolymers to construct the emulsion gels. Overall, this study highlights the potential of emulsion gels to maintain probiotic vitality and provides valuable insights for developing inventive functional foods.
Collapse
Affiliation(s)
- Jie Shen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, Liaoning, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, Zhejiang, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, Zhejiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
16
|
Gao K, Liu T, Zhang Q, Wang Y, Song X, Luo X, Ruan R, Deng L, Cui X, Liu Y. Stabilization of emulsions prepared by ball milling and cellulase treated pomelo peel insoluble dietary fiber: Integrity of porous fiber structure dominates the stability. Food Chem 2024; 440:138189. [PMID: 38100965 DOI: 10.1016/j.foodchem.2023.138189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Emulsion gels from the pomelo peel insoluble dietary fiber (PIDF) were developed. The emulsification potentials of PIDFs subjected to various degrees of ball milling (M-PIDFs), cellulase hydrolysis (C-PIDF), and cellulase hydrolysis followed by ball milling (CM-PIDFs) were evaluated. Emulsions prepared by M-PIDFs for different lengths of ball milling time exhibited similar stability characteristics, confirming that M-PIDF emulsion stability might be determined by the three-dimensional structure formed by M-PIDF stacking and oil droplet capture. C-PIDF had characteristics resembling those of Pickering particles. CM-PIDF emulsions got destabilized with ball milling time prolongation. Interface tension and particle size of C/CM-PIDF decreased gradually during ball milling. Rheological and fluorescence microscopy results revealed that the intact internal crosslinking structure frameworks were disrupted in CM-PIDF emulsions. Therefore, intact fiber-based networks, rather than small particle size or low interfacial tension, determine the stability of PIDF emulsions. This study deepens the understanding of PIDF as a clean emulsifier.
Collapse
Affiliation(s)
- Kaili Gao
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China; Key Laboratory of Plant Resources and Biodiversity of Jiangxi Province, Jingdezhen University, Jingdezhen 333000, China
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang Jiangxi 330006, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xuan Luo
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul MN 55108, USA
| | - Le Deng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
17
|
Zheng LY, Li D, Wang LJ, Wang Y. Tailoring 3D-printed high internal phase emulsion-rice starch gels: Role of amylose in rheology and bioactive stability. Carbohydr Polym 2024; 331:121891. [PMID: 38388064 DOI: 10.1016/j.carbpol.2024.121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
This study investigated the properties of 3D-printed high internal phase emulsion (HIPE)-rice starch gels, specially tailored for personalized nutrition by co-encapsulating resveratrol and β-carotene. We examined the influence of amylose content on various parameters, including functional groups, linear and nonlinear rheology, printed precision and microstructural stability. Additionally, we assessed the protective efficacy and release in vitro digestion of these gels on the encapsulated bioactive components. Compared to HIPE, HIPE-starch gels differently impacted by amylose content in starches. Low-level amylose weakened the network structure, attributed to amylose mainly responsible for gel formation and weak hydrogen bond interaction between the surface-active molecules and amylose due to gelatinized starch granules rupturing the protein network. Oppositely, high-level amylose led to denser, more gel-like structures with enhanced mechanical strength and reversible deformation resistance, making them suitable for 3D printing. Furthermore, 3D-printed gels with high-level amylose demonstrated well-defined structures, smooth surfaces, stable printing and less dimension deviation. They were also regarded as effective entrapping and delivery systems for resveratrol and β-carotene, protecting them against degradation from environment and damage under the erosion of digestive fluid. Overall, this research offers a straightforward strategy for creating reduced-fat HIPE gels that serve as the carrier for personalized nutraceutical foods.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Huang Z, Guo B, Zhang G. External factors affecting the linear and nonlinear rheological behavior of oleogel-based emulsions. Food Chem 2024; 439:138075. [PMID: 38029565 DOI: 10.1016/j.foodchem.2023.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
This study reported oleogel-based emulsions (OGEs, W/O) stabilized by carnauba wax. The effects of different external factors (heating temperature, crystallization temperature, and shear application during crystallization) on the microstructure and linear/nonlinear rheological properties of OGEs were investigated. Microstructural observation suggested that the OGEs had a uniform droplet distribution, and the carnauba wax crystals trapped oil in the continuous phase. The gelatinized oil phase allowed the OGEs to have a solid appearance and typical yielding behavior. The small amplitude oscillation shear analysis showed that lower heating temperature, higher crystallization temperature, and suitable shear application resulted in a stronger, more stable, and tighter packed network structure and better resistance to deformation of the OGEs. For nonlinear behavior, the elastic dominant behavior of OGEs transformed into viscous dominant behavior at large strain amplitudes, accompanied by more energy dissipation, strain stiffening, and a transition from shear thickening to shear thinning.
