1
|
Yu L, Qin X, Liang B, Liu J. Traditional Chinese Medicine-Based Nanoformulations for Enhanced Photothermal Therapy of Cancer. ACS Biomater Sci Eng 2025; 11:694-709. [PMID: 39844481 DOI: 10.1021/acsbiomaterials.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Photothermal therapy (PTT) has shown promise in the ablation of small, unresectable tumors by boosting the tumor's temperature above 50 °C. However, the high local temperature-induced cancer cell necrosis could create severe local inflammation, which may deteriorate normal tissues and increase tumor spreading. Although mild photothermal therapy (MPTT) at 42-45 °C could avoid the undesired side effect to some extent with minimal nonspecific heat diffusion, the self-protective behavior of tumors during MPTT results in an unsatisfactory therapeutic effect. Inspired by the widespread applications of traditional Chinese medicine (TCM) in various ailments, we also extensively explored the use of TCM in PTT and MPTT. In this Review, we summarize the application and function of TCM in PTT and MPTT, including the following: (1) TCM improves the performance of PTT and MPTT by elevating the photothermal conversion ability of photothermal agents (PTAs) and overcoming the self-protective effect of tumors, (2) PTT enhances TCM-based chemotherapy by improving the sensitivity and cellular uptake of TCM in tumors, and (3) natural TCM and metal-chelated TCM-based nanoparticles could directly act as PTAs for carrier-free combination therapy. We expect this Review will further illuminate TCM's utility and applicability in cancer treatment and create new combination strategies for theragnostic use.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Bing Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| |
Collapse
|
2
|
Zan Y, Liu J, Zhao Z, Wei Y, Yang N, Zhang H, Wang X, Kang Y. A Montmorillonite-Based Pickering Nanoemulsion for the Integration of Photothermal Therapy and NIR-Responsive Drug Delivery. ACS APPLIED BIO MATERIALS 2025; 8:652-660. [PMID: 39705323 DOI: 10.1021/acsabm.4c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Chemo/photothermal combination therapy is a promising and practical approach for cancer treatment which calls for certain nanovehicles to achieve the spatiotemporal co-occurrence of photothermal conversion and drug delivery. Herein, we developed a montmorillonite-based Pickering emulsion equipped with a near-infrared photothermal agent (indocyanine green, ICG) and anticarcinogen (paclitaxel, PTX). With both montmorillonite and ICG functioning as interfacial stabilizers, the Pickering emulsion showed good stability and nanoscale droplet size, which were favored for cellular applications. Due to the vast oil-water interface, where the majority of amphiphilic ICG was prone to distribute, the Pickering nanoemulsion could achieve a higher local concentration of ICG than the aqueous solution, therefore leading to a higher local photothermal performance under near-infrared irradiation. The Pickering nanoemulsion exhibited fast cell penetration, which promoted the photothermal therapeutic effect of ICG. Moreover, the inner phase of the Pickering nanoemulsion also facilitated the loading of PTX, further improving its killing efficacy against cancer cells under near-infrared irradiation, because the photothermal conversion of the Pickering nanoemulsion could not only cause heat damage by itself but also promote the loaded PTX to diffuse out and induce cell death. Therefore, this clay-based Pickering nanoemulsion as a nanovehicle could realize the synergy of chemo- and photothermal therapy.
Collapse
Affiliation(s)
- Yonghui Zan
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jiaren Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ziwei Zhao
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yi Wei
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Hefei Xinsheng Optoelectronics Technology Co., Ltd., Hefei, Anhui 230012, P. R. China
| | - Ning Yang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Hean Zhang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education and State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
3
|
Taghikhani A, Babazadeh M, Davaran S, Ghasemi E. Facile preparation of a pH-sensitive biocompatible nanocarrier based on magnetic layered double hydroxides/Cu MOFs-chitosan crosslinked к-carrageenan for controlled doxorubicin delivery to breast cancer cells. Colloids Surf B Biointerfaces 2024; 243:114122. [PMID: 39079184 DOI: 10.1016/j.colsurfb.2024.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
