1
|
Qu X, Ji Y, Long J, Zheng D, Qiao Z, Lin Y, Lu C, Zhou Y, Cheng H. Immuno- and gut microbiota-modulatory activities of β-1,6-glucans from Lentinus edodes. Food Chem 2025; 466:142209. [PMID: 39612846 DOI: 10.1016/j.foodchem.2024.142209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
The β-1,6-glucans from Lentinus edodes have a variety of biological activities. However, the research on extraction and separation of β-1,6-glucans from L. edodes is limited and the yield is low. In the present study, we obtained the high-yield and -purity β-1,6-glucans (ALEPA) from L. edodes by using a sequential extraction and separation process, which is simple and suitable for industrialization. ALEPA significantly promoted the proliferation of splenic T lymphocytes and enhanced the phagocytosis activity of peritoneal macrophages in vivo. 16S rRNA sequencing results showed that ALEPA significantly increased the α diversity of gut microbiota and upregulated the relative abundances of short chain fatty acids (SCFAs)-producing bacterial species. Consistently, the SCFAs in the cecum of mice were upregulated. On a mechanical level, we found that the immunomodulatory effect of ALEPA depended on gut microbiota. Collectively, ALEPA is a promising functional food ingredient that regulates gut microbiota and enhances immune function.
Collapse
Affiliation(s)
- Xian Qu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yahui Ji
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jieyi Long
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Donglin Zheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhonghui Qiao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Lin
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chang Lu
- School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China..
| |
Collapse
|
2
|
Zhou X, Zhang Y, Wei L, Yang Y, Wang B, Liu C, Bai J, Wang C. In vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites. Food Chem 2025; 465:141998. [PMID: 39549519 DOI: 10.1016/j.foodchem.2024.141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Dietary polysaccharides affect the intestinal microorganisms and their metabolites in the host. Clarifying the relationship among polysaccharides, intestinal microflora, and their metabolites is helpful to formulate dietary nutrition intervention strategies. Thus, we explored the regulatory effects of fucoidan on the human gut microbiota and its metabolites. After 48 h of fermentation, fucoidan significantly reduced the pH value in the broth, accompanied by an increase in total short-chain fatty acids, acetic acid, and propanoic acid contents. Fucoidan significantly reduced the relative abundance of Escherichia_shigella and Blebsiella and increased the relative abundance of Bifidobacterium and Lactobacillus. Concurrently, fucoidan altered the composition of intestinal microbial metabolites. These results indicate that fucoidan can regulate the metabolism of the intestinal flora and host, which may contribute to the intestinal health of the host.
Collapse
Affiliation(s)
- Xu Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China.
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Kumar V, Bhoyar MS, Mohanty CS, Chauhan PS, Toppo K, Ratha SK. Untapping the potential of algae for β-glucan production: A review of biological properties, strategies for enhanced production and future perspectives. Carbohydr Polym 2025; 348:122895. [PMID: 39567131 DOI: 10.1016/j.carbpol.2024.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
β-Glucan, a naturally occurring polymer of glucose, is found in bacteria, algae, fungi, and higher plants (barley, oats, cereal seeds). Recently, β-glucan has gained attention due to its multiple biological roles, like anticancer, anti-inflammatory, and immunomodulatory effects. Globally, bacteria, mushrooms, yeast and cereals are used as conventional sources of β-glucan. However, obtaining it from these sources is challenging due to low quantity, complex branched structure, and costly extraction process. Algae have emerged as a potential sustainable alternative source of β-glucan to conventional sources due to several advantages including unique structural and functional advantages, higher yields, faster growth rates, and large-scale production in a controlled environment. Additionally, extracting β-glucan from microalgal sources is relatively easy and can be done without altering the structure of β-glucan. Some algal species, such as Euglena spp., are reported to contain higher β-glucan content than conventional β-glucan sources. This review highlights the current research and opportunities associated with algae-derived β-glucan and their biological roles. The challenges, research gaps and strategies to enhance algae-based β-glucan production and the need for further research in this promising area are also discussed. Future research can be extended to comprehend the cellular and molecular mechanisms via which β-glucan functions.
