1
|
Ruan P, Zhang K, Zhang W, Kong Y, Zhou Y, Yao B, Wang Y, Wang Z. Polyphenolic truxillic acid crosslinked sodium alginate film with notable antimicrobial and biodegradable properties for food packaging. Int J Biol Macromol 2024; 279:135184. [PMID: 39216579 DOI: 10.1016/j.ijbiomac.2024.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
This work demonstrated an innovative antimicrobial and biodegradable food packaging film CBDA-10-SA which was prepared by crosslinking a natural polyphenolic truxillic acid (cyclobutane-dicarboxylic acid, CBDA-10) and sodium alginate (SA). The CBDA-10-SA film exhibited improved tensile strength (148 MPa) and UV shielding capabilities. The maximum thermal decomposition temperature was achieved of 249 °C. Compared to SA film, CBDA-10-SA showed increased antibacterial activities. In food packaging test, the CBDA-10-SA inhibited the rapid growth of potential of hydrogen (pH) value, slowed down the weight loss, reduced total plate count (TPC) value of pork, and delayed the spoilage process of pork. Notably, CBDA-10-SA displayed remarkable degradability in soil, with 60 % degrading in four weeks. In this study, CBDA-10-SA showed enhanced physicochemical and mechanical properties compared to traditional SA film. Those improvements make it anticipated to be used in not only food packaging but also mechanical, pharmaceutical, and agricultural fields.
Collapse
Affiliation(s)
- Panyao Ruan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Kexin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Kong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Bin Yao
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhihan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Wei HN, Liu XY, Wang CC, Feng R, Zhang B. Characteristics of corn starch/polyvinyl alcohol composite film with improved flexibility and UV shielding ability by novel approach combining chemical cross-linking and physical blending. Food Chem 2024; 456:140051. [PMID: 38901078 DOI: 10.1016/j.foodchem.2024.140051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
With the aim of effectively improving the performance of bio-friendly food packaging and circumventing the hazards associated with petroleum-based plastic food packaging, composite films of corn starch and polyvinyl alcohol were prepared using a new method that involved chemical cross-linking of glutaraldehyde and blending with cinnamon essential oil nanoemulsion (CNE). Glutaraldehyde and CNE enhance the film's network structure by chemical bonding and hydrogen bonding, respectively. This results in improved surface smoothness, mechanical properties, and UV shielding ability of the film. However, the films' surface hydrophilicity increased as a result of CNE, which is harmful for food preservation in high humidity. Overall, glutaraldehyde and CNE have a synergistic effect on some of the properties of the film which is mainly attributed to the films' structure improvement. The films have great potential for preparing flexible and UV-shielding films and offer new ideas for developing biodegradable films.
Collapse
Affiliation(s)
- Hao-Nan Wei
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Xin-Yue Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Chen-Chen Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
3
|
Liu M, Wang Y, Su S, Long F, Zhong L, Hu J. Multifunctional bio-nanocomposite films integrated with essential oils@metal-phenolic network nanocapsules for durable fruit preservation. Int J Biol Macromol 2024; 278:134916. [PMID: 39182885 DOI: 10.1016/j.ijbiomac.2024.134916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Food spoilage exacerbates global hunger and poverty, necessitating urgent advancements in food shelf life extension methodologies. However, balancing antibacterial efficacy for food preservation with human and environmental safety remains a significant challenge. Natural essential oils (EOs), known for their potent antibacterial and antioxidant properties, offer eco-friendly alternatives, yet their high volatility and instability limit practical applications. Herein, we conducted the encapsulation of EOs within biocompatible metal phenolic networks (MPNs) to create EOs@MPN nanocapsules. Subsequently, these nanocapsules were integrated into bio-nanocomposite films composed of natural soy protein isolate (SPI) and carboxymethyl cellulose (CMC). The resulting films exhibited robust mechanical properties (Tensile Strength >10 MPa) and significantly enhanced antioxidant activity (7-fold higher than pure films). Importantly, the synergistic combination of EOs and MPNs conferred enhanced antibacterial efficacy. Safety assessments confirmed the bio-nanocomposite films' high biodegradability (> 90 %) and negligible cytotoxicity, ensuring environmental sustainability and human health safety. In practical applications, the bio-nanocomposite films effectively delayed the surface browning of fresh-cut fruits for up to 48 h, demonstrating a pronounced synergistic antioxidative effect against oxidation. Moreover, tomatoes and blueberries packaged with the bio-nanocomposite films still maintained freshness for up to 12 days, offering promising strategies for extending the shelf life of perishable fruits. These findings underscore the potential of EOs@MPN-based bio-nanocomposite films as sustainable solutions for food preservation and highlight their practical viability in mitigating food spoilage and enhancing food security globally.
