1
|
Hu Y, Wang D, Zhang Y, Chen S, Yang X, Zhu R, Wang C. A novel polysaccharide from blueberry leaves: Extraction, structural characterization, hypolipidemic and hypoglycaemic potentials. Food Chem 2024; 460:140493. [PMID: 39053284 DOI: 10.1016/j.foodchem.2024.140493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
In this study, the structural characterization, physicochemical properties, antioxidant, hypolipidemic, and hypoglycemic potentials of polysaccharide components (BLP-1, BLP-2, and BLP-3) purified from blueberry leaf polysaccharides (BLP) were investigated. Ion chromatography results showed that BLP-1, BLP-2, and BLP-3 contained rhamnose, arabinose, galactose, glucose, and glucuronic acid. In contrast to BLP-1, BLP-2 and BLP-3 included galacturonic acid. The methylation analysis results indicated that the backbones of BLP-1, BLP-2, and BLP-3 were mainly composed of glycosidic linkages of arabinose, galactose, and glucose, which was consistent with the results of the previously determined monosaccharide composition. The in-vitro antioxidant results showed that BLP-1, BLP-2, and BLP-3 possessed antioxidant activity with the highest scavenging of -OH radicals. Furthermore, BLP-1, BLP-2, and BLP-3 showed high bile acid-binding activity and α-amylase inhibitory activity, suggesting that they have the potentials of hypolipidemic and hypoglycemic. This study provides a reference for the utilization of blueberry leaf resources.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Siyun Chen
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiangmin Yang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Rongan Zhu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
3
|
Lu Y, Qin L, Mao Y, Lnong X, Wei Q, Su J, Chen S, Wei Z, Wang L, Liao X, Zhao L. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int J Biol Macromol 2024; 279:134788. [PMID: 39173786 DOI: 10.1016/j.ijbiomac.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 μg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 μg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Yucui Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China
| | - Linyin Qin
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanhui Mao
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xianmei Lnong
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qianni Wei
- Beihai Vocational College, Beihai 536000, China
| | - Junwen Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shuwen Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshi Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lijing Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiayun Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| | - Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| |
Collapse
|
4
|
Qiu X, Geng Y, Cai X, Ou Y, Li M, Zhang Y, He D, Qian X, Wu Y, Ma H, Yan JK, Yao H, Chen WH. Anti-inflammatory activity and underlying mechanism against sepsis-induced acute lung injury of a low-molecular-weight polysaccharide from the root of Stemona tuberosa Lour. Int J Biol Macromol 2024; 282:136617. [PMID: 39426768 DOI: 10.1016/j.ijbiomac.2024.136617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The root of Stemona tuberosa Lour has been used to treat tuberculosis, scabies, and eczema. Polysaccharides are among its main bioactive ingredients. A low-molecular-weight (1819 Da) polysaccharide (SPS2-A) was obtained from the root of S. tuberosa Lour by optimizing three-phase partitioning, purified using an ion chromatography column, and its effects and mechanisms were investigated. Structural analysis revealed that SPS2-A contained arabinose, galactose (Gal), glucose (Glc), xylose, and mannose. The SPS2-A backbone structure comprised sugar residues →4)-α-D-Glcp-(1→, →4)-α-D-Galp-(1→, and →4,6)-β-D-Galp-(1→, while the side chain primarily comprised α-D-Glcp-(1 → connected to the O-6 position of the residue →4,6)-β-D-Galp-(1→. In vitro, SPS2-A downregulated the expression of interleukin-6 in lipopolysaccharide-induced RAW264.7 macrophages. In vivo, SPS2-A significantly downregulated the expression of myeloperoxidase, interleukin-6, interleukin-1β, and tumor necrosis factor-α in bronchoalveolar lavage fluid and lung tissue. Western blotting analysis indicated that SPS2-A reduced lung inflammation in mice with sepsis-induced acute lung injury by activating the nuclear factor κB pathway. These results suggest that SPS2-A is a potential anti-inflammatory candidate for the treatment of sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Xiang Qiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Xiaoyue Cai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Dengqin He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Xudong Qian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Hongwei Ma