Recently, the biocompatibility of hydrogel nanoparticles has gained considerable research attention in the field of drug delivery. In this regard, we design a pH-controlled nanocarrier based on magnetic layered double hydroxides/copper metal-organic framework-chitosan crosslinked к-carrageenan hydrogel nanoparticles (LDH-Fe3O4/Cu MOF-DOX-CS@CAR) for targeted release from DOX to breast cancer cells. FT-IR, EDX, XRD, FE-SEM, VSM, and Zeta potential investigated the chemical structure of hydrogel nanoparticles. The encapsulation efficiency and drug loading capacity of the DOX were obtained to be 96.1 % and 9.6 %, respectively. The cumulative release of DOX from LDH-Fe3O4/Cu MOF-DOX-CS@CAR at pH 5.5 and 7.4 after 72 h was 60.3 % and 22.6 %, respectively. These in vitro release results confirmed the controlled release and pH-response behavior of hydrogel nanoparticles. Also, the mechanism of DOX release from LDH-Fe3O4/Cu MOF-DOX-CS@CAR hydrogel nanoparticles showed that the Korsmeyer-Peppas model with Fickian diffusion is the best-fitting model for describing the release behavior of DOX from hydrogel nanoparticles. The cellular cytotoxicity and DAPI tests of the prepared LDH and LDH-Fe3O4/Cu MOF toward L929 non-cancerous cells and MCF-7 breast cancer cells confirm its relative biocompatibility and safety. Whereas, LDH-Fe3O4/Cu MOF-DOX-CS@CAR hydrogel nanoparticles toward MCF-7 breast cancer cells had higher cytotoxicity effects due to the targeted and controlled release of DOX to MCF-7 cells. The in vitro DPPH, hemolysis assay, colloidal stability, and enzymatic degradation proved the excellent antioxidant activity (71.81 %), blood compatibility (less than 5 %), better stability, and biodegradation behavior of hydrogel nanoparticles. On these findings, the present study suggests the potential of the prepared LDH-Fe3O4/Cu MOF-DOX-CS@CAR hydrogel nanoparticles as a pH-controlled drug delivery system for cancer treatment and various biomedical uses.
Collapse
Affiliation(s)
- Afsaneh Taghikhani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mirzaagha Babazadeh
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Ghasemi
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
4
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Nocchetti M, O'Hare D, Rabu P, Melanova K, Leroux F. Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health. Dalton Trans 2024; 53:14551-14581. [PMID: 39046465 DOI: 10.1039/d4dt00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, B.P. 50840, F54011, NancyCedex, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
5
|
Chen YH, Liu IJ, Lin TC, Tsai MC, Hu SH, Hsu TC, Wu YT, Tzang BS, Chiang WH. PEGylated chitosan-coated nanophotosensitizers for effective cancer treatment by photothermal-photodynamic therapy combined with glutathione depletion. Int J Biol Macromol 2024; 266:131359. [PMID: 38580018 DOI: 10.1016/j.ijbiomac.2024.131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
6
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
7
|
Francis AP, Ahmad A, Nagarajan SDD, Yogeeswarakannan HS, Sekar K, Khan SA, Meenakshi DU, Husain A, Bazuhair MA, Selvasudha N. Development of a Novel Red Clay-Based Drug Delivery Carrier to Improve the Therapeutic Efficacy of Acyclovir in the Treatment of Skin Cancer. Pharmaceutics 2023; 15:1919. [PMID: 37514105 PMCID: PMC10383537 DOI: 10.3390/pharmaceutics15071919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Acyclovir (ACV) is a promising candidate for drug repurposing because of its potential to provide an effective treatment for viral infections and non-viral diseases, such as cancer, for which limited treatment options exist. However, its poor physicochemical properties limit its application. This study aimed to formulate and evaluate an ACV-loaded red clay nanodrug delivery system exhibiting an effective cytotoxicity. The study focused on the preparation of a complex between ACV and red clay (RC) using sucrose stearate (SS) (nanocomplex F1) as an immediate-release drug-delivery system for melanoma treatment. The synthesized nanocomplex, which had nanosized dimensions, a negative zeta potential and the drug release of approximately 85% after 3 h, was found to be promising. Characterization techniques, including FT-IR, XRD and DSC-TGA, confirmed the effective encapsulation of ACV within the nanocomplex and its stability due to intercalation. Cytotoxicity experiments conducted on melanoma cancer cell lines SK-MEL-3 revealed that the ACV release from the nanocomplex formulation F1 effectively inhibited the growth of melanoma cancer cells, with an IC50 of 25 ± 0.09 µg/mL. Additionally, ACV demonstrated a significant cytotoxicity at approximately 20 µg/mL in the melanoma cancer cell line, indicating its potential repurposing for skin cancer treatment. Based on these findings, it can be suggested that the RC-SS complex could be an effective drug delivery carrier for localized cancer therapy. Furthermore, the results of an in silico study suggested the addition of chitosan to the formulation for a more effective drug delivery. Energy and interaction analyses using various modules in a material studio demonstrated the high stability of the composite comprising red clay, sucrose stearate, chitosan and ACV. Thus, it could be concluded that the utilization of the red clay-based drug delivery system is a promising strategy to improve the effectiveness of targeted cancer therapy.
