1
|
Lang W, Yuguchi Y, Ke CY, Chang TW, Kumagai Y, Kaenying W, Tagami T, Li F, Yamamoto T, Tajima K, Takahashi K, Isono T, Satoh T, Kimura A. Molecular structure of enzyme-synthesized amylose-like chimeric isomaltomegalosaccharides and their encapsulation of the sulfasalazine prodrug. Carbohydr Polym 2025; 349:122956. [PMID: 39638501 DOI: 10.1016/j.carbpol.2024.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
The glucoconjugation between linear chimeric α-(1→4)- and α-(1→6)-glucosidic segments exhibits functional properties throughout their structure. In this study, we enzymatically synthesized three new series of chimeric nonreducing isomaltomegalosaccharides (N-IMS-n/m), each featuring a constant n, α-(1→4)-segment (average degree of polymerization, DP = 22-25) at the nonreducing terminal, and varying m, α-(1→6)-main chain lengths (DP = 7-53). The synthesized compounds-N-IMS-25/7, N-IMS-24/19, and N-IMS-22/53-were compared to amylose (DP = 28) and previous samples of N-IMS-15/35 and D-IMS-28.3/13/3. D-IMS refers to a sugar with double α-(1→4)-segments at both the nonreducing and reducing ends. The binding affinity to the aromatic prodrug sulfasalazine (SZ) was assessed using a phase-solubility assay, followed by freeze-thawing. Wide-angle X-ray scattering revealed B-type crystalline patterns in bulk, and the crystallinity generally reduced with the increasing α-(1→6) segment. Interestingly, the B-type crystal structure was maintained even after SZ encapsulation, in contrast to the more common transition to V-type crystals upon drug encapsulation. Multi-angle dynamic light scattering and small-angle X-ray scattering revealed an intricate solution-state morphology, both in the absence and presence of SZ. Glucoconjugation aids in maintaining structural organization and integrity, even after the incorporation of the large SZ molecule.
Collapse
Affiliation(s)
- Weeranuch Lang
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Yoshiaki Yuguchi
- Faculty of Engineering, Osaka Electro-Communication University, Osaka 572-8530, Japan
| | - Chun-Yao Ke
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuya Kumagai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Wilaiwan Kaenying
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Feng Li
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; ICReDD List-PF, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan; Department of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
2
|
Liu H, Ai R, Liu BZ, He L. Tea polyphenol nano-crosslinked dynamical hyaluronic acid-based hydrogel for diabetic wound healing. Int J Biol Macromol 2024; 282:136856. [PMID: 39454900 DOI: 10.1016/j.ijbiomac.2024.136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Diabetic wound healing remains a significant clinical challenge for the complex wound microenvironment characterized by oxidative stress, inflammation, and bacterial infection. To address these challenges, we present a novel hydrogel incorporates tea polyphenol-stabilized silver nanoparticles (TP@Ag NPs) into a dynamic hyaluronic acid-phenylboronic acid network crosslinked via borate ester bonds. This design leverages the inherent biocompatibility and biodegradability of hyaluronic acid alongside the antioxidant, anti-inflammatory, and antibacterial properties of tea polyphenols and silver nanoparticles. The HP-TP@Ag hydrogel exhibited glucose-responsive degradation and TP@Ag NPs release, enabling targeted delivery within the diabetic wound microenvironment. In vitro assays demonstrated the hydrogel's potent antioxidant activity, effectively scavenging ROS and protecting both HaCaT and RAW264.7 cells from oxidative stress. Furthermore, the HP-TP@Ag hydrogel significantly suppressed the production of pro-inflammatory cytokines and exhibited robust antibacterial activity against both E. coli and S. aureus. In vivo studies using a diabetic mouse model revealed accelerated wound closure, reduced inflammation, enhanced collagen deposition, and promoted angiogenesis and tissue remodeling in HP-TP@Ag hydrogel-treated wounds. These findings highlight the promise of HP-TP@Ag hydrogel as an advanced wound dressing for effective diabetic wound management, offering a synergistic approach to overcome the multifaceted challenges associated with this complex condition.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Ronger Ai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Bi-Zhi Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Li He
