1
|
Lin Z, Nie F, Cao R, He W, Xu J, Guo Y. Lentinan-based pH-responsive nanoparticles achieve the combination therapy of tumors. Int J Biol Macromol 2024; 279:135300. [PMID: 39236942 DOI: 10.1016/j.ijbiomac.2024.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
2
|
Dong W, Yang H, Liu M, Mei L, Han J. Wound microenvironment-responsive peptide hydrogel with multifunctionalities for accelerating wound healing. J Pept Sci 2024; 30:e3595. [PMID: 38494339 DOI: 10.1002/psc.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
The fabrication of wound microenvironment-responsive peptide hydrogels with hemostatic ability, antibacterial activity, and wound healing potential remains a challenge. Herein, we constructed a multifunctional dressing by inducing the self-assembly of a peptide (Pep-1) and water-soluble new methylene blue (NMB) through electrostatic interaction. The self-assembly mechanism was demonstrated using a combination of transmission electron microscopy, circular dichroism spectrum, fluorescence spectrum, Zeta potential, and rheological analysis. The Pep-1/NMB hydrogel also exhibited a faster drug release rate in wound acidic environment. Furthermore, when Pep-1/NMB was exposed to a 635 nm laser, its antibacterial ratios increased sharply to 95.3%, indicating remarkably improved antibacterial effects. The findings from the blood coagulation and hemostasis assay indicated that Pep-1/NMB effectively enhanced the speed of blood clotting in vitro and efficiently controlled hemorrhage in a mouse liver hemorrhage model. Meanwhile, hemolytic and cytotoxicity evaluation revealed that the hydrogel had excellent hemocompatibility and cytocompatibility. Finally, the findings from the wound healing studies and H&E staining indicated that the Pep-1/NMB hydrogel had a significant impact on cell migration and wound repair. The results indicated that wound microenvironment-responsive Pep-1/NMB hydrogel had significant potential as a highly effective wound dressing platform, offering rapid hemostasis, antibacterial, and wound healing acceleration properties.
Collapse
Affiliation(s)
- Weimiao Dong
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Haihong Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Leixia Mei
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Jia Z, Chen L, Gu D, Li X, Wen T, Li W. Lentinan-loaded GelMA hydrogel accelerates diabetic wound healing through enhanced angiogenesis and immune microenvironment modulation. Int J Biol Macromol 2024; 264:130716. [PMID: 38458275 DOI: 10.1016/j.ijbiomac.2024.130716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Diabetic wound healing is a substantial clinical challenge, characterized by delayed angiogenesis and unresolved inflammation. Lentinan, a polysaccharide extracted from shiitake mushrooms, has the potential to regulate both macrophage polarization and angiogenesis, though this aspect remains inadequately explored. To facilitate lentinan's clinical utility, we have developed a GelMA hydrogel encapsulated with lentinan (10 μM), offering a controlled release mechanism for sustained lentinan delivery at the wound site. Application of the lentinan-encapsulated delivery system topically significantly expedites wound closure compared to control groups. Furthermore, histological examination demonstrates enhanced neovascularization and reduced inflammation in lentinan-treated wounds, as evidenced by increased M2 macrophage infiltration. Moreover, our results indicated that lentinan-induced AMPK activation promotes DAF16 expression, enhancing the resistance of macrophages and HUVECs to oxidative stress in high-glucose environments, thereby promoting M2 macrophage polarization and angiogenesis. All these findings underscore lentinan's capacity to modulate macrophage polarization and angiogenesis via the AMPK/DAF16 pathway, ultimately facilitating the healing of diabetic wounds.
Collapse
Affiliation(s)
- Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101100, China.
| | - Lei Chen
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Dongqiang Gu
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xingxuan Li
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101100, China
| | - Tianlin Wen
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101100, China
| | - Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
4
|
Xu C, Wang F, Guan S, Wang L. β-Glucans obtained from fungus for wound healing: A review. Carbohydr Polym 2024; 327:121662. [PMID: 38171680 DOI: 10.1016/j.carbpol.2023.121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The cell surface of fungus contains a large number of β-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal β-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal β-glucans have been investigated in animals and clinical trials. Studies have proved that fungal β-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal β-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of β-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal β-glucans with wound healing ability are summarized. Researches about fungal β-glucan-containing biomaterials and structurally modified β-glucans for wound healing are also involved.
