1
|
Zhang Z, Niu J, Wang J, Zheng Q, Miao W, Lin Q, Li X, Jin Z, Qiu C, Sang S, Ji H. Advances in the preparation and application of cyclodextrin derivatives in food and the related fields. Food Res Int 2024; 195:114952. [PMID: 39277230 DOI: 10.1016/j.foodres.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Cyclodextrin (CD) derivatives have recently gained worldwide attention, which have versatile advantages and restrained the defects of parent CDs. The superior properties of CD derivatives in encapsulation, stabilization, and solubilization facilitate their application in food, biomedicine, daily chemicals, and textiles. In this review, the preparation, classification, and main benefits of CD derivatives are systematically introduced. By introducing targeted groups into the parent CD molecule, they exhibit significant improvement in their required characteristic. Besides, the important point closely related to application, the safety assessment, has also been highlighted. Most tested CD derivatives have been verified to be relatively safe in a limited dosage. Then, the applications of CD derivatives have been described in detail from the food to its related field. In food field, CD derivatives play an important role in the stability and bioavailability of bioactive compounds, control flavor release, and improve the antimicrobial and antioxidant properties of packaging materials. These advantages can also be expanded to the related field, offering innovative solutions that enhance product quality, human health, and environmental sustainability. This review highlights the broad applications and potential of CD derivatives, underscoring their role in driving advancements across multiple industries.
Collapse
Affiliation(s)
- Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingxian Niu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jilong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiaoxin Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenbo Miao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianzhu Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Hemdan M, Ragab AH, Gumaah NF, Mubarak MF. Sodium alginate-encapsulated nano-iron oxide coupled with copper-based MOFs (Cu-BTC@Alg/Fe 3O 4): Versatile composites for eco-friendly and effective elimination of Rhodamine B dye in wastewater purification. Int J Biol Macromol 2024; 274:133498. [PMID: 38944086 DOI: 10.1016/j.ijbiomac.2024.133498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
This study explores the effectiveness of Alginate-coated nano‑iron oxide combined with copper-based MOFs (Cu-BTC@Alg/Fe3O4) composites for the sustainable and efficient removal of Rhodamine B (RhB) dye from wastewater through adsorption and photocatalysis. Utilizing various characterization techniques such as FTIR, XRD, SEM, and TEM, we confirmed the optimal synthesis of this composite. The composites exhibit a significant surface area of approximately 160 m2 g-1, as revealed by BET analysis, resulting in an impressive adsorption capacity of 200 mg g-1 and a removal efficiency of 97 %. Moreover, their photocatalytic activity is highly effective, producing environmentally friendly degradation byproducts, thus underlining the sustainability of Cu-BTC@Alg/Fe3O4 composites in dye removal applications. Our investigation delves into kinetics and thermodynamics, revealing a complex adsorption mechanism influenced by both chemisorption and physisorption. Notably, the adsorption kinetics indicate equilibrium attainment within 100 min across all initial concentrations, with the pseudo-second-order kinetic model fitting the data best (R2 ≈ 0.999). Furthermore, adsorption isotherm models, including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich, elucidate the adsorption behavior, with the Temkin and Dubinin-Radushkevich models showing superior accuracy compared to the Langmuir model (R2 ≈ 0.98 and R2 ≈ 0.96, respectively). Additionally, thermodynamic analysis reveals a negative Gibbs free energy value (-6.40 kJ mol-1), indicating the spontaneity of the adsorption process, along with positive enthalpy (+24.3 kJ mol-1) and entropy (+82.06 kJ mol-1 K) values, suggesting an endothermic and disorderly process at the interface. Our comprehensive investigation provides insights into the optimal conditions for RhB adsorption onto Cu-BTC@Alg/Fe3O4 composites, highlighting their potential in wastewater treatment applications.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed H Ragab
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia.