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| |
Collapse
|
3
|
Lan Y, Wang Y, Qi X, Cai E, Xiang Y, Ge X, Xu H, Chen X, Li Y, Shi Y, Shen J, Liao Z. A modified hyaluronic acid hydrogel with strong bacterial capture and killing capabilities for drug-resistant bacteria-infected diabetic wound healing. Int J Biol Macromol 2024; 279:135301. [PMID: 39233168 DOI: 10.1016/j.ijbiomac.2024.135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Management of diabetic wounds becomes increasingly challenging as bacterial infections intensify the inflammation. Employing polysaccharide hydrogels with inherent antibacterial qualities can significantly reduce the need for antibiotics to manage infections in diabetic wounds. The typical approach to achieving antibacterial outcomes with hydrogels relies on the penetration of bacteria into their porous architecture. Such penetration not only takes time but can also prolong inflammation, thus impeding the healing of wounds. Hence, the quick capture and eradication of bacteria are essential for optimizing the hydrogel's antibacterial performance. Herein, we introduce a multifunctional polysaccharide hydrogel dressing-designated as HAQ-created for managing bacterial infections in diabetic wounds. This dressing is based on hyaluronic acid, which is modified with methacrylic anhydride, and special functional groups are added to the modified hyaluronic acid matrix: phenylboronic acid for capturing bacteria and quaternary ammonium chitosan for bacterial destruction. As expected, the HAQ system exhibits robust antibacterial effectiveness against both methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa in vitro and in vivo. Consequently, HAQ stands as a promising hydrogel dressing with intrinsic antibacterial capabilities and offers significant potential for managing diabetic wounds infected by drug-resistant bacteria.
Collapse
Affiliation(s)
- Yulong Lan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - XinXin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaojing Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Zong L, Teng R, Zhang H, Liu W, Feng Y, Lu Z, Zhou Y, Fan Z, Li M, Pu X. Ultrasound-Responsive HBD Peptide Hydrogel with Antibiofilm Capability for Fast Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406022. [PMID: 39248340 PMCID: PMC11558141 DOI: 10.1002/advs.202406022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Indexed: 09/10/2024]
Abstract
Despite advancements in therapeutic agents for diabetic chronic wounds, challenges such as suboptimal bioavailability, intricate disease milieus, and inadequate delivery efficacy have impeded treatment outcomes. Here, ultrasound-responsive hydrogel incorporated with heparin-binding domain (HBD) peptide nanoparticles is developed to promote diabetic wound healing. HBD peptide, derived from von Willebrand Factor with angiogenic activity, are first engineered to self-assemble into nanoparticles with enhanced biostability and bioavailability. Ultrasound responsive cargo release and hydrogel collapses are first verified through breakage of crosslinking. In addition, desired antioxidant and antibacterial activity of such hydrogel is observed. Moreover, the degradation of hydrogel under ultrasound stimulation into smaller fragments facilitated the deeper wound penetration of ≈400 µm depth. Complete wound closure is observed from diabetic mice with chronic wounds after being treated with the proposed hydrogel. In detail, in vivo studies revealed that hydrogels loaded with HBD peptide nanoparticles increased the levels of angiogenesis-related growth factors (VEGF-A, CD31, and α-SMA) to effectively accelerate wound repair. Overall, this study demonstrates that ultrasound-responsive HBD peptide hydrogel provides a synergistic therapeutic strategy for external biofilm elimination and internal effective delivery for diabetic wounds with biofilm infection.