- Guangdong Huakangyuan Medicinal Resources Development Co., LTD, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
5
|
Zhang Y, Yang Y, Song J, Yu W, Li Y, Liu D, Gao J, Fan B, Wang F, Zheng Y. Laoxianghuang polysaccharide promotes the anti-inflammatory cytokine interleukin-10 in colitis via gut microbial linoleic acid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156136. [PMID: 39454376 DOI: 10.1016/j.phymed.2024.156136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Our previous study found that the polysaccharide from Laoxianghuang (LP), fermented fruit of bergamot (traditional Chinese medicine and food), can alter gut microbiota and regulate short-chain fatty acids (SCFAs) in vitro. Nevertheless, there is a paucity of reports on the impact of LP on gut microbiota in vivo. PURPOSE To analyze the structures of LP, investigate the influence of LP on the damaged intestinal barrier in DSS-induced colitis mice, and further explore its potential mechanisms. METHODS We analyzed the physicochemical properties of purified LP by HPLC, SEM, and FT-IR spectrum. Then, to assess the effect of LP in DSS-induced colitis mice, we observed the damage to the colon tissue, measured inflammatory cytokines and tight junction protein expression through RT-qPCR as well as immunofluorescent staining, and investigated the influence of LP on altering gut microbiota and metabolites using 16 s rRNA sequencing and HPLC-MS/MS. Ultimately, the impact of linoleic acid on inflammatory cytokines was confirmed by the LPS-induced RAW264.7 cells. RESULTS LP, mainly galactoglucan, could inhibit weight loss and colon shortening, decrease levels of tumor necrosis factor-α (TNF-α), increase levels of interleukin-10 (IL-10) and the intestinal acetic acid and butyric acid, and promote the expression of tight junction proteins ZO-1 and Claudin-1. Meanwhile, LP enhanced the abundance of beneficial bacteria including Romboutsia, Eubacterium_coprostanoligenes_group, and Akkermansia, and regulated linoleic acid metabolism to increase the linoleic acid level. In vitro cell experiment proved that linoleic acid could elevate the level of IL-10 and inhibit inflammatory responses. CONCLUSIONS Our results suggested that LP effectively alleviated colitis by promoting the anti-inflammatory cytokine interleukin-10 via gut microbiota-mediated linoleic acid metabolism.
Collapse
Affiliation(s)
- Yuwei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiren Yang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jiangping Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenqing Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Denghong Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Yang Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
6
|
Teng C, Liu J, Li S, Ma K, Xu L, Feng J, Chai Z, Hu X, Lu Y, Li Y. Structural characterization, physicochemical properties and hypoglycemic activity of soluble dietary fibers from salt stressed mung bean sprouts. Int J Biol Macromol 2024; 278:134979. [PMID: 39181370 DOI: 10.1016/j.ijbiomac.2024.134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Low-salt stress germination is an effective way to improve the nutritional composition of food crops. A novel soluble dietary fiber (MS-SDF) was isolated from low-salt stress mung bean sprouts that were exposed to low-salt stress using anion exchange and gel permeation techniques. Structural analysis revealed that MS-SDF was a homogeneous heteropolysaccharide with an average molecular weight of 164.997 KDa. It featured a loose structure and contained the characteristic functional groups typical of polysaccharides. MS-SDF was composed of arabinose, galactose, glucose, and mannose with a molar ratio of 3.95:3.86:82.69:9.02. The structure was mainly composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,6)-α-D-Glcp-(1→ as the main chain. Branched at O-3 position with single β-D-Manp-(1→ as major the side chain. Furthermore, in vitro hypoglycemic assays indicate that MS-SDF exhibits α-glucosidase inhibitory activity, significantly enhancing glucose uptake, glycogen synthesis, and pyruvate kinase activity in insulin-resistant HepG2 cells. Overall, MS-SDF could be used as a promising source of functional hypoglycemic foods.