| | - Najla F Gumaah
- Chemistry Department, Faculty of Science, Northern Border University, Saudi Arabia
| | - Mahmoud F Mubarak
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt; Core Lab Center, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor st., Nasr City, Cairo 11727, Egypt.
| |
Collapse
|
3
|
Yan X, Wang T, Yang H, Chen Y, Wang N, Sui Y, Gao G. Robust nanoparticles growth in the interior of porous sponges for efficient dye adsorption and emulsion separation. CHEMOSPHERE 2024; 357:142100. [PMID: 38657697 DOI: 10.1016/j.chemosphere.2024.142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Emulsified oils and dye contaminants already pose a huge threat to global ecosystems and human health. It is a significant research topic to develop efficient, rapid, versatile methods for emulsion separation and dye adsorption. The membrane material modified with common methods only modified the outer surface of the membrane, while the interior is hardly fully decorated. In this investigation, a solvent exchange method was used to in situ grow nanoparticles in the interior of a porous sponge. These nanoparticles were obtained with polyethyleneimine, gallic acid, and tannic acid via Michael addition and Schiff base reaction. The prepared nanoparticle-coated sponges provided efficient separation of dyes, emulsions, and complex contaminants. The separation efficiency of the dye reached 99.49%, and the separation efficiency of the emulsion was as high as 99.87% with a flux of 11140.3 L m-2 h-1. Furthermore, the maximum adsorption capacity reached 486.8 mg g-1 for cationic dyes and 182.1 mg g-1 for anionic dyes. More importantly, the nanoparticles were highly robust on the surface of the porous sponge, and the modified sponge could have long-term applications in hazardous environments. Overall, it is envisioned that the nanoparticles-modified porous sponge exhibited considerable potential for emulsion and dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaojuan Yan
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Tianyu Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Hongkun Yang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Chen
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ning Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Sui
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Guanghui Gao
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China.
| |
Collapse
|
4
|
Liu T, Li X, Wang H, Li M, Yang H, Liao Y, Tang W, Li Y, Liu F. Reconstructing Kaolinite Compounds for Remarkably Enhanced Adsorption of Congo Red. Molecules 2024; 29:2121. [PMID: 38731612 PMCID: PMC11085801 DOI: 10.3390/molecules29092121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Organic dyes are widely used in many important areas, but they also bring many issues for water pollution. To address the above issues, a reconstructed kaolinite hybrid compound (γ-AlOOH@A-Kaol) was obtained from raw kaolinite (Kaol) in this work. The product was then characterized by X-ray diffraction (XRD), Fourier-transform infrared (ATR-FTIR), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM), and the absorption properties of γ-AlOOH@A-Kaol for congo red were further studied. The results demonstrated that flower-like γ-AlOOH with nanolamellae were uniformly loaded on the surface of acid-treated Kaol with a porous structure (A-Kaol). In addition, the surface area (36.5 m2/g), pore volume (0.146 cm3/g), and pore size (13.0 nm) of γ-AlOOH@A-Kaol were different from those of A-Kaol (127.4 m2/g, 0.127 cm3/g, and 4.28 nm, respectively) and γ-AlOOH (34.1 m2/g, 0.315 cm3/g, and 21.5 nm, respectively). The unique structure could significantly enhance the sorption capacity for congo red, which could exceed 1000 mg/g. The reasons may be ascribed to the abundant groups of -OH, large specific surface area, and porous structure of γ-AlOOH@A-Kaol. This work provides an efficient route for comprehensive utilization and production of Kaol-based compound materials that could be used in the field of environmental conservation.