Collapse
Affiliation(s)
- Zhaohua Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Baozhong Guo
- Research Institute of Bird's Nest, Xiamen Yan Palace Seelong Food Co Ltd, Xiamen 361100, Fujian, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
19
|
Ren W, Liang H, Liu S, Li Y, Chen Y, Li B, Li J. Formulations and assessments of structure, physical properties, and sensory attributes of soy yogurts: Effect of carboxymethyl cellulose content and degree of substitution. Int J Biol Macromol 2024; 257:128661. [PMID: 38065460 DOI: 10.1016/j.ijbiomac.2023.128661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Soy yogurts present challenges, including absence of tender and slipperiness mouthfeel, and poor stability. This study aimed to investigate the impacts of carboxymethyl cellulose (CMC) with degrees of substitution of 0.7 (CMC0.7) and 1.2 (CMC1.2) at concentrations ranging from 0 % to 1.1 % on the stability, microstructure, rheology, tribology, and mouthfeel of soy yogurts. As the CMC concentration increased from 0 % to 0.3 %, soy yogurts displayed a coarser microstructure, decreased stability, and increased gel strength. As the concentration of CMC further increased from 0.5 % to 1.1 %, soy yogurts exhibited trends of a smoother microstructure, increased stability, and softer gel strength. Notably, soy yogurts with CMC0.7 demonstrated a superior water holding capacity (WHC) than soy yogurts with CMC1.2. Tribological measurements indicated that soy yogurts with CMC0.7 at a 0.7 % concentration had the lowest coefficient of friction (COF) value among most sliding speeds, showing a 23 % reduction compared to soy yogurts without CMC at a sliding speed of 10 mm/s. Moreover, sensory evaluation showed that soy yogurts with CMC0.7 at a 0.7 % concentration had the highest total score in mouthfeel evaluation. Therefore, the addition of CMC0.7 within the concentration range of 0.5 % to 1.1 % may produce stable and delicate yogurts.
Collapse
Affiliation(s)
- Weiwen Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
20
|
Wei W, Wu M, Ren W, Yu H, Sun D. Preparation of crosslinked starches with enhanced and tunable gel properties by the cooperative crosslinking-extrusion combined modification. Carbohydr Polym 2024; 324:121473. [PMID: 37985039 DOI: 10.1016/j.carbpol.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Due to its safety and palatability, the citric acid crosslinking modification is an excellent way to modify the properties of starch gels. However, the application of this method is restricted by the low degree of crosslinking of gels produced by this method in the hydrogel system. To produce citric acid-crosslinked starch with improved strength and tunable gel characteristics, a novel ion-esterification cooperative crosslinking-extrusion combined (CCEC) modification approach is presented in this study. The linear and nonlinear rheological characteristics of the samples were measured to evaluate the effectiveness of CCEC modification. Findings disclosed that at 0.1 % strain, the elastic modulus of the CCEC-modified starch (SC-0.5Zn2+, G' = 1522.29 ± 36.31) exhibited a significant rise of 387.27 % as compared to the elastic modulus of citric acid-crosslinked starch (SC, G' = 318.29 ± 11.62). Furthermore, changing the cation concentration allowed for efficient control of the gel's rheological characteristics. The samples were characterized by SEM, FTIR, XRD, and XPS. The CCEC-modified gels had a smaller pore size distribution and a denser honeycomb porous structure. The CCEC modification reaction involves ester bonds and electrostatic attraction. This research is essential to elucidate how coupled physicochemical modification techniques affect the manipulation of starch gel characteristics.
