1
|
Dwivedi R, Maurya AK, Ahmed H, Farrag M, Pomin VH. Nuclear magnetic resonance-based structural elucidation of novel marine glycans and derived oligosaccharides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:269-285. [PMID: 37439410 DOI: 10.1002/mrc.5377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Marine glycans of defined structures are unique representatives among all kinds of structurally complex glycans endowed with important biological actions. Besides their unique biological properties, these marine sugars also enable advanced structure-activity relationship (SAR) studies given their distinct and defined structures. However, the natural high molecular weights (MWs) of these marine polysaccharides, sometimes even bigger than 100 kDa, pose a problem in many biophysical and analytical studies. Hence, the preparation of low MW oligosaccharides becomes a strategy to overcome the problem. Regardless of the polymeric or oligomeric lengths of these molecules, structural elucidation is mandatory for SAR studies. For this, nuclear magnetic resonance (NMR) spectroscopy plays a pivotal role. Here, we revisit the NMR-based structural elucidation of a series of marine sulfated poly/oligosaccharides discovered in our laboratory within the last 2 years. This set of structures includes the α-glucan extracted from the bivalve Marcia hiantina; the two sulfated galactans extracted from the red alga Botryocladia occidentalis; the fucosylated chondroitin sulfate isolated from the sea cucumber Pentacta pygmaea; the oligosaccharides produced from the fucosylated chondroitin sulfates from this sea cucumber species and from another species, Holothuria floridana; and the sulfated fucan from this later species. Specific 1H and 13C chemical shifts, generated by various 1D and 2D homonuclear and heteronuclear NMR spectra, are exploited as the primary source of information in the structural elucidation of these marine glycans.
Collapse
Affiliation(s)
- Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Antim K Maurya
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Hoda Ahmed
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Marwa Farrag
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
2
|
Ma Y, Zuo Z, Zheng W, Yin R, Wu X, Ma Y, Ji M, Ma W, Li X, Xiao W, Gao N, Zhao J. Structural characterization of a distinct fucan sulfate from Pattalus mollis through an oligosaccharide mapping approach. Carbohydr Res 2024; 536:109052. [PMID: 38325067 DOI: 10.1016/j.carres.2024.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The elucidation of the precise structure of fucan sulfate is essential for understanding the structure-activity relationship and promoting potential biomedical applications. In this work, the structure of a distinct fucan sulfate fraction V (PmFS in Ref 15 and FSV in Ref 16 → PFV) from Pattalus mollis was investigated using an oligosaccharide mapping approach. Six size-homogeneous fractions were purified from the mild acid hydrolyzed PFV and identified as fucitols, disaccharides and trisaccharides by 1D/2D NMR and MS analysis. Significantly, the sulfation pattern, glycosidic linkages, and sequences of all the oligosaccharides were unambiguously identified. The common 2-desulfation of the reducing end residue of the oligosaccharides was observed. Overall, the backbone of PFV was composed of L-Fuc2S (major) and L-Fuc3S (minor) linked by α1,4 glycosidic bonds. Importantly, the branches contain both monosaccharide and disaccharide linked to the backbone by α1,3 glycosidic linkages. Thus, the tentative structure of natural PFV was shown to be {-(R-α1,3)-L-Fuc2S-α1,4-(L-Fuc2S/3S-α1,4)x-}n, where R is L-Fuc(2S)4S-α1,3/4-L-Fuc4S(0S)- or L-Fuc(2S)4S-. Our results provide insight into the heterogeneous structure of the fucan sulfate found in sea cucumbers. Additionally, PFV and its fractions showed strong anticoagulant and anti-iXase activities, which may be related to the distinct structure of PFV.
Collapse
Affiliation(s)
- Yan Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Zhichuang Zuo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenqi Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xuewen Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yujun Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Mengchen Ji
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenwen Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xian Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
3
|
Chen R, Wang W, Yin R, Pan Y, Xu C, Gao N, Luo X, Zhao J. Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Mar Drugs 2023; 21:632. [PMID: 38132953 PMCID: PMC10744359 DOI: 10.3390/md21120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide β-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.
