1
|
Bi W, Zhao X, Yang X, Yuan X, Lin Y, Xu K, Liu L, Zeng H, Du G, Zhang L. Ratiometric fluorescent probe with AIE characteristics for hypochlorite detection and biological imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124904. [PMID: 39094270 DOI: 10.1016/j.saa.2024.124904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
It is very important and highly valuable to detect ClO- in samples and living cells with accuracy and speed. In this work, a novel fluorescent probe NA was prepared from 4-bromo-1,8-naphthalic anhydride by acylation reaction and Suzuki coupling reaction and used for the detection of ClO-. Thiomethyl serves as the recognition group for probe NA, while naphthalimide serves as fluorescent chromophore. The probe exhibited an extremely pronounced blue shift from yellow to blue fluorescence within 1 min after the addition of hypochlorite (ClO-). The probe demonstrates high sensitivity to ClO- with a limit of detection (LOD) of 1.22 µM. Also, probe NA demonstrates excellent selectivity and immunity to interference. Additionally, simple fluorescent test strips containing probe NA were prepared in this study, enabling rapid detection of ClO- in water samples. And NA had been effectively used to image endogenous and exogenous ClO-fluorescence in living cells. The results suggest that probe NA has significant potential for portable detection and biological applications.
Collapse
Affiliation(s)
- Wei Bi
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xiangyuan Zhao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xinjie Yang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
2
|
Song Q, Bai C, Dong Y, Chen M, Wang S, Hu J, Qiao X, Chen J, Li S, Liu X, Wang X, Qiao R, Qu C, Miao H. Highly selective Zn 2+ near-infrared fluorescent probe and its application in biological imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124828. [PMID: 39029204 DOI: 10.1016/j.saa.2024.124828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Zn2+ plays a vital role in regulating various life processes, such as gene expression, cell signaling, and brain function. In this study, a near-infrared fluorescent probe AXS was synthesized to detect Zn2+ with good fluorescence specificity, high selectivity, and high sensitivity; the detection limit of Zn2+ was 6.924 × 10-11 M. The mechanism of Zn2+ recognition by the AXS probe was investigated by 1H nuclear magnetic resonance titrations, UV-visible spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and high-resolution mass spectrometry. Test paper experiments showed that the AXS probe could detect Zn2+ in real samples. In addition, quantitative and qualitative detection of Zn2+ in common foodstuffs was achieved. For portable Zn2+ detection, a smartphone detection platform was also developed based on the AXS probe. Importantly, the AXS probe showed good bioimaging capabilities in Caenorhabditis elegans and mice.
Collapse
Affiliation(s)
- Qixiang Song
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Shizhen Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Jingde Hu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Xu Qiao
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Ju Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Suyuan Li
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyu Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| |
Collapse
|
3
|
Zhao L, Shi J, Liu Y, Han M, Li S, Cao D. Novel benzothiazole-based fluorescent probe for efficient detection of Cu 2+/S 2- and Zn 2+ and its applicability in cell imaging. Anal Chim Acta 2024; 1324:343093. [PMID: 39218575 DOI: 10.1016/j.aca.2024.343093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In recent years, environmental pollution has been increasing due to the excessive emission of toxic ions, which has caused serious harm to human health and ecological environment. There are various methods for detecting Cu2+, S2- and Zn2+, but the traditional ion detection methods have obvious disadvantages, such as poor selectivity and long detection time. Therefore, it is still crucial to develop simple, efficient and rapid detection methods. RESULTS A fluorescent probe based on benzothiazole, (E)-N'-(3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylbenzylidene)-3,4,5-tris(benzyloxy)benzohydrazide (BT), was designed and synthesized. It was characterized using ESI-MS, 1H NMR, and 13C NMR. BT can be used as a chemosensor to detect Cu2+, S2- and Zn2+ in CH3CN/H2O (7:3, v/v, pH = 7.4, HEPES buffer: 0.1 M), with detection limits of 0.301 μM, 0.017 μM, and 0.535 μM, respectively. At an excitation wavelength of 320 nm, BT exhibits an "on-off-on" response to Cu2+/S2- and enhanced fluorescence response to Zn2+, with a change in fluorescence color from orange to green. The coordination ratio of ions to the probe was determined to be 1:1 through Job's plot and hydrogen spectral titration. The recognition mechanism was discussed in conjunction with theoretical calculations. Furthermore, the probe has been successfully used in test strips and medical swabs colorimetry, as well as live cell imaging. SIGNIFICANCE The probe BT lays the foundation for the design and synthesis of multifunctional fluorescent probes. As a portable detection method, probe BT was used to detect Cu2+, S2- and Zn2+ on strips. Furthermore, the probe was applied to biological cells to detect target ions with low cytotoxicity and excellent cell permeability. This indicating that it can be used as a potential candidate for tracking Cu2+ and S2- in clinical diagnostics and biological systems.