Collapse
Affiliation(s)
- Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Haoze Yu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Dongyu Sun
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
21
|
Wang R, Duan C. Waxy maize starch incorporated (-)-epigallocatechin-3-gallate can stabilize emulsion gel and improve antioxidant activity. Int J Biol Macromol 2023; 253:127333. [PMID: 37832375 DOI: 10.1016/j.ijbiomac.2023.127333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
A food-grade emulsion gel was stabilized using waxy maize starch (WS) incorporated (-)-epigallocatechin-3-gallate (EGCG) at different ratio (from 5 % to 20 %, w/w). The microstructure, rheological behavior, physical stability and antioxidant activity of emulsion gels were investigated using confocal laser scanning microscopy (CLSM), cryo-scanning electron microscopy (cryo-SEM), and rheometer, etc. The results suggested that incorporated EGCG obviously affected the spatial configuration of WS hydrogel. The WS/EGCG hydrogels presented an excellent lipophilic capacity characterized by tightly adhering to linseed oil droplets in the emulsion gels. Moreover, the viscosity, viscoelasticity and physical stability of the emulsion gels stabilized by the WS/EGCG hydrogel matrices were significantly enhanced. The emulsion gel stabilized by the WS/EGCG hydrogel matrix (15 % EGCG) had long-term emulsifying stability because its emulsified phase volume fraction (77.14 %) remained stable for 30 days. Compared with typical natural and synthetic antioxidants in food and pharmaceutical processing, the emulsion gels stabilized by the WS/EGCG hydrogel matrices showed significant stronger DPPH (97.45 %) and ABTS•+ (97.97 %) free radical scavenging activity. These results demonstrate that WS/EGCG hydrogels can not only be used in food-grade matrix materials to stabilize emulsion gels but also improve the antioxidant activity of the emulsion gels.
Collapse
Affiliation(s)
- Ran Wang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun 130033, China
| | - Cuicui Duan
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, China.
| |
Collapse
|
22
|
Xu H, Fan Q, Huang M, Cui L, Gao Z, Liu L, Chen Y, Jin J, Jin Q, Wang X. Combination of carrageenan with sodium alginate, gum arabic, and locust bean gum: Effects on rheological properties and quiescent stabilities of partially crystalline emulsions. Int J Biol Macromol 2023; 253:127561. [PMID: 37865364 DOI: 10.1016/j.ijbiomac.2023.127561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
In the present study, carrageenan (CG) was combined with sodium alginate (SA), gum arabic (GA), and locust bean gum (LBG) to obtain four gum combinations (CG, CG + SA, CG + GA, and CG + LBG). The effects of different combinations on rheological properties and quiescent stabilities of PCEs were systematically investigated through characterization of fresh emulsion related parameters (rheological properties, forces between proteins, zeta potentials, surface tensions, interfacial adsorption properties, and multiple light scattering) and storage related parameters (visual appearance, creaming index, viscosities, particle sizes, and microscopic morphology). Rheological results indicated that CG PCEs had the highest apparent viscosities of 7.77-41.91 Pa·s at 0.01 s-1, followed by CG + SA PCEs (2.35-30.62 Pa·s), CG + GA PCEs (2.37-21.16 Pa·s), and CG + LBG PCEs (2.06-19.93 Pa·s). At low thickener concentration (0.02 %), CG PCE exhibited weak gel structure due to higher G' than G″ at all frequencies, while CG + SA, CG + GA, and CG + LBG PCEs had entangled network due to intersection between G' and G″. After three months of storage, CG + SA PCEs showed the lowest creaming index values (11.47-17.75 %), which were significantly lower than CG PCEs (15.35-20.85 %), CG + GA PCEs (15.97-24.42 %), and CG + LBG PCEs (17.13-21.71 %). Meanwhile, all the samples except for 0.02 % CG + SA PCE completely lost fluidity, and their viscosities were above 14,000 mPa·s. It was further found that CG stabilized emulsions showed severe droplet flocculation induced by hydrophobic interactions among adsorbed proteins. Combination of CG with SA, GA, and LBG, especially CG + SA, formed strong network structure and reduced contribution of hydrophobic interactions, which effectively inhibited flocculation of fat droplets, thereby improving rheological properties and storage stabilities of PCEs.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qinyuan Fan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcui Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Limin Cui