Collapse
Affiliation(s)
- Ming Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Ying Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Shilong Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Feifei Long
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Lizhuang Zhong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| |
Collapse
|
4
|
Yu Z, Zhang X, Li S, Yang J, Wu M, Wu Q, Wang J. Characterization of feruloylated arabinoxylan - acorn starch double network gel composite film and its application in postharvest preservation of Agaricus bisporus. Int J Biol Macromol 2024; 271:132571. [PMID: 38782312 DOI: 10.1016/j.ijbiomac.2024.132571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
To obtain efficient natural food packaging materials, we utilized acorn starch (AS)-based film strengthened by feruloylated arabinoxylan (FAX) gel and additional retrogradation treatment to extend the shelf life of Agaricus bisporus (A. bisporus). Fourier transform infrared spectroscopy (FT-IR), confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) analyses showed that due to the strong hydrogen bonding between FAX and starch molecules, physical crosslinking occurred between FAX and starch molecules in the composite film, and the microstructure became more compact. Thermogravimetric, tensile strength and swelling degree analyses indicate that the composite film exhibits better thermal stability, mechanical properties, and waterproofing compared to the pure AS film. Consequently, after five days of storage, the moisture content of the A. bisporus packaged with our composite film was 7.53 times and 5.73 times higher than that of the control group and the commercially available PEF group, respectively. Moreover, it delayed the respiration or transpiration of A. bisporus (lower weight loss, relative conductivity, MDA content). This packaging film developed with the objective of eco-friendly and biodegradability has considerable application potential in food and other industries.
Collapse
Affiliation(s)
- Zuwei Yu
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xue Zhang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Shiyang Li
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Jun Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Wu
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Jingyi Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
5
|
Rui L, Li Y, Wu X, Wang Y, Xia X. Effect of clove essential oil nanoemulsion on physicochemical and antioxidant properties of chitosan film. Int J Biol Macromol 2024; 263:130286. [PMID: 38382795 DOI: 10.1016/j.ijbiomac.2024.130286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
This study evaluated the physicochemical and antioxidant properties of clove essential oil (0, 0.2, 0.4, 0.6, 0.8, 1.0 % v/v) nanoemulsion (CEON) loaded chitosan-based films. With the increasing concentrations of the CEON, the thickness, b* and ΔE values of the films increased significantly (P < 0.05), while L* and light transmission dropped noticeably (P < 0.05). The hydrogen bonds formed between the CEON and chitosan could be demonstrated through Fourier-transform infrared spectra, indicating their good compatibility and intermolecular interactions. Furthermore, the added CEON considerably reduced the crystallinity and resulted in a porous structure of the films, as observed through X-ray diffraction plots and scanning electron microscopy images, respectively. This eventually led to a drop in both tensile strength and moisture content of the films. Moreover, the antioxidant properties were significantly enhanced (P < 0.05) with the increase in the amount of clove essential oil (CEO) due to the encapsulation of CEO by the nanoemulsion. Films containing 0.6 % CEO had higher elongation at break, higher water contact angle, lower water solubility, lower water vapor permeability, and lower oxygen permeability than the other films; therefore, such films are promising for application in meat preservation.