Collapse
Affiliation(s)
- Chunhua Xu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Fengxia Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China.
| |
Collapse
|
5
|
Yang B, Tang B, Wang Z, Feng F, Wang G, Zhao Z, Xue Z, Li J, Chen W. Solution blow spun bilayer chitosan/polylactic acid nanofibrous patch with antibacterial and anti-inflammatory properties for accelerating acne healing. Carbohydr Polym 2024; 326:121618. [PMID: 38142098 DOI: 10.1016/j.carbpol.2023.121618] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
The quercetin (QC) loaded chitosan (CS) nanofibrous patch (CSQC) was designed and fabricated successfully by solution blow spinning (SBS). And it was employed to explore a functional double-layer nanofibrous patch (CSQC/PLA) with polylactic acid (PLA) for overcoming the resistance of acne-causing bacteria to antibiotics and local cutaneous irritation. The nanofibrous patch possessed a fluffy bilayer structure with good air permeability, which may be befitted from the SBS method. The 10 % QC loaded CSQC0.10/PLA had sustained release ability of QC for 24 h. A high free radical clearance rate (91.18 ± 2.26 %) and robust antibacterial activity against P. acnes (94.4 %) were achieved for CSQC0.10/PLA with excellent biocompatibility. Meanwhile, E. coli and S. aureus were also suppressed with 99.4 % and 99.2 %, respectively. Moreover, the expression of pro-inflammatory cytokines (IL-6 and TNF-α) was significantly reduced, conducive to acne healing. Therefore, the CSQC0.10/PLA bilayer nanofibrous patch designed here may shed some light on developing multifunctional materials for treating acne infectious wounds.
Collapse
Affiliation(s)
- Bingjie Yang
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Bangli Tang
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Zunyuan Wang
- Qingdao Xinwei Textile Development Co., Ltd, Qingdao 266071, China
| | - Fan Feng
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Guoxin Wang
- Qingdao Xinwei Textile Development Co., Ltd, Qingdao 266071, China
| | - Zhihui Zhao
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Zheng Xue
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Jiwei Li
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China.
| | - Weichao Chen
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Latiyan S, Kumar TSS, Doble M. Functionally multifaceted alginate/curdlan/agarose-based bilayer fibro-porous dressings for addressing full-thickness diabetic wounds. BIOMATERIALS ADVANCES 2024; 157:213757. [PMID: 38198999 DOI: 10.1016/j.bioadv.2023.213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Full-thickness diabetic wounds are chronic injuries characterized by bleeding, excessive exude, and prolonged inflammation. Single-layer dressings fail to address their disturbed pathophysiology. Therefore, bilayer dressings with structural and compositional differences in each layer have gained attention. We hypothesized that natural polymer (alginate, curdlan, and agarose) based bilayer dressings with inherent healing properties could effectively resolve these issues. Hence, bilayer dressings were fabricated by electrospinning curdlan/agarose/ polyvinyl alcohol blend (top layer) on an alginate/agarose/polyvinyl alcohol-based lyophilized porous (bottom) layer. Ciprofloxacin was incorporated in both layers as a potential antibacterial drug. The bilayer dressing exhibited high swelling (~1300 %), biocompatibility (>90 % with NIH 3T3 and L929 mouse fibroblasts), and hemocompatibility (hemolysis <5 %). In vitro, scratch assay revealed a faster wound closure (~ 95-100 %) than control. Inhibition zone assay revealed antibacterial activity against Staphylococcus aureus and Escherichia coli. Real-time (in vitro) gene expression experiments performed using human THP-1 macrophages exhibited a significant increase in anti-inflammatory cytokines (4.51 fold in IL-10) and a decrease in pro-inflammatory cytokines (1.42 fold in IL-6) in comparison to lipopolysaccharide. Thus, fabricated dressings with high swelling, hemostatic, immunomodulatory, and antibacterial characteristics can serve as potential multifunctional and sustainable templates for healing full-thickness diabetic wounds.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Cariology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
7
|
Guo Y, Li Y, Fan R, Liu A, Chen Y, Zhong H, Liu Y, Chen H, Guo Z, Liu Z. Silver@Prussian Blue Core-Satellite Nanostructures as Multimetal Ions Switch for Potent Zero-Background SERS Bioimaging-Guided Chronic Wound Healing. NANO LETTERS 2023; 23:8761-8769. [PMID: 37695577 DOI: 10.1021/acs.nanolett.3c02857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Metal-organic framework-based metal ion therapy has attracted increasing attention to promote the cascade wound-healing process. However, multimetal ion synergistic administration and accurately controlled ion release are still the challenges. Herein, an aptamer-functionalized silver@cupriferous Prussian blue (ACPA) is established as a metal-based theranostic nanoagent for a chronic nonhealing diabetic wound treatment. Prussian blue offers a programmable nanoplatform to formulate metal ion prescriptions, achieving cooperative wound healing. Silver, copper, and iron ions are released from ACPA controlled by the near-infrared-triggered mild hyperthermia and then synergistically participate in antipathogen, cell migration, and revascularization. ACPA also demonstrates a unique core-satellite nanostructure which enables it with improved surface-enhanced Raman scattering (SERS) capability as potent bacteria-targeted Raman-silent nanoprobe to monitor the residual bacteria during wound healing with nearly zero background. The theranostic feature of ACPA allows high-performance SERS imaging-guided chronic wound healing in infectious diabetic skin and keratitis.