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Ziwei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Longfei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuhang Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Wang X, Dai M, Peng Y, Huang M, Han X, Cao J, Qiao J, Song Z, Shi J. Development of a novel 1-octen-3-ol-loaded agar/curdlan hydrogel for inhibiting peach fruit diseases. Int J Biol Macromol 2023; 251:126411. [PMID: 37598819 DOI: 10.1016/j.ijbiomac.2023.126411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Our previous study found that 1-octen-3-ol fumigation treatment could effectively induce the resistance of peach fruit diseases. However, 1-octen-3-ol is a liquid fumigant, which is not conducive to storage and application. Herein, the gel of 1 % agar compound with 1 % curdlan was used as a novel material for covering 1-octen-3-ol. The interaction of agar and curdlan was promoted by adding 1-octen-3-ol, leading to a higher thermostability compared to single-component antibacterial gels. Moreover, 1-octen-3-ol resulted in changes in the internal structure and mechanical properties of gel to form a pore-like structure, which is beneficial to the retention and release of 1-octen-3-ol. Additionally, the 2 % agar gel containing 1-octen-3-ol had the best inhibitory effect on the mycelial growth of Monilinia fructicola and Rhizopus stolonifer in vitro, and the compound hydrogel of 1 % agar and 1 % curdlan with 1-octen-3-ol could most effectively inhibit brown rot and soft rot caused by these two pathogens in vivo. Overall, the data indicated that the novel 1-octen-3-ol-loaded agar/curdlan hydrogels could effectively retain and release 1-octen-3-ol, and induce the resistance of peach fruit diseases.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Mei Dai
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Peng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xiongde Han
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jixuan Cao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jin Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
24
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. The impact of differently structured starch gels on the gastrointestinal fate of a curcumin-containing nanoemulsion. Food Funct 2023; 14:7924-7937. [PMID: 37548382 DOI: 10.1039/d3fo01566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In this study, we focused on the in vitro gastrointestinal digestion of curcumin-nanoemulsion-loaded corn starch gels formed using starches with different amylose contents, i.e. waxy (WCS), normal (NCS) and high amylose (HACS) corn starches and their impact on the release and bioaccessibility of curcumin. Curcumin nanoemulsion (CNE) loading significantly increased the storage modulus of the WCS and NCS gels by interspersing in the gelatinized continuous phase, whereas it decreased in the HACS gel due to the formation of a weak network structure as a result of the incomplete gelatinized amylose granules. During the gastric digestion, the disintegration and emptying of the WCS + CNE gel from the stomach was the slowest compared to the other two gels. The changes in the stomach, influenced the emptying of total solids (HACS + CNE > NCS + CNE > WCS + CNE) into the gastric digesta, which further affected the rate of starch and lipid digestion during the intestinal phase. The HACS + CNE and NCS + CNE gels showed a higher and faster release of curcumin compared to the WCS + CNE gel that showed a slower and sustained release during the intestinal digestion. This study demonstrated that the oral-gastric digestion of these starch gels was more dependent on the gel structures rather than on the molecular properties of the starches. The dynamic gastric environment resulted in the formation of distinct gel structures, which significantly influenced the composition and microstructure of the emptied digesta, further affecting starch hydrolysis and curcumin bioaccessibility in the small intestine.