Collapse
Affiliation(s)
- Ting Liu
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (T.L.); (X.L.); (H.W.); (M.L.); (H.Y.); (Y.L.)
| | - Xinle Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (T.L.); (X.L.); (H.W.); (M.L.); (H.Y.); (Y.L.)
| | - Hao Wang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (T.L.); (X.L.); (H.W.); (M.L.); (H.Y.); (Y.L.)
| | - Mingyang Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (T.L.); (X.L.); (H.W.); (M.L.); (H.Y.); (Y.L.)
| | - Hua Yang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (T.L.); (X.L.); (H.W.); (M.L.); (H.Y.); (Y.L.)
| | - Yunhui Liao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (T.L.); (X.L.); (H.W.); (M.L.); (H.Y.); (Y.L.)
| | - Wufei Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (T.L.); (X.L.); (H.W.); (M.L.); (H.Y.); (Y.L.)
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Yong Li
- YongZhou Product & Commodity Quality Supervison & Inspection Institute, Yongzhou 425000, China;
| | - Fang Liu
- YongZhou Product & Commodity Quality Supervison & Inspection Institute, Yongzhou 425000, China;
| |
Collapse
|
5
|
Peng J, Xiao Q, Wang Z, Zhou F, Yu J, Chi R, Xiao C. Mechanistic investigation of Pb 2+ adsorption on biochar modified with sodium alginate composite zeolitic imidazolate framework-8. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31605-31618. [PMID: 38637484 DOI: 10.1007/s11356-024-33320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.
Collapse
Affiliation(s)
- Jun Peng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Qian Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ziwei Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China.
- Hubei Three Gorges Laboratory, Yichang, 443007, China.
| |
Collapse
|
6
|
Mi FL, Chen WY, Chen ZR, Chang IW, Wu SJ. Sequential removal of phosphate and copper(II) ions using sustainable chitosan biosorbent. Int J Biol Macromol 2024; 266:131178. [PMID: 38554905 DOI: 10.1016/j.ijbiomac.2024.131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Although adsorbents are good candidates for removing phosphorus and heavy metals from wastewater, the use of biosorbents for the sequential treatment of phosphorus and copper has not yet been studied. Porous chitosan (CS)-based biosorbents (CGBs) were developed to adsorb phytic acid (PA), a major form of organic phosphate. This first adsorbate (PA) further served as an additional ligand (P-type ligand) for the CGBs (N-type ligand) to form a complex with the second adsorbate (copper). After the adsorption of PA (the first adsorbate), the spent CGBs were recycled and used as a new adsorbent to adsorb Cu(II) ions (the second adsorbate), which was expected to have a dual coordination effect through P, N-ligand complexation with copper. The interactions and complexation between CS, PA and Cu(II) ions on the PA-adsorbed CGBs (PACGBs) were investigated by performing FTIR, XPS, XRD, and SEM-EDS analyses. The PACGBs exhibited fast and enhanced adsorption of Cu(II) ions, owing to the synergistic effect of the amino groups of CS (the original ligand, N-type) and the phosphate groups of PA (an additional ligand, P-type) on the adsorption of Cu(II) ions. This is the first time that sequential removal of phosphorus and heavy metals by biosorbents has been performed using biosorbents.
Collapse
Affiliation(s)
- Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Yi Chen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Zhi-Run Chen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - I-Wen Chang
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Shao-Jung Wu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
7
|
Liu C, Crini G, Wilson LD, Balasubramanian P, Li F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123815. [PMID: 38508365 DOI: 10.1016/j.envpol.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Grégorio Crini
- Chrono-environment, University of Franche-Comté, 25000 Besançon, France
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China.