Collapse
Affiliation(s)
- Lanlan Zong
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| | - Runxin Teng
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji University4800 CaoanRoadShanghai201804P. R. China
| | - Huiqi Zhang
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| | - Wenshang Liu
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
- Department of DermatologyShanghai Children's Medical CenterShanghai Jiaotong University School of MedicineShanghai200127P. R. China
| | - Yu Feng
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| | - Zhengmao Lu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Naval Medical UniversityShanghai200433P. R. China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200434P. R. China
| | - Zhen Fan
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji University4800 CaoanRoadShanghai201804P. R. China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200434P. R. China
| | - Meng Li
- Department of DermatologyShanghai Children's Medical CenterShanghai Jiaotong University School of MedicineShanghai200127P. R. China
| | - Xiaohui Pu
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| |
Collapse
|
5
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
6
|
Aghayants S, Zhu J, Yu J, Tao R, Li S, Zhou S, Zhou Y, Zhu Z. The emerging modulators of non-coding RNAs in diabetic wound healing. Front Endocrinol (Lausanne) 2024; 15:1465975. [PMID: 39439564 PMCID: PMC11493653 DOI: 10.3389/fendo.2024.1465975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.
Collapse
Affiliation(s)
- Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Nasra S, Pramanik S, Oza V, Kansara K, Kumar A. Advancements in wound management: integrating nanotechnology and smart materials for enhanced therapeutic interventions. DISCOVER NANO 2024; 19:159. [PMID: 39354172 PMCID: PMC11445205 DOI: 10.1186/s11671-024-04116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Wound management spans various techniques and materials tailored to address acute and chronic non-healing wounds, with the primary objective of achieving successful wound closure. Chronic wounds pose additional challenges, often necessitating dressings to prepare the wound bed for subsequent surgical procedures like skin grafting. Ideal dressing materials should not only expedite wound healing but also mitigate protein, electrolyte, and fluid loss while minimizing pain and infection risk. Nanotechnology has emerged as a transformative tool in wound care, revolutionizing the landscape of biomedical dressings. Its application offers remarkable efficacy in accelerating wound healing and combating bacterial infections, representing a significant advancement in wound care practices. Integration of nanotechnology into dressings has resulted in enhanced properties, including improved mechanical strength and controlled drug release, facilitating tailored therapeutic interventions. This review article comprehensively explores recent breakthroughs in wound healing therapies, with a focus on innovative medical dressings such as nano-enzymes. Additionally, the utilization of smart materials, like hydrogels and electroactive polymers, in wound dressings offers dynamic functionalities to promote tissue regeneration. Emerging concepts such as bio-fabrication, microfluidic systems, bio-responsive scaffolds, and personalized therapeutics show promise in expediting wound healing and minimizing scarring. Through an in-depth exploration of these advancements, this review aims to catalyze a paradigm shift in wound care strategies, promoting a patient-centric approach to therapeutic interventions.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjali Pramanik
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vidhi Oza
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Krupa Kansara
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
8
|
Zhang J, Li J, Zhang Y, Zhao Y, Shen J, Du F, Chen Y, Li M, Wu X, Chen M, Xiao Z, Deng S. Bilayer hydrogel with a protective film and a regenerative hydrogel for effective diabetic wound treatment. Biomater Sci 2024; 12:5036-5051. [PMID: 39189321 DOI: 10.1039/d4bm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Diabetic foot ulcers (DFUs) are one of the most serious complications of diabetes, often leading to necrosis and amputation. DFU is caused by the intricate diabetic microenvironment, including ischemia, hypoxia, hyperinflammation, reduced angiogenesis, and persistent infection. Traditional wound dressings made of single or mixed materials often struggle to meet all the requirements for effective diabetic wound healing. In contrast, multilayer dressings comprising more than single layers have the potential to address these challenges by combining their diverse chemical and physical properties. In this study, we developed a bilayer hydrogel comprising a GelMA-ALG-nano-ZnO protective film and a COL1-PRP regenerative hydrogel for facilitating diabetic wound healing. We demonstrated the protective properties against bacterial infection of the protective film, while highlighting the regenerative potential of the COL1-PRP hydrogel in promoting fibroblast and MUVEC migration, extracellular matrix secretion and deposition, and angiogenesis. Importantly, the bilayer hydrogel exhibited superior efficacy in promoting full-thickness wound healing in a diabetic rat model compared to its single-layer hydrogel counterparts. This multi-layer approach offers a promising strategy for addressing the complexities of diabetic foot treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yang Zhang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