Collapse
Affiliation(s)
- Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinge Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Suling Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kaiyang Ma
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lujing Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhi Chai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xindi Hu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yifei Lu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Chen Z, Wang D, Gu S, Wu N, Wang K, Zhang Y. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol 2024; 277:134236. [PMID: 39079564 DOI: 10.1016/j.ijbiomac.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Natural polysaccharides exhibit a wide range of biological activities, which are closely related to their structural characteristics, including their molecular weight distribution, size, monosaccharide composition, glycosidic bond types and spatial conformation, etc. Size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4), as two potent separation techniques, both harbor potential for continuous development and enhancement. This manuscript reviewed the fundamental principles and separation applications of SEC and AF4. The structural information and spatial conformation of polysaccharides can be obtained using SEC or AF4 coupled with multiple detectors. In addition, this manuscript elaborates in detail on the shear degradation of samples such as polysaccharides separated by SEC. In addition, the abnormal elution that occurs during the application of the two methods is also discussed. Both SEC and AF4 possess considerable potential for ongoing development and refinement, thereby offering increased possibilities and opportunities for polysaccharide separation and characterization.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
9
|
Li YM, Zhan XM, Hao KX, Zhong RF, Wang DW, Ma SY, Jiang J, Zhu W. A polysaccharide PRCP from Rosa cymosa Tratt fruit: Structural characteristics and immunomodulatory effects via MAPK pathway modulation in vitro. Int J Biol Macromol 2024; 276:133025. [PMID: 38852737 DOI: 10.1016/j.ijbiomac.2024.133025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The Rosa cymosa Tratt, an herbal plant from the Rosaceae family, has historically been valued in China for its medicinal and edible properties. In this study, a novel polysaccharide from R. cymosa fruit, termed PRCP (purified R. cymosa polysaccharide), was isolated using water extraction, decolorization, deproteinization, and ion-exchange chromatography. The structural characteristics of PRCP were investigated using monosaccharide composition analysis, methylation, GPC, FTIR, CD, and NMR spectroscopy. The immunomodulatory effect and potential mechanism of PRCP were evaluated in vitro using a macrophage cell model. Results indicated that PRCP (37.28 kDa) is a highly branched polysaccharide (72.61 %) primarily composed of arabinogalactan, rhamnogalacturonan, and galactoglucan domains with 13 types of glycosidic linkage fragments. Furthermore, PRCP appears to modulate immunomodulatory effects by influencing the phosphorylation of P38 and JNK proteins in the MAPK pathway. Collectively, these findings highlight the potential of PRCP as a promising natural functional food ingredient for immunostimulation.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Synthetic Enzymes and Natural Products Centre, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xiao-Mei Zhan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ke-Xin Hao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Rui-Fang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Da-Wei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou 528329, China
| | - Shi-Yu Ma
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jianguo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
10
|
Li Y, Li X, Yuan Q, Zhao J, Wu W, Gui Y, Wang H, Wang L, Luo Y, Zhou G, Zhang J, He Y, Yuan C. Polysaccharides from Balanophora harlandii Hook: Isolation, characterization, and anti-inflammation activities. J Pharm Biomed Anal 2024; 246:116252. [PMID: 38788622 DOI: 10.1016/j.jpba.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Balanophora harlandii Hook (B. harlandii), a folk medicine, has been traditionally employed to treat traumatic bleeding, gastroenteritis, icteric hepatitis, hemorrhoids, and other conditions. In this work, polysaccharides with anti-inflammatory effects were extracted from B. harlandii and purified. The extraction conditions were optimized, and the properties of one purified neutral fraction, denoted as BHPs-W-S3, were analyzed. BHPs-W-S3 has a molecular weight of 14.1 kDa, and its three main monosaccharides are glucose, galactose, and xylose, with a molar ratio of 6.4:1.7:1.1. Its main chain consists of →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, →6)-β-D-Galp-(1→, →3,6)-β-D-Galp-(1→, and it has branch chains at the O-4 and/or O-3 positions. In addition, in vitro experiments showed that the polysaccharides from B. harlandi can decrease the phosphorylation level of p65 and IκBα in LPS-induced RAW264.7 cells to reduce the expression of the pro-inflammatory genes such as TNF-α, IL-6, and IL-1β.