| |
Collapse
|
8
|
Hu H, Zhao L, Yao L, He M, Lv Y, Li R. Adsorption removal of cationic dyes from wastewater using the corn straw modified with diethylenetriaminepentacetic acid ligand. J Chromatogr A 2024; 1720:464781. [PMID: 38471297 DOI: 10.1016/j.chroma.2024.464781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Taking the thiazide cationic dye methylene blue (MB), triphenylmethane cationic dye crystal violet (CV), monoazo cationic dye cationic red 46 (R-46), and polycarboxycyanine cationic dye cationic rosé FG (P-FG) as the research objects, the adsorption behaviors of a self-made corn straw modified adsorbent HQ-DTPA-I for the dyes were investigated in depth. Under optimized conditions, HQ-DTPA-I can quickly adsorb most dyes within 3 min and reach equilibrium adsorption in 15-20 min. The removal rates of HQ-DTPA-I to MB, CV, R-46 and AP-FG can reach 95.28 %, 99.78 %, 99.28 % and 98.53 %, respectively. It also has good anti-interference ability for common ions present in most actual dye wastewater. For six consecutive adsorption-desorption cycles, the adsorption performance of HQ-DTPA-I can still reach 80.17 %, 81.61 %, 90.77 % and 83.48 % of the initial adsorption capacity, indicating good recovery performance. Based on Gaussian density functional theory to calculate its surface potential energy, it is found that the adsorption mechanism of HQ-DTPA-I for the cationic dyes is mainly due to the electrostatic interaction between the carboxyl groups in ligand DTPA and amino groups in dye molecules.
Collapse
Affiliation(s)
- Hongbin Hu
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Lang Zhao
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Lu Yao
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Min He
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Yuwei Lv
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Rong Li
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
9
|
Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, Govarthanan M. β-cyclodextrin polymer composites for the removal of pharmaceutical substances, endocrine disruptor chemicals, and dyes from aqueous solution- A review of recent trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119830. [PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
Collapse
Affiliation(s)
- M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
10
|
Li X, Li K. Multifunctional pH-responsive carbon-based hydrogel adsorbent for ultrahigh capture of anionic and cationic dyes in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131045. [PMID: 36827726 DOI: 10.1016/j.jhazmat.2023.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
An environmental friendly hydrogel adsorbent (DEC@GEL) was successfully manufactured by a facile free-radical polymerization method. Multiple characterizations demonstrated that the adsorbent was rich in functional groups and porous structures. The batch and multisystem adsorption experiments were applied to systematically investigate the adsorption properties of methylene blue (MB), malachite green (MG), indigo sodium dimethyl sulfonate (IC) and tartrazine (TR) in wastewater. The experimental results proved that the kinetic and isotherms of four dyes were more consistent with the pseudo-second-order and Langmuir model, respectively. Notably, the maximum adsorption capacities of MB, MG, TR and IC at 318 K were 2186.85, 2302.53, 1766.13 and 2301.75 mg/g, respectively, which were higher than many adsorbents that had been reported. Recycle experiment demonstrated the high reusability of the DEC@GEL. The selectivity and adsorption column experiments proved that DEC@GEL was not only widely applicable to various dyes, but also provided a positive start for the industrial application. Moreover, the simulated adsorption experiments further demonstrate that DEC@GEL had the prospect of application in real industrial conditions. Finally, four adsorption mechanisms had been proposed. Various adsorption experiments had shown that DEC@GEL was not only efficient in processing dyes, but also had great potential for practical industrial applications.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610500, PR China.
| |
Collapse
|
11
|
Liang X, Bai G, Niu CH, Wei Z, Lei ZG, Chen K, Guo X. High inhabitation activity of CMCS/Phytic acid/Zn 2+ nanoparticles via flash nanoprecipitation (FNP) for bacterial and fungal infections. Int J Biol Macromol 2023; 242:124747. [PMID: 37150368 DOI: 10.1016/j.ijbiomac.2023.124747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Plant diseases prompted by fungi and bacteria are one of the most serious threats to global crop production and food security. The destruction of these infections posed a major challenge to plant protection by chemical control. Herein, we develop CMCS/PA/Zn2+ nanoparticles (NPs) using carboxymethyl chitosan (CMCS), phytic acid (PA) and metal ions (Zn2+) via flash nanoprecipitation (FNP) strategy. Metal complexes of PA with specified antibacterial and antifungal activities are expected to hold the potential and play a significant role in antimicrobial treatment. The size and size distribution of NPs was confirmed through Dynamic and Static Light Scatterer (DSLS). In acidic-infection microenvironment, the CMCS/PA/Zn2+ NPs can disintegrate and release Zn2+ in situ thus stimulated the corresponding antimicrobial activity. These CMCS/PA/Zn2+ NPs showed outstanding antibacterial efficacy (98 %) against S. aureus and E. coli bacteria in vitro, as well as an impressive antifungal efficacy of 98 % and 81 % against R. solani and B. cinerea at 50 μg/mL respectively. This study contributes a prospective idea to the development of organic-inorganic hybrid NPs as environmentally-friendly and safe agricultural antimicrobials.