Collapse
Affiliation(s)
- Haroon Jamshaid Qazi
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani Road, Lahore, Punjab 54000, Pakistan
| | - Aiqian Ye
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Alejandra Acevedo-Fani
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Harjinder Singh
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
25
|
Wang Y, Liu Q, Yang Y, Qiu C, Jiao A, Jin Z. Impact of pH on pea protein-hydroxypropyl starch hydrogel based on interpenetrating network and its application in 3D-printing. Food Res Int 2023; 170:112966. [PMID: 37316054 DOI: 10.1016/j.foodres.2023.112966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Improving the mechanical and 3D printing performance of pea protein (PeaP) hydrogels contributes to the development of innovative plant-based gel products. Herein, we proposed a strategy for constructing PeaP-hydroxypropyl starch (HPS) interpenetrating network hydrogels, in which the structure, strength, and 3D printing properties of the hydrogels were regulated by changing pH. Results showed that pH significantly affected the gelation process of PeaP/HPS hydrogels. The hydrogels formed a lamellar structure at pH 3, a granule aggregation network structure at pH 5, porous structures at pH 7 and 9, and a honeycomb structure at pH 11. The strength of hydrogels formed at different pH values had the following order: pH 3 >pH 11 > pH 7 >pH 9 >pH 5. The storage modulus (G') of the hydrogel at pH 3 was up to 4149 Pa, but only 695 Pa at pH 5. Moreover, hydrogel at pH 3 had the best self-recovery of 55%. 3D printed objects from gel inks at pH 3 exhibited high structural integrity and fidelity at 60 °C. Gelling force analysis indicated hydrogen bonds were the dominant interaction within all hydrogels. Overall, this study suggested that PeaP/HPS hydrogel formed at pH 3 possessed the most excellent mechanical properties and 3D printing capabilities, which may provide insights into the development of novel PeaP-based gel food ingredients and promote the application of PeaP in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
26
|
Wang SC, Du ST, Hashmi S, Cui SM, Li L, Handschuh-Wang S, Zhou X, Stadler FJ. Understanding Gel-Powers: Exploring Rheological Marvels of Acrylamide/Sodium Alginate Double-Network Hydrogels. Molecules 2023; 28:4868. [PMID: 37375423 DOI: 10.3390/molecules28124868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the rheological properties of dual-network hydrogels based on acrylamide and sodium alginate under large deformations. The concentration of calcium ions affects the nonlinear behavior, and all gel samples exhibit strain hardening, shear thickening, and shear densification. The paper focuses on systematic variation of the alginate concentration-which serves as second network building blocks-and the Ca2+-concentration-which shows how strongly they are connected. The precursor solutions show a typical viscoelastic solution behavior depending on alginate content and pH. The gels are highly elastic solids with only relatively small viscoelastic components, i.e., their creep and creep recovery behavior are indicative of the solid state after only a very short time while the linear viscoelastic phase angles are very small. The onset of the nonlinear regime decreases significantly when closing the second network (alginate) upon adding Ca2+, while at the same time the nonlinearity parameters (Q0, I3/I1, S, T, e3/e1, and v3/v1) increase significantly. Further, the tensile properties are significantly improved by closing the alginate network by Ca2+ at intermediate concentrations.
Collapse
Affiliation(s)
- Shi-Chang Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Shu-Tong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Saud Hashmi
- Department of Polymer & Petrochemical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
| | - Shu-Ming Cui
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Ling Li
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
27
|
Yiu CCY, Liang SW, Mukhtar K, Kim W, Wang Y, Selomulya C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023; 9:gels9050366. [PMID: 37232958 DOI: 10.3390/gels9050366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes. Finally, the potential applications of plant-based emulsion gels, such as dairy and meat alternatives, condiments, baked goods, and functional foods, were discussed with a focus on sensory properties and consumer acceptance. This study found that the implementation of plant-based emulsion gel in food is promising to date despite persisting challenges. This review will provide valuable insights for researchers and industry professionals looking to understand and utilize plant-based food emulsion gels.
Collapse
Affiliation(s)
- Canice Chun-Yin Yiu
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Sophie Wenfei Liang
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
28
|
Huang L, Lin H, Bu N, Pang J, Mu R. Robust microfluidic construction of polyvinyl pyrrolidone microfibers incorporated with W/O emulsions stabilized by amphiphilic konjac glucomannan. Int J Biol Macromol 2023; 241:124563. [PMID: 37100333 DOI: 10.1016/j.ijbiomac.2023.124563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
In this work, we prepared polyvinyl pyrrolidone (PVP) microfibers incorporated water-in-oil (W/O) emulsions. The W/O emulsions were fabricated by hexadecyl konjac glucomannan (HKGM, emulsifier), corn oil (oil phase) and purple corn anthocyanins (PCAs, water phase). The structures and functions of emulsions and microfibers were characterized by confocal laser scanning (CLSM) and scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), Raman and nuclear magnetic resonance (NMR) spectroscopy. The results showed that W/O emulsions exhibited good storage stability for 30 d. Microfibers presented ordered and uniform arrays. Compared with pure PVP microfiber films, the addition of W/O emulsions with PCAs improved the water resistance (WVP from 1.28 to 0.76 g mm/m2 day kPa), mechanical strength (Elongation at break from 18.35 % to 49.83 %), antioxidation (free radical scavenging rate from 2.58 % to 16.37 %), and antibacterial activity (inhibition zone against E. coli: 27.33 mm and inhibition zone against S. aureus: 28.33 mm) of microfiber films. Results showed that microfiber film exhibited controlled release of PCAs in W/O emulsions, and about 32 % of the PCAs were released from the microfiber film after 340 min. The as-prepared microfiber films exhibited potential applications for food packaging.
