1
|
Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, Saharudin MS, Abral H, Sapuan SM. Advanced functional materials based on nanocellulose/Mxene: A review. Int J Biol Macromol 2024; 278:135207. [PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
Collapse
Affiliation(s)
- Ghassan O A Al-Fakih
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - A Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - M S N Atikah
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | | | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang, Sumatera Barat, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang, Indonesia
| | - S M Sapuan
- Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Sang C, Wang S, Jin X, Cheng X, Xiao H, Yue Y, Han J. Nanocellulose-mediated conductive hydrogels with NIR photoresponse and fatigue resistance for multifunctional wearable sensors. Carbohydr Polym 2024; 333:121947. [PMID: 38494214 DOI: 10.1016/j.carbpol.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
The rapid development of hydrogels has garnered significant attention in health monitoring and human motion sensing. However, the synthesis of multifunctional conductive hydrogels with excellent strain/pressure sensing and photoresponsiveness remains a challenge. Herein, the conductive hydrogels (BPTP) with excellent mechanical properties, fatigue resistance and photoresponsive behavior composed of polyacrylamide (PAM) matrix, 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) reinforcement and polydopamine-modified black phosphorus (BP@PDA) photosensitizer are prepared through a facile free-radical polymerization approach. The PDA adhered to the BP surface by π-π stacking promotes the optical properties of BP while also preventing BP oxidation from water. Through hydrogen bonding interactions, TOCNs improve the homogeneous dispersion of BP@PDA nanosheets and the mechanical toughness of BPTP. Benefiting from the synergistic effect of PDA and TOCNs, the conductive BPTP integrates superior mechanical performances, excellent photoelectric response and photothermal conversion capability. The BPTP-based sensor with high cycling stability demonstrates superior strain sensitivity (GF = 6.0) and pressure sensing capability (S = 0.13 kPa-1) to monitor various human activities. Therefore, this work delivers an alternative construction strategy for generating high-performance conductive hydrogels as multifunctional wearable sensors.
Collapse
Affiliation(s)
- Chenyu Sang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaowei Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyue Jin
- Nanjing Institute of Product Quality Inspection, Nanjing Institute of Quality Development and Advanced Technology Application, Nanjing 210019, China
| | - Xiaoyu Cheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Chen Z, Zhang X, Xu K, He X, Li J, Zhang L, Wang G. Facile fabrication of nanocellulose-supported membrane composited with modified carbon nitride and HKUST-1 for efficient photocatalytic degradation of formaldehyde. Int J Biol Macromol 2024; 268:131937. [PMID: 38685539 DOI: 10.1016/j.ijbiomac.2024.131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
As a cellulose-derived material, nanocellulose possesses unique properties that make it an ideal substrate for various functional composite materials. In this study, we developed a novel composite membrane material capable of adsorbing and photo-catalyzing formaldehyde by immobilizing HKUST-1 (copper open framework composed of 1,3,5-benzenetricarboxylic acid) onto NFC (Nano-fibrillated cellulose) membranes and subsequently loading modified carbon nitride. The synthesized CNx@HN composite membrane (consisting of NFC membrane with anchored HKUST-1 and modified g-C3Nx nanosheets) was thoroughly characterized, and its photocatalytic degradation performance towards low concentrations of formaldehyde (3.0 mg/m3) was investigated. The results demonstrated that HKUST-1's porous nature exhibited a concentrated adsorption capacity for formaldehyde, while the modified CNx (Modified g-C3Nx nanosheets) displayed robust photocatalytic degradation of formaldehyde. The synergistic effect of HKUST-1 and modified CNx on the NFC membrane significantly enhanced the efficiency of formaldehyde degradation. Under xenon lamp irradiation, CNx@HN-5 achieved a total removal efficiency of 86.9 % for formaldehyde, with a photocatalytic degradation efficiency of 48.45 %, showcasing its exceptional ability in both adsorption and photocatalytic degradation of formaldehyde. Furthermore, after 10 cycles of recycling, the composite membrane exhibited excellent stability for the photocatalytic degradation process. Therefore, this study presents a green and facile strategy to fabricate nanocellulose-supported composite membranes with great potential for practical applications in formaldehyde degradation.
Collapse
Affiliation(s)
- Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Xuefeng Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Kai Xu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Xiangyang He
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Junkai Li
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China.