9
|
Wang W, Chu F, Zhang W, Xiao T, Teng J, Wang Y, He B, Ge B, Gao J, Ge H. Silver Mineralized Protein Hydrogel with Intrinsic Cell Proliferation Promotion and Broad-Spectrum Antimicrobial Properties for Accelerated Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400047. [PMID: 38364079 DOI: 10.1002/adhm.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The presence of multidrug-resistant bacteria has challenged the clinical treatment of bacterial infection. There is a real need for the development of novel biocompatible materials with broad-spectrum antimicrobial activities. Antimicrobial hydrogels show great potential in infected wound healing but are still being challenged. Herein, broad-spectrum antibacterial and mechanically tunable amyloid-based hydrogels based on self-assembly and local mineralization of silver nanoparticles are reported. The mineralized hydrogels are biocompatible and have the advantages of sustained release of silver, prolonged antimicrobial effect, and improved adhesion capacity. Moreover, the mineralized hydrogels display a significant antimicrobial effect against both Gram-positive and Gram-negative bacteria in cells and mice by inducing membrane damage and reactive oxygen species toxicity in bacteria. In addition, the mineralized hydrogels can rapidly accelerate wound healing by the synergy between their antibacterial activity and intrinsic improvement for cell proliferation and migration. This study provides a modular approach to developing a multifunctional protein hydrogel platform based on biomolecule-coordinated self-assembly for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Weiqiang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Fengjiao Chu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Weifeng Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Tingting Xiao
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Jingjing Teng
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Yan Wang
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Bo He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiajia Gao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Honghua Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
10
|
Shen H, Ma Y, Qiao Y, Zhang C, Chen J, Zhang R. Application of Deferoxamine in Tissue Regeneration Attributed to Promoted Angiogenesis. Molecules 2024; 29:2050. [PMID: 38731540 PMCID: PMC11085206 DOI: 10.3390/molecules29092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Ran Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing 210009, China
| |
Collapse
|
11
|
Zhang Z, Huang C, Guan S, Wang L, Yin H, Yin J, Liu J, Wu J. Hybrid gelatin-ascorbyl phosphate scaffolds accelerate diabetic wound healing via ROS scavenging, angiogenesis and collagen remodeling. BIOMATERIALS ADVANCES 2024; 158:213779. [PMID: 38277902 DOI: 10.1016/j.bioadv.2024.213779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Skin wound healing, particularly diabetic wound healing, is challenging in clinical management. Impaired wound healing is associated with persistent oxidative stress, altered inflammatory responses, unsatisfactory angiogenesis and epithelialization. Magnesium ascorbyl phosphate (MAP), which is an ascorbic acid derivative and active ingredient in cosmetics, has been reported to scavenge reactive oxygen species (ROS), and is considered a potential therapeutic agent for diabetic wounds. Herein, we report a hybrid gelatin-MAP scaffolds that can reduces oxidative stress damage, enhances angiogenesis and collagen remodeling to accelerate diabetic wound repair. Preliminary insights based on network pharmacology indicate that MAP may accelerate wound repair through multiple biological pathways, including extracellular matrix remodeling and anti-apoptosis. In vitro studies showed that the hybrid hydrogel scaffold had suitable mechanical properties, excellent biocompatibility and bioactivity. Further animal experiments demonstrated that the hydrogel accelerated full-thickness wound repair in diabetic mice (repair rate MAP vs Control=91.791±3.306 % vs 62.962±6.758 %) through antioxidant, neuroangiogenesis, collagen remodeling, and up-regulated the expression of the related factors COL-1, CD31, VEGF, and CGRP. Overall, we developed a bioactive hybrid hydrogel encapsulating MAP that synergistically promotes diabetic wound repair through multiple biological effects. This potentially integrated therapeutic scaffold may enrich future surgical approaches for treating diabetic wounds.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chunlin Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shiyao Guan
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Liying Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hanxiao Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China; Division of Life Science, The Hong Kong University of Science and Technology, 999077, Hong Kong.