Collapse
Affiliation(s)
- Ru Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Ying Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Xiaodong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| |
Collapse
|
4
|
Dwivedi R, Farrag M, Sharma P, Shi D, Shami AA, Misra SK, Ray P, Shukla J, Zhang F, Linhardt RJ, Sharp JS, Tandon R, Pomin VH. The Sea Cucumber Thyonella gemmata Contains a Low Anticoagulant Sulfated Fucan with High Anti-SARS-CoV-2 Actions against Wild-Type and Delta Variants. JOURNAL OF NATURAL PRODUCTS 2023; 86:1463-1475. [PMID: 37306476 PMCID: PMC10401483 DOI: 10.1021/acs.jnatprod.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we isolated two new sulfated glycans from the body wall of the sea cucumber Thyonella gemmata: one fucosylated chondroitin sulfate (TgFucCS) (17.5 ± 3.5% kDa) and one sulfated fucan (TgSF) (383.3 ± 2.1% kDa). NMR results showed the TgFucCS backbone composed of [→3)-β-N-acetylgalactosamine-(1→4)-β-glucuronic acid-(1→] with 70% 4-sulfated and 30% 4,6-disulfated GalNAc units and one-third of the GlcA units decorated at the C3 position with branching α-fucose (Fuc) units either 4-sulfated (65%) or 2,4-disulfated (35%) and the TgSF structure composed of a tetrasaccharide repeating unit of [→3)-α-Fuc2,4S-(1→2)-α-Fuc4S-(1→3)-α-Fuc2S-(1→3)-α-Fuc2S-(1→]n. Inhibitory properties of TgFucCS and TgSF were investigated using SARS-CoV-2 pseudovirus coated with S-proteins of the wild-type (Wuhan-Hu-1) or the delta (B.1.617.2) strains and in four different anticoagulant assays, comparatively with unfractionated heparin. Molecular binding to coagulation (co)-factors and S-proteins was investigated by competitive surface plasmon resonance spectroscopy. Among the two sulfated glycans tested, TgSF showed significant anti-SARS-CoV-2 activity against both strains together with low anticoagulant properties, indicating a good candidate for future studies in drug development.
Collapse
Affiliation(s)
- Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Marwa Farrag
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Poonam Sharma
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Deling Shi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Anter A Shami
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Priya Ray
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Jayanti Shukla
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Ritesh Tandon
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
5
|
Wang M, Veeraperumal S, Zhong S, Cheong KL. Fucoidan-Derived Functional Oligosaccharides: Recent Developments, Preparation, and Potential Applications. Foods 2023; 12:foods12040878. [PMID: 36832953 PMCID: PMC9956988 DOI: 10.3390/foods12040878] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Oligosaccharides derived from natural resources are attracting increasing attention as both food and nutraceutical products because of their beneficial health effects and lack of toxicity. During the past few decades, many studies have focused on the potential health benefits of fucoidan. Recently, new interest has emerged in fucoidan, partially hydrolysed into fuco-oligosaccharides (FOSs) or low-molecular weight fucoidan, owing to their superior solubility and biological activities compared with fucoidan. There is considerable interest in their development for use in the functional food, cosmetic, and pharmaceutical industries. Therefore, this review summarises and discusses the preparation of FOSs from fucoidan using mild acid hydrolysis, enzymatic depolymerisation, and radical degradation methods, and discusses the advantages and disadvantages of hydrolysis methods. Several purification steps performed to obtain FOSs (according to the latest reports) are also reviewed. Moreover, the biological activities of FOS that are beneficial to human health are summarised based on evidence from in vitro and in vivo studies, and the possible mechanisms for the prevention or treatment of various diseases are discussed.
Collapse
Affiliation(s)
- Min Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Postgraduate College, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (K.-L.C.)
| | - Kit-Leong Cheong
- Department of Biology, Shantou University, Shantou 515063, China
- Correspondence: (S.Z.); (K.-L.C.)
| |
Collapse
|