Collapse
Affiliation(s)
- Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | - Krishnaraj Sekar
- Department of Pharmaceutical Technology, Anna University, Chennai 600025, India
| | - Shah Alam Khan
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman
| | - Dhanalekshmi Unnikrishnan Meenakshi
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohammed A Bazuhair
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
8
|
Lee J, Choi MK, Song IS. Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals (Basel) 2023; 16:802. [PMID: 37375753 PMCID: PMC10301446 DOI: 10.3390/ph16060802] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX), a widely used drug in cancer chemotherapy, induces cell death via multiple intracellular interactions, generating reactive oxygen species and DNA-adducted configurations that induce apoptosis, topoisomerase II inhibition, and histone eviction. Despite its wide therapeutic efficacy in solid tumors, DOX often induces drug resistance and cardiotoxicity. It shows limited intestinal absorption because of low paracellular permeability and P-glycoprotein (P-gp)-mediated efflux. We reviewed various parenteral DOX formulations, such as liposomes, polymeric micelles, polymeric nanoparticles, and polymer-drug conjugates, under clinical use or trials to increase its therapeutic efficacy. To improve the bioavailability of DOX in intravenous and oral cancer treatment, studies have proposed a pH- or redox-sensitive and receptor-targeted system for overcoming DOX resistance and increasing therapeutic efficacy without causing DOX-induced toxicity. Multifunctional formulations of DOX with mucoadhesiveness and increased intestinal permeability through tight-junction modulation and P-gp inhibition have also been used as orally bioavailable DOX in the preclinical stage. The increasing trends of developing oral formulations from intravenous formulations, the application of mucoadhesive technology, permeation-enhancing technology, and pharmacokinetic modulation with functional excipients might facilitate the further development of oral DOX.
Collapse
Affiliation(s)
- Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
9
|
Benhouria A, Zaghouane-Boudiaf H, Riadh B, Ferhat D, Hameed BH, Boutahala M. Cross-linked chitosan-epichlorohydrin/bentonite composite for reactive orange 16 dye removal: Experimental study and molecular dynamic simulation. Int J Biol Macromol 2023; 242:124786. [PMID: 37169046 DOI: 10.1016/j.ijbiomac.2023.124786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Chitosan/bentonite beads (CsB) composites were prepared from chitosan (Cs) and bentonite (B) and cross-linked with epichlorohydrin for removal of reactive orange 16 (RO16) and methylene blue (MB). The adsorption results have shown that the (Cs20B80), 20 % wt of (Cs) and 80 % (B), was selected as the best adsorbent for (MB) and (RO16) dyes. SEM, EDX, FTIR, BET, and pHpzc were implemented to investigate the features of Cs, B, and Cs20B80 samples. The influence of contact time (0-72 h), initial RO16 concentration (15-300 mg/L), temperature (30, 40, and 50 °C), the quantity of adsorbent (1-4 g/L), ion strength (0.1-1 M), and solution pH (3-10) on RO16 adsorption onto Cs20B80 were explored. The pseudo-second-order and the Langmuir models fit adequately the adsorption kinetic results and the isotherms ones respectively. Also, the maximal monolayer capacities calculated using the non-linear form of the Langmuir isotherm are 55.27, 55.29, and 70.80 mg/g, at 30, 40 and 50 °C. Based to the statistical physics model, the RO16 could be retained on the surface of Cs20B80 through a non-parallel orientation. The RO16 adsorption process is endothermic and natural, as demonstrated by thermodynamic studies. After three regeneration cycles, the Cs20B80 composite has shown an adsorption capacity of around 20 % compared to the initial one. The adsorption energy of RO16 onto Cs, B, and Cs20B80 examined using the Monte Carlo simulation method (MC) ranged from -164.8 to -303.7 (kcal/mol), showing the potential of the three adsorbants for RO16 dye. Also, the process of adsorption of RO16 dye on the surface of Cs20B80 composite indicates several kinds of physical interactions, involving electrostatic interaction, hydrogen bonding, and π-π interactions, this finding was proved theoretically via molecular dynamic simulations.
Collapse
Affiliation(s)
- Assia Benhouria
- Laboratoire de valorisation des matériaux (LVM), Université de Mostaganem, 27000 Mostaganem, Algeria.
| | - H Zaghouane-Boudiaf
- Laboratoire de génie des procédés chimiques (LGPC), Faculté de Technologie, Université Sétif-1, 19000 Sétif, Algeria
| | - Bourzami Riadh
- Research Unit on Emergent Materials, University of Ferhat Abbas Sétif-1, 19000, Setif, Algeria
| | - Djerboua Ferhat
- Laboratoire des matériaux polymériques et multiphasiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Setif-1, 19000 Sétif, Algeria
| | - B H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mokhtar Boutahala
- Laboratoire de génie des procédés chimiques (LGPC), Faculté de Technologie, Université Sétif-1, 19000 Sétif, Algeria
| |
Collapse
|