| |
Collapse
|
12
|
Saha I, Ghosh S, Roy S, Basu T, Karmakar P. Facile process of Hibiscusmucilage polymer formulation using Hibiscus rosa-sinensisleaves to treat second-degree burn and excision wounds. Biomed Mater 2024; 19:035003. [PMID: 38387054 DOI: 10.1088/1748-605x/ad2c1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Mucilage is a sticky substance found in various plants and microorganisms and is made up of proteins and polysaccharides. Mucilage fromHibiscus rosa sinensisisis a complex polysaccharide traditionally used to treat different skin diseases. In our study, we fabricated mucilage polymer fromHibiscus rosa sinensisleaves and evaluated its potential application in second-degree burns and excision wounds. The physical properties of Hibiscus mucilage (HM) polymer were demonstrated by using Ultraviolet-visible absorption spectroscopy, x-ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering, Scanning electron microscopy, Brunauer-Emmett-Tellerand, Swelling ratio. The human cell lines WI-38, and HaCaT have been used forin-vitroexperiments like MTT, scratch wound, BrdU, ROS scavenging assays, and western blot analysis. The results of the MTT, scratch-wound, and BrdU assay indicated that the HM polymer is nontoxic in nature and also enhances both the properties of cellular migration and proliferation, respectively. On the other hand, the result of the ROS scavenging assay suggested that HM polymer enhances the antioxidant activity of cells while the western blot analysis designated that the HM polymer treatment caused downregulation of the pro-inflammatory cytokine IFN-γand upregulation of the pAkt (Serine 473) protein, and TGF-β1 signaling pathway. Therefore, allin-vitroexperimental studies recommended that HM polymer is biocompatible and has antioxidant and anti-inflammatory effects. In thein vivoexperiment, second-degree burns and excision wounds were created on the dorsal surface of male BALB/c mice. After the sixth day of HM polymer treatment have developed new tissue, hair follicles, blood vessels,α-SMA, and Collagen type-1 fiber on the burn and excision wound area while the 11th day of HM polymer treatment cured the wound area significantly. Therefore, it could be contemplated that HM polymer is a potential agent for treating different wounds in the near future.
Collapse
Affiliation(s)
- Ishita Saha
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700032 West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235 West Bengal, India
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Department of Physics, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700032 West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235 West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700032 West Bengal, India
| |
Collapse
|
13
|
Yang D, Shou Z, Xie X, Tang Y, Li Z, Chen H, Tang S, Zan X. Gelatin-based dynamic response antioxidant, anti-inflammatory multifunctional hydrogel for enhanced diabetic wound repair. Int J Biol Macromol 2024; 260:129453. [PMID: 38253143 DOI: 10.1016/j.ijbiomac.2024.129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Diabetic wound therapy presents significant challenges in the clinical environment, where persistent bleeding, disturbed inflammatory regulation, impaired cellular proliferation, and impaired tissue remodeling are major features of diabetic wound healing. However, current treatment strategies need to be considered in the context of the dynamic and complex needs of chronic wound healing. Here, multifunctional dynamic boronic acid cross-linked hydrogels were prepared by the reaction of gelatin (Gel) inoculated with 5-carboxy 3-nitrophenylboronic acid (NPBA) and Epigallocatechin gallate (EGCG) to achieve rapid gelation at pH = 7.4, EGCG could interact electrostatically with cationic antimicrobial peptides (AMP) to achieve the effective loading of AMP in the hydrogels. This hydrogel can be injected and adhered to skin defects in diabetic patients to provide a barrier and rapid hemostasis. In a high glucose microenvironment, the rapid release of AMP effectively kills bacteria, while the responsive release of EGCG eliminates reactive oxygen species (ROS) and promotes macrophage M2 polarization. In addition, the hydrogel had excellent biocompatibility and degradability properties, degraded completely after 3 days of subcutaneous injection, and was non-toxic in H&E staining of major organs and serum liver function indices in mice. This multifunctional injectable hydrogel accelerates diabetic skin wound repair and is a promising dressing for the precise treatment of diabetic wounds.