Collapse
Affiliation(s)
- Litong Rui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., LTD., Daqing, Heilongjiang 163000, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., LTD., Daqing, Heilongjiang 163000, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Ning Y, Liu R, Chi W, An X, Zhu Q, Xu S, Wang L. A chitosan derivative/phytic acid polyelectrolyte complex endowing polyvinyl alcohol film with high barrier, flame-retardant, and antibacterial effects. Int J Biol Macromol 2024; 259:129240. [PMID: 38191105 DOI: 10.1016/j.ijbiomac.2024.129240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Films with high barrier, flame-retardant, and antibacterial properties are beneficial in terms of food and logistics safety. Herein, a polyelectrolyte complex (PEC) of N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride (HTCC, chitosan derivative) and phytic acid (PA) was successfully prepared and then incorporated into a polyvinyl alcohol (PVA) matrix to fabricate a composite film with satisfactory barrier, fire-retardant, and antibacterial properties. The influence of HTCC/PA (HTPA) on the structural, physical and functional properties of the PVA matrix was investigated. Compared with the PVA film, PVA-HTPA6 film exhibited 3.38 times of flexibility and 83.33 % and 80.64 % of water vapor permeability and oxygen permeability, respectively. Benefiting from HTPA, the PVA-HTPA6 film exhibited outstanding flame-retardant capacity, with a high LOI value (33.30 %) and immediate self-extinguishing behaviour. Furthermore, the HTPA endowed the films with excellent antibacterial properties. Compared with other films, the PVA-HTPA6 film effectively maintained the quality of pork during storage at 4 °C for 9 days. Our findings indicate that the films are promising for packaging and logistics safety with oil-containing foods.
Collapse
Affiliation(s)
- Yuping Ning
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Ruoting Liu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Wenrui Chi
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Xinyu An
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Qihao Zhu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Shiyu Xu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
7
|
Li C, Fu L, Deng S, Wang H, Jia L. Polydopamine-functionalized electrospun poly(vinyl alcohol)/chitosan nanofibers for the removal and determination of Cu(II). Int J Biol Macromol 2024; 256:128398. [PMID: 38007013 DOI: 10.1016/j.ijbiomac.2023.128398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Environmentally friendly and recycled polydopamine-functionalized electrospun poly(vinyl alcohol)/chitosan nanofibers (PVA/CS/PDA) were prepared through a low-energy-consumption procedure. The PDA coating endows PVA/CS/PDA nanofibers with good water stability. The PVA/CS/PDA nanofibers have a fibrillar and porous structure that is favorable for Cu(II) to access the active sites of the nanofibers. The adsorption isotherm and kinetics data preferably conform to the Liu isotherm and pseudo-second-order kinetic models, respectively. The maximum adsorption capacity of Cu(II) ions by PVA/CS/PDA nanofibers from the Liu isotherm model is 326.5 mg g-1. The PVA/CS/PDA nanofibers exhibit higher adsorption capacity than some other reported adsorbents. The adsorption mechanism study demonstrates that the Cu(II) adsorption is mainly ascribed to the complexation of Cu(II) with the imino, amino, and hydroxy moieties in PVA/CS/PDA nanofibers. The nanofibers can be employed for 5 cycles without significantly deteriorating performance. More interestingly, a fluorometry method based on the oxidation mimic enzyme activity of Cu(II) was developed to detect low concentrations of Cu(II) using the nanofibers as an adsorbent to preconcentrate Cu(II). The limit of detection is 0.42 mg L-1. The successful removal and detection of Cu(II) in Pearl River and mineral water samples demonstrates the great potential of PVA/CS/PDA nanofibers to remediate Cu(II)-polluted water.