Collapse
Affiliation(s)
- Linxiu Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Junli Shi
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Yongzheng Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Mingfeng Han
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Shengling Li
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China.
| | - Duanlin Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
4
|
Zheng M, Zhou M, Deng W, Wang P, An Y. Semi-quantitative and visual detection of Cu 2+ and glyphosate in real samples and living cells using fluorescent and colorimetric dual-signals peptide-based probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124327. [PMID: 38669979 DOI: 10.1016/j.saa.2024.124327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The excessive emission of copper ions (Cu2+) and the abuse of glyphosate (Glyp) have caused serious harm to the ecological environment and human health, so it is important to develop a fast and convenient method for the analysis of Cu2+ and glyphosate to ensure environmental and food safety. Herein, a dual-signals peptide-based probe (FASRH) with fluorescent and colorimetric was prepared using 5-carboxyl fluorescein modified tetrapeptide (Ala-Ser-Arg-His-NH2). FASRH was successfully used to recognize Cu2+ as a fluorescence "on-off" probe, forming the FASRH-Cu2+ complex with non-fluorescence. As a new promising cascade probe, FASRH-Cu2+ complex probe has high selectivity (only Glyp), good sensitivity (50.2 nM), good anti-interference ability and wide pH range (7.0-11.0) for the detection of glyphosate by ligand replacement method. In addition, the recognizable color changed markedly under 365 nm UV light and natural light. Notably, FASRH not only achieved accurate monitoring of Cu2+ and glyphosate in two real water samples, but also successfully applied to detect Cu2+ and glyphosate in live Hacat cells based on low cytotoxicity. Moreover, it is worth noting that FASRH-impregnated test strips exhibited significant fluorescence and colorimetric color changes for Cu2+ and glyphosate via naked eye. Furthermore, smartphone-assisted FASRH was used for the portable detection of Cu2+ and glyphosate based on the advantages of simplicity, low cost and fast response.
Collapse
Affiliation(s)
- Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
5
|
Zeng H, Yuan X, Yang X, Liu L, Lin Y, Xie L, Chai X, Xu K, Du G, Zhang L. Synthesis and application of hypochlorite ratiometric fluorescence probe based on cellulose. Int J Biol Macromol 2024; 260:129660. [PMID: 38253145 DOI: 10.1016/j.ijbiomac.2024.129660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Cellulose is the most abundant natural polymer with good biocompatibility and easy modification characteristics. In this paper, a novel cellulose fluorescence probe CNS for detecting ClO- was prepared by modifying microcrystalline cellulose (MCC). The fluorescence detection results indicate that CNS exhibits a highly specific "ratiometric" and "colorimetric" fluorescence response to ClO-. In the presence of ClO-, the fluorescence color changes from green to cyan. In addition, the color of the solution changes from yellow to colorless, which can be observed with the "naked eye". Considering the good selectivity and anti-interference ability of CNS, the probe can be used for the detection of ClO- in real water samples. Importantly, CNS composite films and test papers were prepared and showed practicability in the detection of ClO-, highlighting its broad application potentials.
Collapse
Affiliation(s)
- Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xinjie Yang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Linkun Xie
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xijuan Chai
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
6
|
Shu L, Zhang XF, Wang Z, Liu J, Yao J. Cellulose-based bi-layer hydrogel evaporator with a low evaporation enthalpy for efficient solar desalination. Carbohydr Polym 2024; 327:121695. [PMID: 38171664 DOI: 10.1016/j.carbpol.2023.121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Interfacial evaporation through hydrogel-based evaporators is emerging as a sustainable and cost-effective strategy for drinkable water production. Herein, a specially designed bi-layer hydrogel evaporator was fabricated and used for efficient solar water desalination. With cotton linter as cellulose precursor, it was dispersed in a highly concentrated ZnCl2 (65 %) solution, and cross-linked by epichlorohydrin to prepare cellulose composite hydrogel. After removing inorganic salts by salt-leaching, polyaniline (PANi) with broadband and wide-range light absorption was then integrated into the top surface of hydrogel through in situ polymerization to construct a bi-layer evaporator. As a solar evaporator, the water could be evaporated with a low-energy demand, and the heat from the sunlight could be confined at the interface to achieve efficient water evaporation. Therefore, the hydrogel evaporator demonstrates an optimal water evaporation rate of 3.02 kg m-2 h-1 and photothermal conversion efficiency of 89.09 % under 1 sun (1 kW m-2) irradiation. This work provides new possibilities for efficient solar water purification systems with assured water quality.