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
5
|
Li Z, Chen F, Li C, Zhang Z, Kong F, Pu X, Lu Q. Bimetallic sulfide/N-doped carbon composite derived from Prussian blue analogues/cellulose nanofibers film toward enhanced oxygen evolution reaction. Dalton Trans 2024; 53:6041-6049. [PMID: 38470841 DOI: 10.1039/d3dt04336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Exploiting effective, stable, and cost-efficient electrocatalysts for the water oxidation reaction is highly desirable for renewable energy conversion techniques. Constructional design and compositional manipulation are widely used approaches to efficaciously boost the electrocatalytic performance. Herein, we designed a NiFe-bimetallic sulfide/N-doped carbon composite via a two-step thermal treatment of Prussian blue analogues/cellulose nanofibers (PBA/CNFs) film. The NiFe-bimetallic sulfide/N-doped carbon composite displayed enhanced OER performance in an alkaline environment, with an overpotential of 282 mV at 10 mA cm-2, a Tafel slope of 59.71 mV dec-1, and good stability, making the composite a candidate electrocatalyst for OER-related energy equipment. The introduction of CNFs in the precursor prevented the aggregation of PBA nanoparticles (NPs), exposed more active sites, and the resulting carbon substrate enhanced the electroconductivity of the composite. Moreover, the synergistic effect of Ni and Fe in the bimetallic sulfide could modulate the configuration of electrons, enrich the catalytically active sites, and augment the electric conductivity, thus ameliorating the OER performance. This study broadens the application of MOF-CNF composites to construct hierarchical structures of metal compounds and provides some thoughts for the development of cost-effective precious-metal-free catalysts for electrocatalysis.
Collapse
Affiliation(s)
- Zhengping Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Feiyang Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chunlong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xipeng Pu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Qifang Lu
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Godja NC, Munteanu FD. Hybrid Nanomaterials: A Brief Overview of Versatile Solutions for Sensor Technology in Healthcare and Environmental Applications. BIOSENSORS 2024; 14:67. [PMID: 38391986 PMCID: PMC10887000 DOI: 10.3390/bios14020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The integration of nanomaterials into sensor technologies not only poses challenges but also opens up promising prospects for future research. These challenges include assessing the toxicity of nanomaterials, scalability issues, and the seamless integration of these materials into existing infrastructures. Future development opportunities lie in creating multifunctional nanocomposites and environmentally friendly nanomaterials. Crucial to this process is collaboration between universities, industry, and regulatory authorities to establish standardization in this evolving field. Our perspective favours using screen-printed sensors that employ nanocomposites with high electrochemical conductivity. This approach not only offers cost-effective production methods but also allows for customizable designs. Furthermore, incorporating hybrids based on carbon-based nanomaterials and functionalized Mxene significantly enhances sensor performance. These high electrochemical conductivity sensors are portable, rapid, and well-suited for on-site environmental monitoring, seamlessly aligning with Internet of Things (IoT) platforms for developing intelligent systems. Simultaneously, advances in electrochemical sensor technology are actively working to elevate sensitivity through integrating nanotechnology, miniaturization, and innovative electrode designs. This comprehensive approach aims to unlock the full potential of sensor technologies, catering to diverse applications ranging from healthcare to environmental monitoring. This review aims to summarise the latest trends in using hybrid nanomaterial-based sensors, explicitly focusing on their application in detecting environmental contaminants.
Collapse
Affiliation(s)
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2–4 E. Drăgoi Str., 310330 Arad, Romania;
| |
Collapse
|
7
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
8
|
Zhai Y, Yuan X. Superhydrophobic, Magnetic Aerogels Based on Nanocellulose Fibers Derived from Harakeke for Oily Wastewater Remediation. Polymers (Basel) 2023; 15:3941. [PMID: 37835991 PMCID: PMC10575082 DOI: 10.3390/polym15193941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cellulose-based aerogels have been seen as a promising sorbent for oil and organic pollutant cleaning; however, their intrinsic hydrophilicity and difficulty of recycling has hindered their practical application. In this work, a superhydrophobic, magnetic cellulose-based aerogel was fabricated as a highly efficient sorbent for the adsorption of oils and organic solvents. The aerogel was prepared via a simple freeze-drying method, followed by chemical vapor deposition (CVD). The incorporation of Fe3O4 nanoparticles into the aerogel not only makes it responsive to external magnetic field, but also contributes to the better hydrophobicity of the aerogel, in which the water contact angle (WCA) was about 20° higher than the aerogel without loading with Fe3O4 nanoparticles. The adsorption test showed that the resultant aerogel can selectively adsorb a wide range of oils and organic solvents from oil/water mixtures with a high adsorption capacity (up to 113.49 g/g for silicone oil). It can retain about 50% of its adsorption capacity even after 10 adsorption-squeezing cycles, which indicates its outstanding reusability. Moreover, the aerogels can be easily controlled by an external magnet, which is preferred for the adsorption of oily contaminants in harsh environments and enhanced the recyclability of the aerogel. We believe that this study provides a green and convenient approach for the practical fabrication of cellulose-based oil sorbents.