Collapse
Affiliation(s)
- Xuexue Liang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Ge Bai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Chun Hua Niu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhi Gang Lei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China; School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Nobakht A, Jafari D, Esfandyari M. New insights on the adsorption of phenol red dyes from synthetic wastewater using activated carbon/Fe 2(MoO 4) 3. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:574. [PMID: 37060479 DOI: 10.1007/s10661-023-11178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Water shortage is considered as one of the main challenges of human life. A practical solution to this problem is the wastewater treatment. The removal of dyes from wastewaters has received considerable critical attention by researchers due to their high volume and toxicity. In the current research, the adsorption of phenol red dyes from synthetic wastewater using the activated carbon produced from Mespilus germanica modified with Fe2(MoO4)3 was studied. The proposed adsorbent was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX)/Map, Brunauer-Emmett-Teller (BET), and Raman techniques. The optimal adsorption operating parameters including pH, stirring rate, temperature, dosage of adsorbent, dye initial concentration, and contact time were 3, 500 rpm, 25 °C, 1 g/L, 10 mg/L, and 60 min, respectively. Furthermore, the successful regeneration of the adsorbent for 3 times, using methanol solution as a regeneration medium, denoted its capability in performing adsorption and desorption processes. Equilibrium studies showed that the adsorption of phenol red dyes by activated carbon (AC)/Fe2(MoO4)3 was desirable and physical and the experimental data were fitted well by the Freundlich model. In addition, the kinetic behavior of the current adsorption process was well described by the pseudo-second-order kinetic model, while thermodynamic calculations showed that the process was exothermic and spontaneous.
Collapse
Affiliation(s)
- Alireza Nobakht
- Department of Chemical Engineering, Dashtestan Branch, Islamic Azad University, Bushehr, Iran
| | - Dariush Jafari
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Morteza Esfandyari
- Department of Chemical Engineering, University of Bojnord, Bojnord, Iran
| |
Collapse
|
13
|
Zhao Z, Zhou H, Han X, Han L, Xu Z, Wang P. Rapid, Highly-Efficient and Selective Removal of Anionic and Cationic Dyes from Wastewater Using Hollow Polyelectrolyte Microcapsules. Molecules 2023; 28:molecules28073010. [PMID: 37049773 PMCID: PMC10095712 DOI: 10.3390/molecules28073010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, poly (allylamine hydrochloride) (PAH)/ poly (styrene sulfonic acid) sodium salt (PSS) microcapsules of (PAH/PSS)2PAH (P2P MCs) and (PAH/PSS)2 (P2 MCs) were obtained by a layer-by-layer method. The P2 MCs show high adsorption capacity for Rhodamine B (642.26 mg/g) and methylene blue (909.25 mg/g), with an extremely low equilibrium adsorption time (~20 min). The P2P MCs exhibited high adsorption capacities of reactive orange K-G (ROKG) and direct yellow 5G (DY5G) which were 404.79 and 451.56 mg/g. Adsorption processes of all dyes onto microcapsules were best described by the Langmuir isotherm model and a pseudo-second-order kinetic model. In addition, the P2P MCs loaded with reactive dyes (P2P–ROKG), could further adsorb rhodamine B (RhB) dye, and P2 MCs that had adsorbed cationic MB dyes could also be used for secondary adsorption treatment of direct dye waste-water, respectively. The present work confirmed that P2P and P2 MCs were expected to become an excellent adsorbent in the water treatment industry.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Hongbing Zhou
- Zhejiang Huaguang Automotive Interior Decoration Co., Ltd., Rui’an 325200, China
| | - Xu Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| |
Collapse
|
14
|