Collapse
Affiliation(s)
- Yuanyang Li
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Xueqing Li
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Jiale Zhao
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Wei Wu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Yibei Gui
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hailin Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Lijun Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yiyang Luo
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Jihong Zhang
- Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine& Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang 443002, China
| | - Yumin He
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China.
| | - Chengfu Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
11
|
Ma JJ, Wu WY, Liao J, Liu L, Wang Q, Xiao GS, Liu HF. Preparation of Dendrobium officinale Polysaccharide by Lactic Acid Bacterium Fermentation and Its Protective Mechanism against Alcoholic Liver Damage in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17633-17648. [PMID: 39051975 DOI: 10.1021/acs.jafc.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Dendrobium officinale polysaccharide (DP) was prepared with lactic acid bacterium fermentation to overcome the large molecular weight and complex structure of traditional DP for improving its functional activity and application range in this work. The structure was analyzed, and then the functional activity was evaluated using a mouse model of alcoholic liver damage. The monosaccharide compositions were composed of four monosaccharides: arabinose (0.13%), galactose (0.50%), glucose (24.38%), and mannose (74.98%) with a molecular weight of 2.13 kDa. The connection types of glycosidic bonds in fermented D. officinale (KFDP) were →4)-β-D-Manp(1→, →4)-β-Glcp(1→, β-D-Manp(1→, and β-D-Glcp(1→. KFDP exhibited an excellent protective effect on alcoholic-induced liver damage at a dose of 80 mg/kg compared with polysaccharide separated and purified from D. officinale without fermentation (KDP), which increased the activity of GSH, GSH-Px, and GR and decreased the content of MDA, AST, T-AOC, and ALT, as well as regulated the level of IL-6, TNF-α, and IL-1β to maintain the normal functional structure of hepatocytes and retard the apoptosis rate of hepatocytes. The results proved that fermentation degradation is beneficial to improving the biological activity of polysaccharides. The potential mechanism of KFDP in protecting alcoholic liver damage was inhibiting the expression of miRNA-150-5p and targeting to promote the expression of Pik3r1. This study provides an important basis for the development of functional foods.
Collapse
Affiliation(s)
- Juan-Juan Ma
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Wei-Yao Wu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Geng-Sheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hui-Fan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
12
|
Li H, Ai Y, Zeng K, Deng L. The response of Midknight Valencia oranges to ethephon degreening varies in the turning and regreening stages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39078023 DOI: 10.1002/jsfa.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Late-ripening citrus plays an important role in the stability of the global citrus industry. However, the regreening phenomenon in Valencia oranges impacts the peel color and commercial value. Ethylene degreening is an effective technique to improve the color of citrus fruits, but this effect may be delayed in regreened oranges. To better clarify this phenomenon, plastid morphology, pigment and phytohormone content in ethephon-degreened Midknight Valencia oranges harvested in different stages were evaluated. RESULTS Results showed that in fruits harvested at the turning stage, ethephon degreening treatment induced a chloroplast-to-chromoplast transition, and chlorophyll degradation and carotenoid accumulation were accelerated. Conversely, in fruits harvested at the regreening stage, the changes in plastid morphology were minimal, with delayed changes in chlorophyll and carotenoids. Genes related to ethylene biosynthesis and signaling pathways supported these responses. Variations in endogenous auxin, jasmonic acid, abscisic acid and gibberellins could partially explain this phenomenon. CONCLUSION The response of Midknight Valencia oranges to ethephon degreening was delayed in the regreening stage, possibly due to the dynamic variations in endogenous phytohormones. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Li
- College of Food Science, Southwest University, Chongqing, PR China
| | - Yeru Ai