Collapse
Affiliation(s)
- Yanxian Guo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yang Li
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ranran Fan
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ao Liu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yiqiao Chen
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huiqing Zhong
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ye Liu
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Haolin Chen
- Department of Anesthesiology, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou 510010, China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhiming Liu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Latiyan S, Kumar TSS, Doble M, Kennedy JF. Perspectives of nanofibrous wound dressings based on glucans and galactans - A review. Int J Biol Macromol 2023:125358. [PMID: 37330091 DOI: 10.1016/j.ijbiomac.2023.125358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Wound healing is a complex and dynamic process that needs an appropriate environment to overcome infection and inflammation to progress well. Wounds lead to morbidity, mortality, and a significant economic burden, often due to the non-availability of suitable treatments. Hence, this field has lured the attention of researchers and pharmaceutical industries for decades. As a result, the global wound care market is expected to be 27.8 billion USD by 2026 from 19.3 billion USD in 2021, at a compound annual growth rate (CAGR) of 7.6 %. Wound dressings have emerged as an effective treatment to maintain moisture, protect from pathogens, and impede wound healing. However, synthetic polymer-based dressings fail to comprehensively address optimal and quick regeneration requirements. Natural polymers like glucan and galactan-based carbohydrate dressings have received much attention due to their inherent biocompatibility, biodegradability, inexpensiveness, and natural abundance. Also, nanofibrous mesh supports better proliferation and migration of fibroblasts because of their large surface area and similarity to the extracellular matrix (ECM). Thus, nanostructured dressings derived from glucans and galactans (i.e., chitosan, agar/agarose, pullulan, curdlan, carrageenan, etc.) can overcome the limitations associated with traditional wound dressings. However, they require further development pertaining to the wireless determination of wound bed status and its clinical assessment. The present review intends to provide insight into such carbohydrate-based nanofibrous dressings and their prospects, along with some clinical case studies.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - John F Kennedy
- Chembiotech Labs, Institute of Science and Technology, Kyrewood House, Tenbury Wells WR158FF, UK
| |
Collapse
|
9
|
Zhou Q, Zhou X, Mo Z, Zeng Z, Wang Z, Cai Z, Luo L, Ding Q, Li H, Tang S. A PEG-CMC-THB-PRTM hydrogel with antibacterial and hemostatic properties for promoting wound healing. Int J Biol Macromol 2022; 224:370-379. [DOI: 10.1016/j.ijbiomac.2022.10.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
10
|
Qiu M, Li B, Geng D, Xiang Q, Xin Y, Ding Q, Tang S. Aminated β-Glucan with immunostimulating activities and collagen composite sponge for wound repair. Int J Biol Macromol 2022; 221:193-203. [PMID: 36063897 DOI: 10.1016/j.ijbiomac.2022.08.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
Immunostimulating activities of yeast β(1 → 3)-D-Glucan (β-Glucan) mainly depended on its structures. However, due to the tight triple helix structure of β-Glucan, its immunostimulating activity is greatly weakened. Therefore, in order to partially unwind the tight triple helix structure of β-glucan and improve its solubility in the medium, we modified it by amination in this study (A-Glu). The results showed that A-Glu could stimulate Raw264.7 macrophages and significantly enhance its TNF-α, IL-6, and IL-10 cytokine expression levels in vitro. A-Glu could also induce a shift of M0 Raw264.7 toward M1, and M2 toward M1. To expand the application of A-Glu in wound repair, the composite sponge consisting of A-Glu and type I collagen via the formation of a stable polyion complex (PIC) was developed. Moreover, the composite sponge could accelerate wound repair significantly. These results reveal that soluble A-Glu as an immunostimulating agent has potential applications in biomedicine.
Collapse
Affiliation(s)
- Minqi Qiu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bing Li
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dezhi Geng
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Yanjiao Xin
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Qiang Ding
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|