Kang Y, Liang Y, Sun H, Dan J, Zhang Q, Su Z, Wang J, Zhang W. Selective Enrichment of Gram-positive Bacteria from Apple Juice by Magnetic Fe3O4 Nanoparticles Modified with Phytic Acid. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Araújo MEB, Silva VC, Fernandes JV, Cartaxo JM, Rodrigues AM, Menezes RR, de Araújo Neves G. Innovative adsorbents based on bentonite mining waste for removal of cationic dyes from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90446-90462. [PMID: 35871192 DOI: 10.1007/s11356-022-22083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Waste rock from bentonite mining (WRBM) was evaluated as potential adsorbents for removing crystal violet (CV) and methylene blue (MB) cationic dyes from contaminated water. The waste samples (AM01, AM02, and AM03) were collected from different locations of the bentonite mine and characterized through X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy, N2 adsorption/desorption, and cation exchange capacity. The adsorption efficiency of CV and MB dyes was investigated through the effect of initial concentration, contact time, pH, the dosage of adsorbent, and temperature. Sample AM02 showed the largest surface area (69.13 m2/g) and the best adsorptive performance for both dyes, with removal more significant than 90%. The adsorption of CV and MB in the waste followed the Langmuir isothermal model. Samples AM01 and AM02 followed the pseudo-second-order (PSO) kinetic model, while AM03 better fitted the Elovich kinetic model. The enthalpy (ΔH), entropy (ΔS), and Gibbs energy (ΔG) were evaluated as adsorption parameters. The process of adsorption of CV and MB dyes in the waste was predominantly endothermic and occurred spontaneously. WRBM samples proved to be a promising candidate for removing cationic dyes present in water.
Collapse
Affiliation(s)
- Maria Eduarda Barbosa Araújo
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Vanderlane Cavalcanti Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Jucielle Veras Fernandes
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Juliana Melo Cartaxo
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| | - Alisson Mendes Rodrigues
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil.
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| |
Collapse
|
16
|
Superhydrophilic microfibrous adsorbent with broad-spectrum binding affinity to effectively remove diverse pollutants from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Atoufi Z, Cinar Ciftci G, Reid MS, Larsson PA, Wågberg L. Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity. Biomacromolecules 2022; 23:4934-4947. [DOI: 10.1021/acs.biomac.2c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhaleh Atoufi
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Goksu Cinar Ciftci
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Michael S. Reid
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Per A. Larsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, SE-100 44Stockholm, Sweden
| |
Collapse
|
18
|
Ndlovu LN, Malatjie KI, Donga C, Mishra AK, Nxumalo EN, Mishra SB. Catalytic degradation of methyl orange using beta cyclodextrin modified polyvinylidene fluoride mixed matrix membranes imbedded with in‐situ generated palladium nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.53270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lloyd N. Ndlovu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Kgolofelo I. Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Cabangani Donga
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Ajay K. Mishra
- College of Pharmaceutical and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Academy of Nanotechnology and Wastewater Innovations Johannesburg South Africa
- Department of Chemistry Durban University of Technology Durban South Africa
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Shivani B. Mishra
- College of Pharmaceutical and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Academy of Nanotechnology and Wastewater Innovations Johannesburg South Africa
| |
Collapse
|
19
|
Xu Y, Rashwan AK, Osman AI, Abd El-Monaem EM, Elgarahy AM, Eltaweil AS, Omar M, Li Y, Mehanni AHE, Chen W, Rooney DW. Synthesis and potential applications of cyclodextrin-based metal-organic frameworks: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 21:447-477. [PMID: 36161092 PMCID: PMC9484721 DOI: 10.1007/s10311-022-01509-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 μm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, 83523 Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| | | | - Ahmed M. Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mirna Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yuting Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang China
