1
|
Bu P, Peng R, Zhang J, He Z, Gou S, Liu X, Qiu X, Zhou B, Meng W, Fu H, Zhu H, Gao B, Serda M, Li F, Feng Q, Cai K. A One-Stone-Two-Birds Strategy for Intervertebral Disc Repair: Constructing a Reductive Chelation Hydrogel to Mitigate Oxidative Stress and Promote Disc Matrix Reconstruction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411290. [PMID: 39713901 DOI: 10.1002/adma.202411290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/16/2024] [Indexed: 12/24/2024]
Abstract
Intervertebral disc degeneration (IVDD) is characterized by fibrosis of nucleus pulposus (NP) cells and accelerated surrounding extracellular matrix catabolism. Bioactive hydrogels have shown significant potential in regulating cellular functions and tissue homeostasis. In this work, a dynamic hydrogel (HA-NCSN/Cu) is designed via the reductive chelation of hyaluronic acid grafted with thiourea (HA-NCSN) and Cu2+. The reductivity of the grafted thiourea groups of HA-NCSN can quickly reduce part of the chelated Cu2+ to Cu+. Therefore, during the gelation process, the color of hydrogel become dark immediately, which endowed hydrogel with remarkable photothermal effect. The abundant thiourea groups inside hydrogel can effectively scavenge reactive oxygen species to mitigate the inflammatory stress of NP cells. RNA sequencing analysis further reveals that glutathione signaling pathway is significantly altered. Meanwhile, mild photothermal therapy could activate the TGF-β/Smad pathway in NP cells, promoting the expression and secretion of Aggrecan and Collagen II. Ultimately, the combined modulation of inflammation alleviation and matrix regeneration achieves the restoration of the structure and function of the damaged intervertebral disc, which is also strongly demonstrated by the in vivo animal experiments. All of these results demonstrate the great potential of the dynamic HA-NCSN/Cu hydrogel in IVDD treatment.
Collapse
Affiliation(s)
- Pengzhen Bu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Jiaming Zhang
- Clinical Innovation and Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China
| | - Zhiyi He
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Shuangquan Gou
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuezhe Liu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xingan Qiu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bikun Zhou
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Weilin Meng
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Huixia Fu
- Center of Quantum Materials and Devices and College of Physics, Chongqing University, Chongqing, 401331, China
| | - Haiyan Zhu
- Center of Quantum Materials and Devices and College of Physics, Chongqing University, Chongqing, 401331, China
| | - Bo Gao
- Department of Orthopaedic Surgery, Xijing Hospital, The Airforce Medical University, Xi'an, Shaanxi, 710032, China
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Qian Feng
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Hohnsen J, Rryci L, Obretenova D, Friedel J, Jouchaghani S, Klein A. Functionalizing Thiosemicarbazones for Covalent Conjugation. Molecules 2024; 29:3680. [PMID: 39125087 PMCID: PMC11314635 DOI: 10.3390/molecules29153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Thiosemicarbazones (TSCs) with their modular character (thiosemicarbazides + carbonyl compound) allow broad variation of up to four substituents on the main R1R2C=N(1)-NH-C(S)-N(4)R3R4 core and are thus interesting tools for the formation of conjugates or the functionalization of nanoparticles (NPs). In this work, di-2-pyridyl ketone was introduced for the coordination of metals and 9-anthraldehyde for luminescence as R1 and R2 to TSCs. R3 and R4 substituents were varied for the formation of conjugates. Amino acids were introduced at the N4 position to produce [R1R2TSC-spacer-amino acid] conjugates. Further, functions such as phosphonic acid (R-P(O)(OH)2), D-glucose, o-hydroquinone, OH, and thiol (SH) were introduced at the N4 position producing [R1R2TSC-spacer-anchor group] conjugates for direct NP anchoring. Phenyl, cyclohexyl, benzyl, ethyl and methyl were used as spacer units. Both phenyl phosphonic acid TSC derivatives were bound on TiO2 NPs as a first example of direct NP anchoring. [R1R2TSC-spacer-end group] conjugates including OH, S-Bn (Bn = benzyl), NH-Boc (Boc = tert-butyloxycarbonyl), COOtBu, C≡CH, or N3 end groups were synthesized for potential covalent binding to functional molecules or functionalized NPs through amide, ester, or triazole functions. The synthesis of the thiosemicarbazides H2NNH-C(S)-NR3R4 starting from amines, including amino acids, SCCl2 or CS2, and hydrazine and their condensation with dipyridyl ketone and anthraldehyde led to 34 new TSC derivatives. They were synthesized in up to six steps with overall yields ranging from 10 to 85% and were characterized by a combination of nuclear magnetic resonance spectroscopy and mass spectrometry. UV-vis absorption and photoluminescence spectroscopy allowed us to easily trace the dipyridyl imine and anthracene chromophores.