Collapse
Affiliation(s)
- Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huanglong Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
29
|
Self-assembled emulsion gel based on modified chitosan and gelatin: Anti-inflammatory and improving cellular uptake of lipid-soluble actives. Int J Biol Macromol 2023; 231:123300. [PMID: 36657546 DOI: 10.1016/j.ijbiomac.2023.123300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
To obtain a green carrier for intestinal targeted delivery, an emulsion gel was designed by the self-assembly between gelatin and Pickering emulsion based on gallic acid modified-chitosan nanoparticles (GCS NPs). The emulsion gels loaded with garlic essential oil (Geo) and curcumin (Cur) were abbreviated as GOEG and GCEG, respectively. Meanwhile, the sodium alginate bead loaded with Geo (GOEGS3) and the bead loaded with Cur (GCEGS) were prepared as controls. Results demonstrated that the emulsion gels significantly improved the bioaccessibility of Geo and Cur, showing great intestinal targeting delivery properties comparable to that of sodium alginate beads. Moreover, Caco-2 cell experiments indicated that GOEG and GCEG displayed good biocompatibility and enhanced cellular uptake of Geo and Cur. The emulsion gels also exhibited excellent anti-inflammatory properties in the lipopolysaccharide-induced cell model, exhibiting great potential for clinical application. This work provides some references for the preparation of multifunctional emulsion gels with excellent delivery performance by a green method.
Collapse
|
30
|
Li X, Chen W, Hao J, Xu D. Construction of different properties single and double cross-linked binary emulsion filled gels based on rice bran oil body emulsion. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
31
|
Wang Q, Luan Y, Tang Z, Li Z, Gu C, Liu R, Ge Q, Yu H, Wu M. Consolidating the gelling performance of myofibrillar protein using a novel OSA-modified-starch-stabilized Pickering emulsion filler: Effect of starches with distinct crystalline types. Food Res Int 2023; 164:112443. [PMID: 36738008 DOI: 10.1016/j.foodres.2022.112443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Starch-stabilized Pickering emulsions were employed as a novel particulate filler in myofibrillar protein (MP)-based gels for improving the gelling characteristics. The role of emulsions prepared by native starches (NS) with distinctive crystalline types (i.e., A-type waxy corn starch, B-type potato starch, and C-type pea starch) and their OSA-modified counterparts (A-OS, B-OS, C-OS) in the gelling performance was evaluated and compared with MP-stabilized-emulsion. Compared with MP-emulsion, starch-emulsion caused substantial increases in the gelling properties, notably for OSA-starch emulsions. Herein, A-OS exhibited up to 1.26-, 5.3-, and 2.9-fold increments in storage modulus, gel strength, and water holding capacity relative to pure MP gel, respectively, higher than B-OS and C-OS. Moreover, light microscopy evinced a more compact gel network filled with smaller and uniform oil droplets when A-OS emulsions were incorporated into the gels. The addition of OSA-starch emulsions, especially A-OS emulsion, facilitated the protein conformational conversion from α-helix to β-sheet and caused a marked reduction of free sulfhydryls in the gels; yet, the chemical forces that stabilized the gels altered, where remarkable reinforcements in hydrogen bond and hydrophobic interaction were detected, in support of the construction of splendid MP gels. Hence, OSA-starch emulsions show promise as functional components in meat products.
