1
|
Gao Y, Zhang J, Yang W, Dai H, Wang J. Tailoring anisotropic ZnO/wood-structural holocellulose hybrids for dye degradation through controlled nanoinsertion. Int J Biol Macromol 2024; 282:137076. [PMID: 39481713 DOI: 10.1016/j.ijbiomac.2024.137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Nanostructured inorganic/wood-structural holocellulose hybrids offer new potential applications, including mechanical energy conversion, superhydrophobic materials, gas adsorption and so on. Owing to the anisotropy of wood, controlling the morphology of mineral particles inside porous holocellulose scaffold is still far from satisfactory. In this work, a homogeneous zinc oxide (ZnO) decoration inside wood-structural holocellulose scaffold was achieved while the morphology, distribution and content of ZnO micro-nano particles were controllable through changing the conditions of hydrothermal growth. The holocellulose scaffold was prepared through delignification and periodate oxidation, which is favorable for Zn2+ capture and ZnO nuclei formation because of the surface charge increased. The controlled ZnO insertion was realized by changing metal salt concentration, temperature and hydrothermal time. The obtained multilayer ZnO could provide multiple light refractions and reflections and enhance the utilization of light. Consequently, with a minor ZnO loading (15 wt%), the ZnO/wood-structural hybrids could totally degrade methyl orange and methyl blue in 6 h. This novel and scalable synthesis method shows potential for both the design and photocatalytic activity of holocellulose hybrids.
Collapse
Affiliation(s)
- Ying Gao
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingxiang Zhang
- Key Laboratory of Mechanics On Disaster and Environment in Western China and the Ministry of Education of China (Lanzhou University), Lanzhou 730000, China; College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Jizeng Wang
- Key Laboratory of Mechanics On Disaster and Environment in Western China and the Ministry of Education of China (Lanzhou University), Lanzhou 730000, China; College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Zheng D, Zhu Y, Sun X, Sun H, Yang P, Yu Z, Zhu J, Ye Y, Zhang Y, Jiang F. Equilibrium Moisture Mediated Esterification Reaction to Achieve Over 100% Lignocellulosic Nanofibrils Yield. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402777. [PMID: 38934355 DOI: 10.1002/smll.202402777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Lignocellulosic nanofibrils (LCNFs) isolation is recognized as an efficient strategy for maximizing biomass utilization. Nevertheless, achieving a 100% yield presents a formidable challenge. Here, an esterification strategy mediated by the equilibrium moisture in biomass is proposed for LCNFs preparation without the use of catalysts, resulting in a yield exceeding 100%. Different from anhydrous chemical thermomechanical pulp (CTMP0%), the presence of moisture (moisture content of 7 wt%, denoted as CTMP7%) introduces a notably distinct process for the pretreatment of CTMP, comprising the initial disintegration and the post-esterification steps. The maleic acid, generated through maleic anhydride (MA) hydrolysis, degrades the recalcitrant lignin-carbohydrate complex (LCC) structures, resulting in esterified CTMP7% (E-CTMP7%). The highly grafted esters compensate for the mass loss resulting from the partial removal of hydrolyzed lignin and hemicellulose, ensuring a high yield. Following microfluidization, favorable LCNF7% with a high yield (114.4 ± 3.0%) and a high charge content (1.74 ± 0.09 mmol g-1) can be easily produced, surpassing most previous records for LCNFs. Additionally, LCNF7% presented highly processability for filaments, films, and 3D honeycomb structures preparation. These findings provide valuable insights and guidance for achieving a high yield in the isolation of LCNFs from biomass through the mediation of equilibrium moisture.
Collapse
Affiliation(s)
- Dingyuan Zheng
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Hao Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
3
|
Tang NFR, Armynah B, Tahir D. Structural and optical properties of alginate-based antibacterial dressing with calcium phosphate and zinc oxide for biodegradable wound painting applications. Int J Biol Macromol 2024; 276:133996. [PMID: 39032876 DOI: 10.1016/j.ijbiomac.2024.133996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The skin is the outermost part of the body. Although susceptible to damage, the skin is in direct contact with the external environment. Wound dressing is a clinical method that plays a vital role in wound healing. Herein, we developed an antibacterial wound dressing using alginate as the basic material. The dressing was prepared using the solvent casting method, which was used to analyze the effects of adding CaP and ZnO on its structural, optical, and antibacterial properties. Adding CaP exhibited strong but stiff mechanical properties, unlike the CaP/ZnO, which possessed high strength and elasticity. The optical properties of sample S2 did not have a considerable impact. By contrast, the addition of ZnO to sample S3 notably increases the wavelength and absorption value. The diameter of the inhibition zone for S. aureus bacteria exhibited a successive increase in its antibacterial properties, and sample S3 exhibited the highest value. Thus, sample S3 is the most promising wound dressing concerning speeding up the wound healing process because it possesses the most optimal mechanical, optical, and antibacterial properties. The main limitation to be addressed is that sample S3 cannot be easily digested in the environment.