Collapse
Affiliation(s)
| | | | | | | | | | - Axel Klein
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute for Inorganic and Materials Chemistry, Greinstraße 6, 50939 Koeln, Germany; (J.H.); (L.R.); (D.O.); (J.F.); (S.J.)
| |
Collapse
|
3
|
Dong X, Sun Q, Shi X, Yin Z, Zeng B, Huang Z, Li X. Co-modification of engineered cellulose surfaces using antibacterial copper-thiosemicarbazone complexes and flame retardants. SURFACES AND INTERFACES 2024; 51:104688. [DOI: 10.1016/j.surfin.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
4
|
Zhao Z, Wang J, Yuan H, Xu J, Gao H, Nie Y. Preparation of Antibacterial Biobased Fibers by Triaxial Microfluidic Spinning Technology Using Ionic Liquids as the Solvents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18063-18074. [PMID: 38537174 DOI: 10.1021/acsami.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Bacterial infections have become a serious threat to public health. The utilization of antibacterial textiles offers an effective way to combat bacterial infections at the source, instead of relying solely on antibiotic consumption. Herein, efficient and durable antibacterial fibers based on quercetin and cellulose were prepared by a triaxial microfluidic spinning technology using ionic liquids (ILs) as the solvents. It was indicated that the structure and properties of the antibacterial fibers were affected by the type of IL and the flow rates during the triaxial microfluidic spinning process. Quercetin regenerated from [Emim]Ac underwent structural transformation and obtained an increased water solubility, while quercetin regenerated from [Emim]DEP remained unchanged, which was proven by FI-IR, XRD, and UV analyses. Furthermore, antibacterial fibers regenerated from [Emim]Ac exhibited the highest antibacterial activity of 96.9% against S. aureus, achieved by reducing the inner-to-outer flow rate ratio to 0 and concentrating quercetin at the center of fibers. On the other hand, when [Emim]DEP was used as the solvent, balancing the inner-to-outer flow rate ratio to concentrate quercetin in the middle layer of the fiber was optimal for achieving the best antibacterial activity of 93.3% because it promised both the higher encapsulation efficiency and release rate. Computational fluid dynamics (CFD) mathematically predicted the solvent exchange process during triaxial spinning, explaining the influence of IL types and flow rates on quercetin distribution and encapsulation efficiency. It was indicated that optimizing the distribution of antibacterial agents within the fibers can fully unleash its antibacterial potential while preserving the mechanical properties of the fiber. Therefore, the proposed simple triaxial spinning strategy provides valuable insights into the design of biomedical materials.
Collapse
Affiliation(s)
- Zhimin Zhao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanmeng Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xu
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| |
Collapse
|
5
|
Fabra D, Amariei G, Ruiz-Camino D, Matesanz AI, Rosal R, Quiroga AG, Horcajada P, Hidalgo T. Proving the Antimicrobial Therapeutic Activity on a New Copper-Thiosemicarbazone Complex. Mol Pharm 2024; 21:1987-1997. [PMID: 38507593 DOI: 10.1021/acs.molpharmaceut.3c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The misuse and overdose of antimicrobial medicines are fostering the emergence of novel drug-resistant pathogens, providing negative repercussions not only on the global healthcare system due to the rise of long-term or chronic patients and inefficient therapies but also on the world trade, productivity, and, in short, to the global economic growth. In view of these scenarios, novel action plans to constrain this antibacterial resistance are needed. Thus, given the proven antiproliferative tumoral and microbial features of thiosemicarbazone (TSCN) ligands, we have here synthesized a novel effective antibacterial copper-thiosemicarbazone complex, demonstrating both its solubility profile and complex stability under physiological conditions, along with their safety and antibacterial activity in contact with human cellular nature and two most predominant bacterial strains, respectively. A significant growth inhibition (17% after 20 h) is evidenced over time, paving the way toward an effective antibacterial therapy based on these copper-TSCN complexes.
Collapse
Affiliation(s)
- David Fabra
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Daniel Ruiz-Camino
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana I Matesanz
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Adoracion G Quiroga
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramon de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramon de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|