- College of Food Science, Southwest University, Chongqing, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, PR China
- National Citrus Engineering Research Center, Chongqing, PR China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, PR China
- National Citrus Engineering Research Center, Chongqing, PR China
| |
Collapse
|
13
|
Luo X, Zhen D, Deng Q, Guo M, Mao H, Dai H, Xie ZH, Zhong J, Liu Y. Corrosion inhibition activity of a natural polysaccharide from Dysosma versipellis using tailor-made deep eutectic solvents. Int J Biol Macromol 2024; 268:129220. [PMID: 38191116 DOI: 10.1016/j.ijbiomac.2024.129220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
In this work, a total of 18 types of choline chloride, betaine, and L-proline-based deep eutectic solvents (DESs) were synthesized to determine the extraction yield of a natural polysaccharide (PSA) from Dysosma versipellis using an ultrasound-assisted extraction method. Results indicate that the choline-oxalic acid-based DES has the best extraction yield for PSA due to the proper physical-chemical properties between PSA and DES. To evaluate the optimal extraction conditions, a response surface methodology was carried out. Under the optimal conditions, the extraction yield of PSA reaches 10.37 % (± 0.03 %), higher than the conventional extraction methods. Findings from FT-IR and NMR suggest that the extracted PSA belongs to a neutral polysaccharide with (1 → 6)-linked α-d-glucopyranose in the main chain. Interestingly, results from various electrochemical measurements show the extracted PSA exhibits excellent corrosion inhibition performance for mild steel (MS) in a 0.5 M HCl solution, with 90.8 % of maximum corrosion inhibition efficiency at 210 mg L-1. SEM and XPS measurements reveal the formation of a protective layer on the MS surface. The adsorption behaviour of extracted PSA well obeys the Langmuir adsorption isotherm containing the chemisorption and physisorption. Additionally, theoretical calculations validate the experimental findings.
Collapse
Affiliation(s)
- Xiaohu Luo
- Engineering Research Center of Loss Efficacy and Anticorrosion of Materials of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyan 558000, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Deshuai Zhen
- Engineering Research Center of Loss Efficacy and Anticorrosion of Materials of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyan 558000, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qiuhui Deng
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Meng Guo
- Engineering Research Center of Loss Efficacy and Anticorrosion of Materials of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyan 558000, PR China
| | - Haili Mao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Homg Dai
- Engineering Research Center of Loss Efficacy and Anticorrosion of Materials of Guizhou, School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyan 558000, PR China.
| | - Zhi-Hui Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.
| | - Junbo Zhong
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 637002, PR China
| | - Yali Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
14
|
Huang R, Li H, Huang X, Zhou Y, Liu Z, Liu C, Li Q. Extracellular matrix-mimetic immunomodulatory fibrous scaffold based on a peony stamens polysaccharide for accelerated wound healing. Int J Biol Macromol 2024; 264:130573. [PMID: 38447846 DOI: 10.1016/j.ijbiomac.2024.130573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Re-establishment of the extracellular matrix (ECM) in wound tissue is critical for activating endogenous tissue repair. In this study, we designed an ECM-like scaffold material using plant polysaccharides and assessed its efficacy through in vitro and in vivo experiments. The scaffold accelerates wound healing by regulating inflammatory responses and accelerating tissue regeneration. Briefly, we isolated two polysaccharides of varying molecular weights from peony stamens. One of the polysaccharides exhibits potent immunomodulatory and tissue regeneration activities. We further prepared electrospinning materials containing this polysaccharide. In vitro investigations have demonstrated the polysaccharide's ability to modulate immune responses by targeting TLR receptors. In vivo experiments utilizing a scaffold composed of this polysaccharide showed accelerated healing of full-thickness skin wounds in mice, promoting rapid tissue regeneration. In conclusion, our study shows that this scaffold can mobilize the endogenous regenerative capacity of tissues to accelerate repair by mimicking the characteristics of ECM. The overall study has implications for the design of new, effective, and safer tissue regeneration strategies.
