1
|
Baretta R, Gabrielli V, Missale E, Badocco D, Speranza G, Pantano MF, Ferrarini A, Frasconi M. Mechanically Adaptive Metal-Coordinated Electrogel Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48280-48292. [PMID: 39186474 DOI: 10.1021/acsami.4c09740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Achieving specific mechanical properties of hydrogels, especially when used as thin films, can be crucial in diverse applications, including tissue engineering and bioelectronics. Here, a novel electrochemical approach for fabricating uniform and robust hydrogel films based on carboxymethyl cellulose cross-linked by Fe3+ ions (Fe-CMC), exhibiting tunable, dynamic properties is introduced. High modulation of the mechanical properties of the film is achieved by applying multiple electrochemical pulses of oxidative voltage during hydrogel deposition. Our study shows also a remarkable effect of the ionic strength on the properties of the electrodeposited hydrogel films. We found that switching from a salt solution to water enhanced the stiffness of the hydrogels, thereby regulating the permeability of the films. These results are supported by molecular dynamics (MD) simulations, showing that an increase in the ionic strength induces a weakening of the Fe-CMC interactions, ultimately affecting the network strength. Finally, the robustness of these electrodeposited hydrogel films enables their delamination from the electrode without any damage, thereby expanding their potential applications as freestanding smart membranes. By providing fundamental insights into the dynamics of metal-coordinated bonds and their response at the macroscopic scale, we have demonstrated the versatility of electrochemical gelation for the fabrication of robust hydrogel films with tunable mechanical properties, which could serve as smart platforms for a variety of biomedical applications.
Collapse
Affiliation(s)
- Roberto Baretta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Valeria Gabrielli
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, 135 Av. de Rangueil, Toulouse 31400, France
| | - Elena Missale
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, Trento 38123, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Giorgio Speranza
- Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123, Italy
- Istituto di Fotonica e Nanotecnologie & Consiglio Nazionale delle Ricerche IFN-CNR, Via alla Cascata 56/C Povo, Trento 38123, Italy
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Maria F Pantano
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, Trento 38123, Italy
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| |
Collapse
|
2
|
Li Q, Song X, Pan YT, Sun J, Bifulco A, Yang R. Dual function of carboxymethyl cellulose scaffold: A one-stone-two-birds strategy to prepare double-layer hollow ZIF-67 derivates for flame retardant epoxy composites. J Colloid Interface Sci 2024; 674:445-458. [PMID: 38941937 DOI: 10.1016/j.jcis.2024.06.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Aluminum hypophosphite (AHP) has been used as a flame retardant for a long time. Previous studies about AHP employed in flame retardant materials mostly focus on coating, modification, and complex system. It is valuable to explore simple experimental steps to prepare nano hybrids with AHP and metal-organic frameworks (MOFs). We found acidic substances could etch zeolitic imidazolate framework-67 (ZIF-67) to obtain MOF derivatives. Unfortunately, AHP and ZIF-67 could not directly form a hybrid. Therefore, carboxymethylcellulose (CMC) is introduced as a dual function layer (buffer and support). The CMC resists the complete conversion of ZIF-67 etched by phosphoric acid to amorphous cobalt phosphate hydrate (ACP). Meanwhile, CMC containing hydroxyl groups combines with AHP through electrostatic interaction and coordination bonds. A double-layer hollow MOF derivative is synthesized through this one-stone-two-birds strategy. Due to multiple flame retardant elements and unique nanostructure, this MOF derivative endows epoxy (EP) resin with excellent flame retardancy. With 2.0 wt% addition, the peak heat release rate (pHRR) and total heat release (THR) of EP/AHP/ACP@CMC are decreased by 47.8 and 21.0 %, respectively. This study proposes a novel scheme that converts AHP into MOF derivatives as high-performance FRs.
Collapse
Affiliation(s)
- Qianlong Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoning Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aurelio Bifulco
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80 80125, Naples, Italy
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
3
|
Zhao R, Zhang T, Qiu X, Cao Z, Gao S, Song X, Li Y, Chen F, Zhou X. Charge transport properties and mechanisms of bacterial cellulose (BC)-Zinc complexes. Carbohydr Polym 2024; 334:122066. [PMID: 38553206 DOI: 10.1016/j.carbpol.2024.122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Most current flexible electronic devices are based on petroleum materials that are difficult to degrade. The exploration of sustainable and eco-friendly materials has become a major focus in both the scientific and industrial communities. In this study, BC-Zn-BIM (bacterial cellulose-Zn-benzimidazole), a novel composite electrode material based on biodegradable BC was developed. Here, BC acted as a conductive medium involved in the conductive behavior of the composite material. We've explored the charge transport mechanisms of BC-Zn-BIM by density functional theory (DFT) calculations, and applied it in the electrochemical detection of Bisphenol A (BPA). The results indicated that the oxygen-containing groups in BC and the nitrogen-containing heterocycles in BIM have a tendency to lose electrons, whereas zinc ions actively acquire electrons from these groups. This process promoted charge transfer within BC-Zn-BIM and endowed it with semiconductor-like properties, enhancing the electrocatalytic reaction of BPA. The detection limit of the electrochemical biosensor was 12 nM, and the sample recovery was 95.1%105.6%. This study clarified the mechanism of the higher electrical properties achieved in Zn-BIM complex grown in-situ on dielectric BC. This will further promote the development of low-cost, environmentally friendly flexible electronic devices.