Collapse
Affiliation(s)
- Chuang Li
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Fu
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Suqi Deng
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Heng Wang
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
8
|
Liao L, Li S, Ke Z, Wang X, Wang S, Rao X. Effect of rosin based quaternary ammonium salt on mechanical, hydrophily, antibacterial of cornstarch/polydopamine film for food packaging. Int J Biol Macromol 2024; 255:128117. [PMID: 37979747 DOI: 10.1016/j.ijbiomac.2023.128117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Food packaging made of biobased materials is environmentally friendly, among which starch film is a type of biobased packaging with great development value. Some existing studies have attempted to add polydopamine (PDA) to enhance cross-linking, but there are still problems such as weakness and hydrophilicity, which greatly limit its application. Therefore, this study synthesized rosin based quaternary ammonium salt-modified cornstarch (ST-B), which was used to replace part of unmodified cornstarch (ST). In the prepared ST/PDA0.5/ST-B5 film, the introduction of a rigid rosin structure increased the stress and water contact angle of the ST/PDA0.5 film by 62 % and 26 %, respectively, while reducing its wettability and WVP; thus, further enhancing its antioxidant activity. Due to the antibacterial ability of rosin quaternary ammonium cations, the packaging film containing 7 wt% ST-B can kill >94.6 % of S. aureus and 99.9 % of E. coli, and can also extend the shelf life of strawberries. In addition, it is proven that the packaging film has good biocompatibility and high safety within cytotoxicity tests and 30-day gavage tests in mice. Therefore, the prepared ST/PDA/ST-B film has more potential for application in food preservation.
Collapse
Affiliation(s)
- Lirong Liao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Shuchun Li
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Zhijun Ke
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Xiang Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Sijie Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China.
| |
Collapse
|
9
|
Wang Y, Li L, Hu J. Development of biobased multifunctional films incorporated with essential oils@polydopamine nanocapsules for food preservation applications. Int J Biol Macromol 2023; 253:127161. [PMID: 37778593 DOI: 10.1016/j.ijbiomac.2023.127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
A novel multifunctional soy protein isolate-carboxymethyl cellulose (SPI-CMC) based nanocomposite film was successfully prepared by introducing the polydopamine encapsulated essential oils (EOs@PDA) nanocapsules for food packaging. The EOs@PDA nanocapsules possessed smooth spherical morphology with good dispersion, and the particle size was about 283 nm. The influence of EOs@PDA nanocapsules on the physical, chemical and biological properties of EOs@PDA/SPI-CMC nanocomposite film was investigated. The EOs@PDA nanocapsules were crosslinked with SPI-CMC matrix and distributed uniformly in the matrix. The nanocomposite film with 1 wt% nanocapsules (EP/S-C) also showed excellent antioxidant activity (66.6 ± 0.3 % on DPPH and 98.6 ± 0.1 % on ABTS), superior UV-blocking properties (100 %), advanced antibacterial ability against E. coli and S. aureus, favorable biodegradability (>90 %) and relatively low In vitro cytotoxicity. Also, the EP/S-C nanocomposite film displayed potential to extend the shelf life of fresh cut apple slices (>24 h), perishable cherry tomatoes and blueberries (>6 days). The results suggested that the EOs@PDA/SPI-CMC nanocomposite film had a great possibility in the field of biodegradable and antimicrobial materials for food packaging.