Collapse
Affiliation(s)
- Rong Huang
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiqin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Xiaoli Huang
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya Zhou
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Congming Liu
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
15
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Liang X, Liu M, Wei Y, Tong L, Guo S, Kang H, Zhang W, Yu Z, Zhang F, Duan JA. Structural characteristics and structure-activity relationship of four polysaccharides from Lycii fructus. Int J Biol Macromol 2023; 253:127256. [PMID: 37802446 DOI: 10.1016/j.ijbiomac.2023.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
At present, the structure-activity relationship of polysaccharides is a common and important focus in the fields of glycobiology and carbohydrate chemistry. To better understand the effect of specific polysaccharide structures on bioactive orientation, four homogeneous polysaccharides from Lycii fructus, one neutral along with three acidic polysaccharides, were purified, structurally characterized and comparatively evaluated on the antioxidative and anti-aging activities. The GC-MS-based monosaccharide composition analysis and methylation results showed that the LFPs had similar glycosyl types but varied proportions. Nuclear magnetic resonance (NMR) spectroscopy showed that LFPs consisted of arabinogalactan, rhamnogalacturonan and homogalacturonan structural domains. The results of the structure-activity relationship indicated that the antioxidative activity was positively correlated with the galacturonic acid (GalA) content, while the neutral multi-branched chains might be responsible for the anti-aging activity. This study is the first time to compare the principal structures and multiple biological activities of LFPs, which provided a reference for the industrial development and deep excavation of the health value of LFPs.
Collapse
Affiliation(s)
- Xiaofei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengqiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Limei Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongjie Kang
- Ningxia Innovation Center of Goji R & D, Yinchuan 750002, PR China
| | - Wenhua Zhang
- Bairuiyuan Gouqi Co., Ltd., Yinchuan 750200, PR China
| | - Zhexiong Yu
- Tianren Ningxia Wolfberry Biotechnology Co., Ltd., Zhongning 755100, PR China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
17
|
Li W, Zhang Y, Zhao X, Fang L, Yang T, Xie J. Optimization of ultrasonic-assisted extraction of Platycodon grandiflorum polysaccharides and evaluation of its structural, antioxidant and hypoglycemic activity. ULTRASONICS SONOCHEMISTRY 2023; 100:106635. [PMID: 37839233 PMCID: PMC10582823 DOI: 10.1016/j.ultsonch.2023.106635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
The study aimed to improve the extraction rate of Platycodon grandiflorum roots polysaccharides (PGPs) using ultrasound-assisted extraction (UAE). A comparative analysis was undertaken to evaluate polysaccharides content, molecular weight distribution, monosaccharide composition, preliminary structure, antioxidant, and hypoglycemic activity of UAE in comparison with heating water extraction (HWE). The optimum extraction conditions included a liquid-to-material ratio of 20 mL/g, ultrasonic power of 150 W, extraction temperature of 70 ℃, and extraction time of 20 min, resulting in a significantly greater polysaccharides (12.011 ± 0.91 %) compared to HWE (7.62 ± 0.18 %). Through Sephacryl S-100 column elution, two homogenous fraction (PGP-U extracted with UAE and PGP-H extracted with HAE) were obtained. The molecular weight of PGP-U and PGP-H was 3.14 kDa and 3.44 kDa, respectively, mainly composed of different proportions of fourteen monosaccharides. Fourier transform infrared spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR) spectra experiment results showed that the two polysaccharides were pyranose ring with α- and β-glycoside bond. PGP-U and PGP-H exhibited specific antioxidant activities, encompassing total reducing force, scavenging of DPPH radicals, ABTs radicals and hydroxyl radicals in vitro, along with mitigation of H2O2-induced damage in HepG2 cells. Moreover, PGP-U exerted significantly stronger inhibitory activities against α-amylase and α-glucosidase and could significantly enhances the glucose uptake capacity and intracellular glycogen content of insulin-resistant HepG2 (IR-HepG2) cells.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Leilei Fang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
Cao H, Wang X, Shi M, Guan X, Zhang C, Wang Y, Qiao L, Song H, Zhang Y. Influence of physicochemical changes and aggregation behavior induced by ultrasound irradiation on the antioxidant effect of highland barley β-glucan. Food Chem X 2023; 19:100793. [PMID: 37780315 PMCID: PMC10534095 DOI: 10.1016/j.fochx.2023.100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 10/03/2023] Open