| | - Abul-Hamd E. Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, 82524 Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
20
|
Foroutan R, Peighambardoust SJ, Boffito DC, Ramavandi B. Sono-Photocatalytic Activity of Cloisite 30B/ZnO/Ag 2O Nanocomposite for the Simultaneous Degradation of Crystal Violet and Methylene Blue Dyes in Aqueous Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183103. [PMID: 36144892 PMCID: PMC9501628 DOI: 10.3390/nano12183103] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 05/02/2023]
Abstract
A new nanocomposite based on Cloisite 30B clay modified with ZnO and Ag2O nanoparticles (Cloisite 30B/ZnO/Ag2O) was synthesized as an effective catalyst in the sono-photocatalytic process of crystal violet (CV) and methylene blue (MB) dyes simultaneously. The characteristics and catalytic activity of Cloisite 30B/ZnO/Ag2O nanocomposite were investigated under different conditions. The specific active surface for Cloisite 30B/ZnO/Ag2O nanocomposite was 18.29 m2/g. Additionally, the catalytic activity showed that Cloisite 30B/ZnO/Ag2O nanocomposite (CV: 99.21%, MB: 98.43%) compared to Cloisite 30B/Ag2O (CV: 85.38%, MB: 83.62%) and Ag2O (CV: 68.21%, MB: 66.41%) has more catalytic activity. The catalytic activity of Cloisite 30B/ZnO/Ag2O using the sono-photocatalytic process had the maximum efficiency (CV: 99.21%, MB: 98.43%) at pH 8, time of 50 min, amount of 40 mM H2O2, catalyst dose of 0.5 g/L, and the concentration of 'CV + MB' of 5 mg/L. The catalyst can be reused in the sono-photocatalytic process for up to six steps. According to the results, •OH and h+ were effective in the degradation of the desired dyes using the desired method. Data followed the pseudo-first-order kinetic model. The method used in this research is an efficient and promising method to remove dyes from wastewater.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Seyed Jamaleddin Peighambardoust
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Monteral, Monteral, QC H3C 3A7, Canada
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
- Correspondence: (S.J.P.); (D.C.B.); (B.R.)
| |
Collapse
|
21
|
Syeda SEZ, Nowacka D, Khan MS, Skwierawska AM. Recent Advancements in Cyclodextrin-Based Adsorbents for the Removal of Hazardous Pollutants from Waters. Polymers (Basel) 2022; 14:2341. [PMID: 35745921 PMCID: PMC9228831 DOI: 10.3390/polym14122341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Water is an essential substance for the survival on Earth of all living organisms. However, population growth has disturbed the natural phenomenon of living, due to industrial growth to meet ever expanding demands, and, hence, an exponential increase in environmental pollution has been reported in the last few decades. Moreover, water pollution has drawn major attention for its adverse effects on human health and the ecosystem. Various techniques have been used to treat wastewater, including biofiltration, activated sludge, membrane filtration, active oxidation process and adsorption. Among the mentioned, the last method is becoming very popular. Moreover, among the sorbents, those based on cyclodextrin have gained worldwide attention due to their excellent properties. This review article overviewed recent contributions related to the synthesis of Cyclodextrin (CD)-based adsorbents to treat wastewater, and their applications, especially for the removal of heavy metals, dyes, and organic pollutants (pharmaceuticals and endocrine disruptor chemicals). Furthermore, new adsorption trends and trials related to CD-based materials are also discussed regarding their regenerative potential. Finally, this review could be an inspiration for new research and could also anticipate future directions and challenges associated with CD-based adsorbents.
Collapse
Affiliation(s)
- Shan E. Zehra Syeda
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Muhammad Shahzeb Khan
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|