Collapse
Affiliation(s)
- Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Luan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ziwei Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhikun Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chen Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
32
|
Hilal A, Florowska A, Wroniak M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery-A Bibliometric Review. Gels 2023; 9:68. [PMID: 36661834 PMCID: PMC9857866 DOI: 10.3390/gels9010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited. This knowledge gap provides numerous opportunities for implementing their unique properties, such as high water-holding capacity, moderated texture, compatibility with other substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the development of novel, functional food matrices. For that reason, this article includes a bibliometric analysis characterizing research trends in food protein-polysaccharide hydrogels (over the last ten years). Additionally, it characterizes the most recent developments in hydrogel induction methods and the most recent application progress of hydrogels as food matrices as carriers for the targeted delivery of bioactive compounds. Finally, this article provides a future perspective on the need to evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices that protect nutrients, including bioactive substances, throughout processing, storage, and digestion until they reach the specific targeted area of the digestive system.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | |
Collapse
|
33
|
Farooq S, Ahmad MI, Zhang Y, Zhang H. Impact of interfacial layer number and Schiff base cross-linking on the microstructure, rheological properties and digestive lipolysis of plant-derived oil bodies-based oleogels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Mozafarpour R, Koocheki A. Effect of ultrasonic pretreatment on the rheology and structure of grass pea (Lathyrus sativus L.) protein emulsion gels induced by transglutaminase. ULTRASONICS SONOCHEMISTRY 2023; 92:106278. [PMID: 36584562 PMCID: PMC9808021 DOI: 10.1016/j.ultsonch.2022.106278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 05/31/2023]
Abstract
In this study, emulsion gels were prepared by sonicated grass pea protein isolates (GPPI) at different ultrasonic amplitudes (25, 50 and 75 %) and times (5, 10 and 20 min). Formation of emulsion gels was induced by transglutaminase. Enzymatic gelation of emulsions stabilized by sonicated GPPI occurred in two stages. A relatively fast stage led to the formation of a weak gel which was followed by a slow stage that strongly reinforced the gel structure. Emulsion gels fabricated by sonicated GPPIs showed a homogeneous and uniform droplet distribution with higher elastic modulus compared to the native protein. A stiffer emulsion gel with a higher G' was formed after the protein was treated at 75 % amplitude for 10 min. After sonication of GPPI, the water holding capacity (WHC) of emulsion gels increased in accordance with the mechanical properties. Higher intermolecular cross-linking within the gel network increased the thermal stability of emulsion gels fabricated by sonicated GPPI. Although sonicated-GPPI emulsion gels clearly displayed homogenous microstructure in comparison to that made with native GPPI, the microstructures of these gels were nearly identical for all sonication amplitudes and times.
Collapse
Affiliation(s)
- Rassoul Mozafarpour
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
35
|
Jakubczyk E, Kamińska-Dwórznicka A, Kot A. The Rheological Properties and Texture of Agar Gels with Canola Oil-Effect of Mixing Rate and Addition of Lecithin. Gels 2022; 8:738. [PMID: 36421560 PMCID: PMC9689232 DOI: 10.3390/gels8110738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 07/29/2023] Open
Abstract
This study aimed to determine the effect of different mixing rates and the addition of lecithin on the rheological mechanical, and acoustic properties of agar gels with the addition of canola oil. The mixing rate of the agar-oil mixture was changed from 10,000 to 13,000 rpm. Additionally, agar gels with the addition of lecithin from 1 to 5% were prepared. The frequency sweep test was used (at 4 and 50 °C) within the linear viscoelastic region (LVR) in oscillatory measurement. The agar-oil mixture was cooled from 80 to 10 °C, enabling the obtainment of the gelling temperature. Texture profile analysis (TPA) and compression tests, as well as the acoustic emission method, were applied to analyse the texture of the gels. The syneresis and stability of gels during storage were also measure. The increase in mixing rate in the case of agar gel with canola oil causes an increase in the elastic component of materials as well hardness and gumminess. Also, samples prepared with the higher mixing rate have more uniform and stable structures, with small bubbles. The increase in the concentration of lecithin is ineffective due to the formation of gels with a weak matrix and low hardness, gumminess, and stability during storage.
Collapse
|
36
|
Improvement of extrudability and self-support of emulsion-filled starch gel for 3D printing: Increasing oil content. Carbohydr Polym 2022; 301:120293. [DOI: 10.1016/j.carbpol.2022.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
37
|
Characterization and comparative study on structural and physicochemical properties of buckwheat starch from 12 varieties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Fortification of Wheat Bread with Edible Chrysanthemum (Chrysanthemum morifolium Ramat.): Unraveling the Mechanisms of Dough Rheology and Bread Quality Changes. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|