Abstract
The effect of ultrasonic treatment on the structure, morphology and antioxidant activity of highland barley β-glucan (HBG) was investigated. Ultrasonic treatment for 30 min was demonstrated to improve the aqueous solubility of HBG, leading to a decrease in turbidity. Meanwhile, moderate ultrasound was found to obviously reduce the particle size distribution of HBG, and transform the entangled HBG molecules into flexible and extended chains, which reaggregated to form larger aggregates under long-time ultrasonication. The in vitro antioxidant capacity of HBG treated by ultrasonic first increased and then decreased compared to native HBG. Congo red complexation analysis indicated the existence of helix structure in HBG, which was untwisted after ultrasonic treatment. Furthermore, ultrasound treatment influenced the glucopyranose on HBG, which weakened the intramolecular hydrogen bond of HBG. The microscopic morphology showed that the spherical aggregates in native HBG solution were disaggregated and the untangled HBG chains reaggregated with excessive ultrasonication.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Mengmeng Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chunhong Zhang
- Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Yueqin Wang
- Tibet Himalayan Ecological Technology Co., Ltd., Tibet, PR China
| | - Linnan Qiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
19
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023:1-30. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
21
|
Li N, Xiong YX, Ye F, Jin B, Wu JJ, Han MM, Liu T, Fan YK, Li CY, Liu JS, Zhang YH, Sun GB, Zhang Y, Dong ZQ. Isolation, Purification, and Structural Characterization of Polysaccharides from Codonopsis pilosula and Their Anti-Tumor Bioactivity by Immunomodulation. Pharmaceuticals (Basel) 2023; 16:895. [PMID: 37375842 DOI: 10.3390/ph16060895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The activity of polysaccharides is usually related to molecular weight. The molecular weight of polysaccharides is critical to their immunological effect in cancer therapy. Herein, the Codonopsis polysaccharides of different molecular weights were isolated using ultrafiltration membranes of 60- and 100-wDa molecular weight cut-off to determine the relationship between molecular weight and antitumor activities. First, three water-soluble polysaccharides CPPS-I (<60 wDa), CPPS-II (60-100 wDa), and CPPS-III (>100 wDa) from Codonopsis were isolated and purified using a combination of macroporous adsorption resin chromatography and ultrafiltration. Their structural characteristics were determined through chemical derivatization, GPC, HPLC, FT-IR, and NMR techniques. In vitro experiments indicated that all Codonopsis polysaccharides exhibited significant antitumor activities, with the tumor inhibition rate in the following order: CPPS-II > CPPS-I > CPPS-III. The treatment of CPPS-II exhibited the highest inhibition rate at a high concentration among all groups, which was almost as efficient as that of the DOX·HCL (10 μg/mL) group at 125 μg/mL concentration. Notably, CPPS-II demonstrated the ability to enhance NO secretion and the antitumor ability of macrophages relative to the other two groups of polysaccharides. Finally, in vivo experiments revealed that CPPS-II increased the M1/M2 ratio in immune system regulation and that the tumor inhibition effect of CPPS-II + DOX was superior to that of DOX monotherapy, implying that CPPS-II + DOX played a synergistic role in regulating the immune system function and the direct tumor-killing ability of DOX. Therefore, CPPS-II is expected to be applied as an effective cancer treatment or adjuvant therapy.
Collapse
Affiliation(s)
- Nan Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Ying-Xia Xiong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Fan Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Bing Jin
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Jin-Jia Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Miao-Miao Han
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Tian Liu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Yi-Kai Fan
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Cun-Yu Li
- Department of Chinese Medicine Pharmaceutics, School of Pharmaceutical Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiu-Shi Liu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ying-Hua Zhang
- Jilin Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Gui-Bo Sun
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yun Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing 100193, China
| | - Zheng-Qi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing 100193, China
| |
Collapse
|