Collapse
Affiliation(s)
- Ying Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Lin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| |
Collapse
|
10
|
Ciaramitaro V, Piacenza E, Meo PL, Librici C, Calvino MM, Conte P, Lazzara G, Chillura Martino DF. From micro to macro: Physical-chemical characterization of wheat starch-based films modified with PEG200, sodium citrate, or citric acid. Int J Biol Macromol 2023; 253:127225. [PMID: 37797849 DOI: 10.1016/j.ijbiomac.2023.127225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Needing to extend the shelf-life of packaged food and the evolving consumer demands led researchers to seek innovative, eco-friendly, and biocompatible packaging solutions. Starch is among the most promising natural and renewable alternatives to non-degradable plastics. Here, we deeply study the structural features of starch films modified by adding citric acid (CA) or sodium citrate (SC) as a cross-linker and polyethylene glycol 200 (PEG200) as a plasticizer and obtained through solvent casting. The substances' influence on starch films was evaluated through Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) and Solid-state Nuclear Magnetic Resonance (ss-NMR) spectroscopies. Films' macroscopic properties, such as swelling index, solubility, thermo-mechanical features, and moisture absorption, were also assessed to foresee potential applications. Proper amounts of CA, CS, and PEG200 improve film properties and inhibit starch chains' retrogradation and recrystallization. Besides, the chemical neighbourhood of nuclei observed through ss-NMR significantly changed alongside the polymer chains' mobility. The latter result indicates a different polymer chain structural organization that could justify the film's higher resistance to thermal degradation and elongation at the break. This methodological approach is effective in predicting the macroscopic behaviour of a polymeric material and could be helpful for the application of such products in food preservation.
Collapse
Affiliation(s)
- Veronica Ciaramitaro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze pad. 17, 90128 Palermo, Italy
| | - Elena Piacenza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze pad. 17, 90128 Palermo, Italy.
| | - Paolo Lo Meo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze pad. 17, 90128 Palermo, Italy.
| | - Calogero Librici
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze pad. 4, Palermo, Italy
| | - Martina M Calvino
- Department of Physics and Chemistry - Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze pad. 17, Palermo, Italy
| | - Pellegrino Conte
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze pad. 4, Palermo, Italy
| | - Giuseppe Lazzara
- Department of Physics and Chemistry - Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze pad. 17, Palermo, Italy
| | - Delia F Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze pad. 17, 90128 Palermo, Italy
| |
Collapse
|
11
|
Faisal M, Bevilacqua M, Bro R, Bordallo HN, Kirkensgaard JJK, Hebelstrup KH, Blennow A. Colorimetric pH indicators based on well-defined amylose and amylopectin matrices enriched with anthocyanins from red cabbage. Int J Biol Macromol 2023; 250:126250. [PMID: 37562464 DOI: 10.1016/j.ijbiomac.2023.126250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
This study aimed to prepare a novel colorimetric indicator film from virtually pure (99 %) amylose (AM) and anthocyanins extracted from red cabbage (RCA). The AM used was a unique engineered bulk material extracted from transgenic barley grains. Films produced by solution casting were compared to normal barely starch (NB) and pure barley amylopectin (AP), with amylose contents of 30 % and 0 %, respectively. The pH-indicator films were produced by incorporation of RCA into the different starch support matrices with different amylose contents. Barrier, thermal, and mechanical properties, photo degradation stability, and release behavior data revealed that RCA interact differently through the glucan matrices. Microstructural observations showed that RCA were evenly dispersed in the glucan matrix, and AM+RCA indicator films showed high UV-barrier and mechanical performance over normal starch. FTIR revealed that RCA was properly affected by the AM matrix. Moreover, the AM+RCA films showed sensitive color changes in the pH range (2-11) and a predominant Fickian diffusion release mechanism for RCA. This study provides for the first time data regarding AM films with RCA and their promising potential for application as support matrices in responsive food and other industrial biodegradable packaging materials.
Collapse
Affiliation(s)
- Marwa Faisal
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Marta Bevilacqua
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark.
| | - Rasmus Bro
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark
| | - Heloisa N Bordallo
- Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark; Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | - Kim H Hebelstrup
- Department of molecular Biology and Genetics, Aarhus University, 4200 Slagelse, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Zhao P, Yan X, Cheng M, Wang Y, Wang Y, Wang K, Wang X, Wang J. Effect of Pickering emulsion on the physical properties, microstructure and bioactivity of corn starch/cassia gum composite films. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|