Collapse
Affiliation(s)
| | - Xiaowen Yuan
- Future Fibers Laboratory, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand;
| |
Collapse
|
9
|
Di Matteo V, Di Filippo MF, Ballarin B, Gentilomi GA, Bonvicini F, Panzavolta S, Cassani MC. Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. J Funct Biomater 2023; 14:472. [PMID: 37754886 PMCID: PMC10532010 DOI: 10.3390/jfb14090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite materials were characterized by several techniques (IR, XRD, SEM, TGA, ICP, and BET) and their antibacterial activity as well as their biocompatibility in a mammalian model system were investigated. The cellulose/ZIF-8 samples remarkably inhibited the growth of Gram-positive and Gram-negative reference strains, and, notably, they proved to be effective against clinical isolates of Staphylococcus epidermidis and Pseudomonas aeruginosa presenting different antibiotic resistance profiles. As these pathogens are of primary importance in skin diseases and in the delayed healing of wounds, and the cellulose/ZIF-8 composites met the requirements of biological safety, the herein materials reveal a great potential for use as gauze pads in the management of wound infections.
Collapse
Affiliation(s)
- Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
| | - Maria Francesca Di Filippo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Center for Industrial Research—Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Panzavolta
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST–ICIR), Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
10
|
Qi MY, Wang PL, Huang LZ, Yuan Q, Mai T, Ma MG. Cellulose nanofiber/MXene/luffa aerogel for all-weather and high-efficiency cleanup of crude oil spills. Int J Biol Macromol 2023:124895. [PMID: 37196710 DOI: 10.1016/j.ijbiomac.2023.124895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
The remediation of heavy crude oil spills is a global challenge because frequent crude oil spills cause long-term damage to local living beings and marine ecosystems. Herein, a solar-driven and Joule-driven self-heated aerogel were developed as an all-weather adsorbent to efficiently absorb crude oil by obviously decreasing the viscosity of crude oil. The cellulose nanofiber (CNF)/MXene/luffa (CML) aerogel was fabricated via a simple freeze-drying method using CNF, MXene, and luffa as raw materials, and then coated with a layer of polydimethylsiloxane (PDMS) to make it hydrophobic and further increase oil-water selectivity. The aerogel can quickly reach 98 °C under 1 sun (1.0 kW/m2), which remains saturated temperature after 5 times photothermal heating/cooling cycles, indicating that the aerogel has great photothermal conversation capability and stability. Meanwhile, the aerogel can also rapidly rise to 110.8 °C with a voltage of 12 V. More importantly, the aerogel achieved the highest temperature of 87.2 °C under outdoor natural sunlight, providing a possibility for promising applications in practical situations. The remarkable heating capability enables the aerogel to decrease the viscosity of crude oil substantially and increase the absorption rate of crude oil by the physical capillary action. The proposed all-weather aerogel design provides a sustainable and promising solution for cleaning up crude oil spills.
Collapse
Affiliation(s)
- Meng-Yu Qi
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Pei-Lin Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Ling-Zhi Huang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qi Yuan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Tian Mai
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
11
|
Jiang X, Cheng J, Yang F, Hu Z, Zheng Z, Deng Y, Cao B, Xie Y. Visual Colorimetric Detection of Edible Oil Freshness for Peroxides Based on Nanocellulose. Foods 2023; 12:foods12091896. [PMID: 37174435 PMCID: PMC10178133 DOI: 10.3390/foods12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Traditional methods for evaluating the edibility of lipids involve the use of organic reagents and complex operations, which limit their routine use. In this study, nanocellulose was prepared from bamboo, and a colorimetric reading strategy based on nanocellulose composite hydrogels was explored to monitor the freshness of edible oils. The hydrogels acted as carriers for peroxide dyes that changed color according to the freshness of the oil, and color information was digitized using UV-vis and RGB analysis. The sensitivity and accuracy of the hydrogel were verified using H2O2, which showed a linear relationship between absorbance and H2O2 content in the range of 0-0.5 and 0.5-11 mmol/kg with R2 of 0.9769 and 0.9899, respectively, while the chromatic parameter showed an exponential relationship with R2 of 0.9626. Surprisingly, the freshness of all seven edible oil samples was correctly identified by the hydrogel, with linear correlation coefficients greater than 0.95 in the UV-vis method and exponential correlation coefficients greater than 0.92 in the RGB method. Additionally, a peroxide value color card was established, with an accuracy rate of 91.67%. This functional hydrogel is expected to be used as a household-type oil freshness indicator to meet the needs of general consumers.
Collapse
Affiliation(s)
- Xiongli Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Buyuan Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|