Collapse
Affiliation(s)
- Rui Zhao
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Tianshuo Zhang
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Xianglin Qiu
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Ziyi Cao
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Shanshan Gao
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China.
| | - Xiaoming Song
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China.
| | - Yue Li
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Fushan Chen
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Xinyi Zhou
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| |
Collapse
|
4
|
Xiao J, Liu T, Chu Q, Yu C, Yin Y, Xuan L, Wu S. Development of an UV-Resistant Multilayer Film with Enhanced Compatibility between Carboxymethyl Cellulose and Polylactic Acid via Incorporation of Tannin and Ferric Chloride. Molecules 2024; 29:2822. [PMID: 38930885 PMCID: PMC11206243 DOI: 10.3390/molecules29122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Carboxymethyl cellulose (CMC) and polylactic acid (PLA) are recognized for their environmental friendliness. By merging them into a composite film, packaging solutions can be designed with good performance. Nonetheless, the inherent interface disparity between CMC and PLA poses a challenge, and there may be layer separation issues. This study introduces a straightforward approach to mitigate this challenge by incorporating tannin acid and ferric chloride in the fabrication of the CMC-PLA. The interlayer compatibility was improved by the in situ formation of a cohesive interface. The resulting CMC/TA-PLA/Fe multilayer film, devoid of any layer separation, exhibits exceptional mechanical strength, with a tensile strength exceeding 70 MPa, a high contact angle of 105°, and superior thermal stability. Furthermore, the CMC/TA-PLA/Fe film demonstrates remarkable efficacy in blocking ultraviolet light, effectively minimizing the discoloration of various wood surfaces exposed to UV aging.
Collapse
Affiliation(s)
- Jian Xiao
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Tingting Liu
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Qiulu Chu
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.Y.); (Y.Y.); (L.X.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.Y.); (Y.Y.); (L.X.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Lei Xuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.Y.); (Y.Y.); (L.X.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Shufang Wu
- Jiangsu Co−Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (J.X.); (T.L.); (Q.C.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
5
|
Liu Y, Cheng F, Li K, Yao J, Li X, Xia Y. Lightweight, flame retardant Janus carboxymethyl cellulose aerogel with fire-warning properties for smart sensor. Carbohydr Polym 2024; 328:121730. [PMID: 38220348 DOI: 10.1016/j.carbpol.2023.121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Lightweight, flame retardant biomass aerogels combining with multi-functionalities are promising for thermal insulation, noise absorption and smart sensors. However, high flammability hinders the application of these aerogels in extreme condition. Herein, lightweight, flame retardant aerogel with fire-warning properties fabricated from resource-abundant graphite and green carboxymethyl cellulose (CMC) is reported. During sonicating expandable graphite (EG) in CMC solution, CMC not only fabricates the downsizing process via hydrogen bonding effect but also forms stable dispersions. Then biomass aerogel is fabricated by freeze-drying strategy and enhanced by metal ionic cross-linking method. This aerogel demonstrates Janus properties for electrical conductivity and thermal conductivity. Due to the synergistic flame retardant effect of graphite nanocomposite and metal ions with a barrier effect and catalytic carbonization capacity, the flame retardancy of these aerogels are enhanced with fire-warning properties. Furthermore, these aerogels are used for monitoring physical deformations as smart sensors, which provides inspiration and a sustainable solution for developing low-cost biomass aerogel with multifunction.
Collapse
Affiliation(s)
- Yide Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fangfang Cheng
- Qingdao Yuanhai New Material Technology co., Ltd, Qingdao 266000, China
| | - Kai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiuyong Yao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Shan Z, Huang J, Huang Y, Zhou Y, Li Y. Copper ions reinforced flexible carboxymethylcellulose/polyethyleneimine composite films with enhanced mechanical properties, UV-shielding performance, thermal stability, solvent resistance, and antibacterial activity. Int J Biol Macromol 2024; 259:129281. [PMID: 38216017 DOI: 10.1016/j.ijbiomac.2024.129281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
A composite film (CMC/PEI) consisting of anionic carboxymethylcellulose (CMC) and cationic polyethyleneimine (PEI) can be easily produced through the solution casting method using self-assembly based on electrostatic interaction and hydrogen bonding. Subsequently, the resulting CMC/PEI polyelectrolyte composite film with a network structure was crosslinked with divalent Cu2+ ions through ionic and coordination bonds, resulting in a strengthened Cu(II)@CMC/PEI film. The composite film was characterized based on its structural, surface, thermal, UV protection, antibacterial, and degradation aspects. The results demonstrated this film has impressive mechanical properties, remarkable solvent resistance, good antibacterial properties, and excellent UV-shielding performance by completely blocking ultraviolet light with wavelengths below 360 nm. These properties can be attributed to the presence of Cu2+ ions and PEI in the film. This work is valuable for the development of novel UV-shielding materials and should contribute to the design of carboxymethylcellulose composite films with desirable properties and exceptional performance.
Collapse
Affiliation(s)
- Zhihao Shan
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Jiayi Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yuling Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yuping Zhou
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yiqun Li
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
7
|
Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Bioinspired fabrication of self-recovery, adhesive, and flexible conductive hydrogel sensor driven by dynamic borate ester bonds and tannic acid-mediated noncovalent network. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|