Collapse
Affiliation(s)
| | - Bidayatul Armynah
- Physics Department, Hasanuddin Universitas, Makassar 90245, Indonesia
| | - Dahlang Tahir
- Physics Department, Hasanuddin Universitas, Makassar 90245, Indonesia.
| |
Collapse
|
4
|
Geng L, Zhang X, Li Y, Feng G, Yu X. Enhancing Solar Steam Generation of Hydrogels via Silver Nanoparticle-Doped Cellulose Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13412-13421. [PMID: 38900137 DOI: 10.1021/acs.langmuir.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Solar steam generation (SSG) is regarded as an efficient approach for harnessing solar energy to purify polluted or saline water. Herein, we demonstrate a hydrogel composed of cellulose nanofibers (CNFs), polyethylenimine (PEI), and reduced graphene oxide (rGO) that functions as an independent solar steam generator, which shows enhanced solar water evaporation efficiency by incorporating silver nanoparticles (AgNPs). It presented that the presence of AgNPs increases the photothermal conversion efficiency and thermal conductivity of the evaporator and reduces the enthalpy of evaporation. As a result, an outstanding water evaporation rate of 3.62 kg m-2 h-1 and a photothermal conversion efficiency of 96.25% are successfully obtained under one sun illumination. Also, the resulting hydrogel exhibits exceptional mechanical properties, as well as outstanding desalination and salt-resistant abilities during prolonged seawater desalination. In oil/water mixtures, the evaporation of the hydrogel decreases to 2.94 kg m-2 h-1, owing to the oil layer barrier. This work paves a reference approach to produce easily addressed cellulose nanofiber (CNF)-based hydrogel evaporators with significantly enhanced evaporation rates.
Collapse
Affiliation(s)
- Lijun Geng
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Xinfang Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Guoliang Feng
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| |
Collapse
|
5
|
Fu W, Zhang J, Zhang Q, Ahmad M, Sun Z, Li Z, Zhu Y, Zhou Y, Wang S. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion. Int J Biol Macromol 2024; 257:128546. [PMID: 38061510 DOI: 10.1016/j.ijbiomac.2023.128546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple in situ synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m-2. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.
Collapse
Affiliation(s)
- Wenkai Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajian Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouyue Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuyang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Pang J, Jiang T, Ke Z, Xiao Y, Li W, Zhang S, Guo P. Wood Cellulose Nanofibers Grafted with Poly(ε-caprolactone) Catalyzed by ZnEu-MOF for Functionalization and Surface Modification of PCL Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1904. [PMID: 37446420 DOI: 10.3390/nano13131904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Renewable cellulose nanofiber (CNF)-reinforced biodegradable polymers (such as polycaprolactone (PCL)) are used in agriculture, food packaging, and sustained drug release. However, the interfacial incompatibility between hydrophilic CNFs and hydrophobic PCL has limited further application as high-performance biomaterials. In this work, using a novel ZnEu-MOF as the catalyst, graft copolymers (GCL) with CNFs were grafted with poly(ε-caprolactone) (ε-CL) via homogeneous ring-opening polymerization (ROP), and used as strengthening/toughening nanofillers for PCL to fabricate light composite films (LCFs). The results showed that the ZnEu-MOF ([ZnEu(L)2(HL)(H2O)0.39(CH3OH)0.61]·H2O, H2L is 5-(1H-imidazol-1-yl)-1,3-benzenedicarboxylic acids) was an efficient catalyst, with low toxicity, good stability, and fluorescence emissions, and the GCL could efficiently promote the dispersion of CNFs and improve the compatibility of the CNFs and PCL. Due to the synergistic effect of the ZnEu-MOF and CNFs, considerable improvements in the mechanical properties and high-intensity fluorescence were obtained in the LCFs. The 4 wt% GCL provided the LCF with the highest strength and elastic modulus, which increased by 247.75% and 109.94% compared to CNF/PCL, respectively, showing the best elongation at break of 917%, which was 33-fold higher than CNF/PCL. Therefore, the ZnEu-MOF represented a novel bifunctional material for ROP reactions and offered a promising modification strategy for preparing high-performance polymer composites for agriculture and biomedical applications.
Collapse
Affiliation(s)
- Jinying Pang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Tanlin Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhilin Ke
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yu Xiao
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Weizhou Li
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Penghu Guo
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|