Collapse
Affiliation(s)
- Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province 317000, China; Wenzhou Key Laboratory of Perioperative Medicine Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China
| | - Zeyu Shou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Yi Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Zhiyun Li
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Hao Chen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China.
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China.
| | - Xingjie Zan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province 317000, China; Wenzhou Key Laboratory of Perioperative Medicine Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China.
| |
Collapse
|
14
|
Li F, Liu T, Liu X, Han C, Li L, Zhang Q, Sui X. Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization. Int J Biol Macromol 2024; 260:129682. [PMID: 38266851 DOI: 10.1016/j.ijbiomac.2024.129682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Impaired macrophage polarization or the high levels of reactive oxygen species (ROS) produced by high glucose conditions and bacterial infection are the primary factors that make healing diabetic wounds difficult. Here, we prepared an OGLP-CMC/SA hydrogel with a double network structure that was synthesized with oxidized Ganoderma lucidum polysaccharide (OGLP), sodium alginate (SA) and carboxymethyl chitosan (CMC) as the matrix. The results showed that the OGLP-CMC/SA hydrogel had good mechanical properties, tissue adhesion, oxidation resistance and biocompatibility. Moreover, the hydrogel could effectively improve the proliferation and migration of fibroblasts, also can enhance antibacterial properties. We found that the OGLP-CMC/SA hydrogel can promote the polarization of M1 macrophages towards the M2 and decrease intracellular ROS levels, effectively reduce the inflammatory response, and promote epidermal growth, the development of skin appendages and collagen deposition in wounds, which hasten diabetic wound healing. Therefore, using this versatile biologically active new hydrogel network constructed with OGLP provides a promising therapeutic strategy for chronic diabetic wound repair.
Collapse
Affiliation(s)
- Fei Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Xia Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Lili Li
- Collge of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Qi Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
15
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Zhang W, Chen H, Zhao J, Chai P, Ma G, Dong Y, He X, Jiang Y, Wu Q, Hu Z, Wei Q. Body temperature-induced adhesive hyaluronate/gelatin-based hybrid hydrogel dressing for promoting skin regeneration. Int J Biol Macromol 2023; 253:126848. [PMID: 37699465 DOI: 10.1016/j.ijbiomac.2023.126848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Skin wound management faces significant clinical challenges, including continuous bacterial infection and inflammation. Therefore, developing removable hydrogel dressings with intrinsic multifunctional properties is highly desirable. In this study, a body temperature-induced adhesive and removable hydrogel was designed to treat skin defect wounds. The HA/Gel-R-Ag hybrid gel was prepared by incorporating a silver ion-crosslinked sulfhydryl hyaluronate/gelatin-based polymeric gel network into a supramolecular rhein gel network, thereby significantly enhancing its mechanical properties. Temperature-responsive gelatin chains give the hybrid gel reversible tissue adhesiveness and detachment, thus avoiding secondary injury to wounds when changing the hydrogels. The hybrid gel exhibited excellent bactericidal ability owing to the antibacterial capacity of the silver ions and rhein. Moreover, both HA and rhein endowed the hybrid gel with immunoregulatory effects by promoting macrophage polarization from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. In a full-thickness skin defect mouse mode, this porous, degradable, and biocompatible HA/Gel-R-Ag hybrid gel boosted skin regeneration by inhibiting inflammation and promoting collagen deposition and angiogenesis. It is thus a simple method for widening the application range of mechanically weak rhein gels and providing a promising wound dressing material with multiple intrinsic functions for treating skin wounds.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hanwen Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junkai Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Panfeng Chai