Collapse
Affiliation(s)
- Lian Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhongguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou 251200, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Huang H, Wang X, Zhou G, Qian C, Zhou Z, Wang Z, Yang Y. A novel ratiometric fluorescent sensor from modified coumarin-grafted cellulose for precise pH detection in strongly alkaline conditions. Int J Biol Macromol 2024; 262:130066. [PMID: 38340911 DOI: 10.1016/j.ijbiomac.2024.130066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Accurate and convenient monitoring of pH under extreme alkaline conditions is still a challenge. In this work, 4-(3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxoprop-1-en-1-yl)benzamide (HCB), a coumarin derivative, was grafted onto dialdehyde cellulose (DAC) to obtain a sensor DAC-HCB, which exhibited a ratiometric fluorescent response to the pH of alkaline solutions, resulting in a significant fluorescent color change from yellow to blue (FI459 nm/FI577 nm) at pH 7.5-14. The structure of DAC-HCB was characterized through FT-IR, XRD, XPS, SEM. The pKa of sensor DAC-HCB was 13.16, and the fluorescent intensity ratio FI459 nm/FI577 nm possessed an excellent linear characteristic with pH in the scope of 9.0-13.0. Meanwhile, sensor DAC-HCB showed good selectivity, anti-interference, and fast response time to basic pH, which is an effective fluorescent sensor for examination of pH in alkali circumstance. The recognition mechanism of DAC-HCB to OH- was elucidated with HRMS and density-functional theory (DFT) computational analyses. Sensor DAC-HCB was successfully used for precise detection of environmental water samples pH. This work furnished a new protocol for test strips as a convenient and highly efficient pH detection tool for the high pH environment, and it has great potential for application in environmental monitoring.
Collapse
Affiliation(s)
- Huan Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guocheng Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Liang ZQ, Song DD, Li ZC, Xu SH, Dai GL, Ye CQ, Wang XM, Tao XT. Bright photoactivatable probes based on triphenylethylene for Cu 2+ detection in tap water and tea samples. Food Chem 2024; 434:137439. [PMID: 37729781 DOI: 10.1016/j.foodchem.2023.137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Photoactivatable probes can switch fluorescence on from a weak or nonemission state to improve the sensitivity of the sensing system. In this work, we successfully constructed three highly emissive photoactivatable probes, 2-DP, 1-2-DP and 2-2-DP, for Cu2+ detection. Under UV irradiation, the photoluminescence quantum yields of 2-DP, 1-2-DP and 2-2-DP display approximately 52.4-, 11.5- and 49.2-fold enhancement, respectively. Cu2+ selectively quenches the bright photoactivated fluorescence, resulting in an approximately 38-fold fluorescence reduction. The highly selective fluorescence response to Cu2+ yields an excellent low detection limit of 5.8 nM. Moreover, the photoactivatable probes were successfully applied for Cu2+ determination in tap water and tea samples with recovery ranges of 95%-105% and 97%-106%, respectively. This work provides a more sensitive and efficient methodology for Cu2+ detection in heavy metal pollution and food safety.
Collapse
Affiliation(s)
- Zuo-Qin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dong-Dong Song
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhuo-Cheng Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Su-Hang Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guo-Liang Dai
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chang-Qing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao-Mei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu-Tang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Silva EC, Gomes CG, Pina J, Pereira RFP, Murtinho D, Fajardo AR, Valente AJM. Carbon quantum dots-containing poly(β-cyclodextrin) for simultaneous removal and detection of metal ions from water. Carbohydr Polym 2024; 323:121464. [PMID: 37940321 DOI: 10.1016/j.carbpol.2023.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
This study investigates the synthesis and characterization of supramolecular composites composed of poly(β-cyclodextrin-co-citric acid) and carbon quantum dots (QDs). These composites serve a dual purpose as adsorbents and photoluminescent probes for divalent metal ions, including Ni(II), Cu(II), Cd(II), and Pb(II), which can have detrimental effects on the environment. Various characterization techniques were employed to confirm the successful synthesis of the composites and the interaction between cyclodextrins and QDs. By using mathematical tools, optimal conditions for metal adsorption were determined, resulting in the composites exhibiting high adsorption capacities, reaching 220 mg/g, and impressive removal efficiencies exceeding 90 % for Ni(II) and Cu(II). The supramolecular composites also exhibit selective adsorption of metal ions with small ionic radio and can be reused with minimal loss of efficiency. In addition to their adsorption capabilities, these composites display luminescence quenching upon the adsorption of metal ions, which can be utilized for sensing applications. Spectroscopic evaluation reveals Stern-Volmer quenching constants for the accessible fraction of QDs in the range of 3777 to 13,359 M-1. The high stability of QDs on the composites allows for long-term storage. In summary, this original supramolecular composite shows promise for simultaneously monitoring and treating water and wastewater, making it a valuable tool in environmental applications.
Collapse
Affiliation(s)
- Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil; Chemistry Center and Chemistry Department, University of Minho, 4710-057 Braga, Portugal
| | - Charlie G Gomes
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil
| | - João Pina
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Rui F P Pereira
- Chemistry Center and Chemistry Department, University of Minho, 4710-057 Braga, Portugal
| | - Dina Murtinho
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas-RS, Brazil.
| | - Artur J M Valente
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|