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guanglei Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yahao Dong
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qing Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Zhiguo Hu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Qingcong Wei
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
17
|
Shu QH, Zuo RT, Chu M, Shi JJ, Ke QF, Guan JJ, Guo YP. Fiber-reinforced gelatin/β-cyclodextrin hydrogels loaded with platelet-rich plasma-derived exosomes for diabetic wound healing. BIOMATERIALS ADVANCES 2023; 154:213640. [PMID: 37804684 DOI: 10.1016/j.bioadv.2023.213640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Diabetic complications with high-glucose status (HGS) cause the dysregulated autophagy and excessive apoptosis of multiple-type cells, leading to the difficulty in wound self-healing. Herein, we firstly developed fiber-reinforced gelatin (GEL)/β-cyclodextrin (β-CD) therapeutic hydrogels by the modification of platelet-rich plasma exosomes (PRP-EXOs). The GEL fibers that were uniformly dispersed within the GEL/β-CD hydrogels remarkably enhanced the compression strengths and viscoelasticity. The PRP-EXOs were encapsulated in the hydrogels via the covalent crosslinking between the PRP-EXOs and genipin. The diabetic rat models demonstrated that the GEL/β-CD hydrogels and PRP-EXOs cooperatively promoted diabetic wound healing. On the one hand, the GEL/β-CD hydrogels provided the biocompatible microenvironments and active components for cell adhesion, proliferation and skin tissue regeneration. On the other hand, the PRP-EXOs in the therapeutic hydrogels significantly activated the autophagy and inhibited the apoptosis of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts (HSFs). The activation of autophagy and inhibition of apoptosis in HUVECs and HSFs induced the blood vessel creation, collagen formation and re-epithelialization. Taken together, this work proved that the incorporation of PRP-EXOs in a wound dressing was an effective strategy to regulate autophagy and apoptosis, and provide a novel therapeutic platform for diabetic wound healing.
Collapse
Affiliation(s)
- Qiu-Hao Shu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Rong-Tai Zuo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jing-Jing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jun-Jie Guan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
18
|
Ullah S, Hussain Z, Ullah I, Wang L, Mehmood S, Liu Y, Mansoorianfar M, Liu X, Ma F, Pei R. Mussel bioinspired, silver-coated and insulin-loaded mesoporous polydopamine nanoparticles reinforced hyaluronate-based fibrous hydrogel for potential diabetic wound healing. Int J Biol Macromol 2023; 247:125738. [PMID: 37423444 DOI: 10.1016/j.ijbiomac.2023.125738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Diabetes wounds take longer to heal due to extended inflammation, decreased angiogenesis, bacterial infection, and oxidative stress. These factors underscore the need for biocompatible and multifunctional dressings with appropriate physicochemical and swelling properties to accelerate wound healing. Herein, insulin (Ins)-loaded, and silver (Ag) coated mesoporous polydopamine (mPD) nanoparticles were synthesized (Ag@Ins-mPD). The nanoparticles were dispersed into polycaprolactone/methacrylated hyaluronate aldehyde dispersion, electrospun to form nanofibers, and then photochemically crosslinked to form a fibrous hydrogel. The nanoparticle, fibrous hydrogel, and nanoparticle-reinforced fibrous hydrogel were characterized for their morphological, mechanical, physicochemical, swelling, drug-release, antibacterial, antioxidant, and cytocompatibility properties. The diabetic wound reconstruction potential of nanoparticle-reinforced fibrous hydrogel was studied using BALB/c mice. The results indicated that Ins-mPD acted as a reductant to synthesize Ag nanoparticles on their surface, held antibacterial and antioxidant potential, and their mesoporous properties are crucial for insulin loading and sustained release. The nanoparticle-reinforced scaffolds were uniform in architecture, porous, mechanically stable, showed good swelling, and possessed superior antibacterial, and cell-responsive properties. Furthermore, the designed fibrous hydrogel scaffold demonstrated good angiogenic, anti-inflammatory, increased collagen deposition, and faster wound repair capabilities, therefore, it could be used as a potential candidate for diabetic wound treatment.
Collapse
Affiliation(s)
- Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|