Collapse
Affiliation(s)
- Vijay Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Manish S Bhoyar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Chandra S Mohanty
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Puneet S Chauhan
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Kiran Toppo
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Sachitra K Ratha
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India.
| |
Collapse
|
4
|
Lei P, Li X, Jiang L, Yu H, Zhang P, Han L, Jiang M. Alisma plantago-aquatica polysaccharides ameliorate acetaminophen-induced acute liver injury by regulating hepatic metabolic profiles and modulating gut microbiota. Int J Biol Macromol 2024; 285:138345. [PMID: 39631232 DOI: 10.1016/j.ijbiomac.2024.138345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Acetaminophen (APAP) has emerged as a predominant contributor to acute liver failure (ALF) in United States. Alismatis rhizoma, a commonly used traditional herbal medicine, contains small molecular components with extensive hepatoprotective activity. However, the specific role of Alismatis rhizoma polysaccharide (ARP) in liver protection remains unclear. ARP50 and ARP70, derived through graded alcohol precipitation and refinement, predominantly consisted of varying proportions of glucose, galactose, and arabinose. In vitro experiments on free radical scavenging demonstrated notable antioxidant capabilities of ARP50 and ARP70. To investigate the hepatoprotective effects, an APAP-induced acute liver injury (ALI) model was established in mice. ARP50 and ARP70 exerted dose-dependent therapeutic effects on APAP-induced liver injury. Further analysis of liver metabolites revealed that ARPs facilitated the reconstruction of the liver antioxidant system by modulating the metabolism network centered on l-glutamine. In addition, the abundance of gut microbiota was altered under the influence of ARPs. ARP50 significantly reduced the levels of Pseudarthrobacter and markedly increased the levels of Faecalibacterium,At the same time, ARP50 could increase the levels of acetic acid in the liver and serum. Meanwhile, ARP70 significantly increased the abundance of Dubosiella, Muribaculum, Ileibacterium, and Prevotellaceae UCG 001, while reducing the abundance of Escherichia Shigella and Pseudarthrobacter. The results indicated that ARPs could exert a protective effect against APAP-induced acute liver injury by reshaping the liver metabolic profile and modulating the gut microbiota.
Collapse
Affiliation(s)
- Peng Lei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoge Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lei Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Heshui Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| |
Collapse
|
5
|
Singarayar MS, Chandrasekaran A, Balasundaram D, Veerasamy V, Neethirajan V, Thilagar S. Prebiotics: Comprehensive analysis of sources, structural characteristics and mechanistic roles in disease regulation. Microb Pathog 2024; 197:107071. [PMID: 39447658 DOI: 10.1016/j.micpath.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance. Prebiotic research is primarily concerned with the influence of intestinal disorders. The proposed review will describe recent data on the sources, structures, implementation of prebiotics and potential mechanisms in preventing and treating various disorders, with an emphasis on the gut microbiome. Prebiotics have a distinctive impact on the gastro intestine by explicitly encouraging the growth of probiotic organisms like Bifidobacteria and Lactobacilli. This in turn augments the body's inherent ability to fend off harmful pathogens. Prebiotic carbohydrates may also provide other non-specific advantages due to their fermentation in the large intestine. Additional in vivo research is needed to fully comprehend the interactions between prebiotics and probiotics ingested by hosts to improve their nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | | | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
6
|
Dong K, Wang J, Tang F, Liu Y, Gao L. A polysaccharide with a triple helix structure from Agaricus bisporus: Characterization and anti-colon cancer activity. Int J Biol Macromol 2024; 281:136521. [PMID: 39401631 DOI: 10.1016/j.ijbiomac.2024.136521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
In this study, A polysaccharide WAAP-2 (121 kDa) with a triple-helical structure was isolated and purified from Agaricus bisporus for the first time. The physicochemical properties, structural characteristics and anti-colon cancer activity were preliminarily investigated. The primary structure indicated that WAAP-2 was composed of mannose, glucose and galactose and determined the position of the linkage between monosaccharide residues. The advanced structure revealed that WAAP-2 has a triple helix and tangled chain conformation. In the anti-colon cancer activity investigation, WAAP-2 exerted an apoptosis-inducing effect by causing HT-29 cell cycle arrest in S phase. WAAP-2 promoted HT-29 cell apoptosis by up-regulating the expression of Caspase-3 and Bax proteins while down-regulating the expression of Bcl-2 protein. Besides, WAAP-2 could inhibit the migration and invasion of colorectal cancer cells by inducing E-cadherin expression and inhibiting Vimentin expression to affect epithelial mesenchymal transition. This paper is of importance for the application of WAAP-2, a triple-helical structural polysaccharide from Agaricus bisporus, to low-toxicity anti-colon cancer drugs.
Collapse
Affiliation(s)
- Kangzhen Dong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Junhui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Fangyuan Tang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Li Gao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
7
|
Hu S, Meng Y, Guo L, Xu X. A novel strategy to enhance inhibition of Hela cervical cancer by combining Lentinus β-glucan and autophagic flux blockage. Int J Biol Macromol 2024; 281:136309. [PMID: 39370081 DOI: 10.1016/j.ijbiomac.2024.136309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Lentinus β-D-glucan (LNT), derived from artificially cultured mushrooms of Lentinus edodes, shows an important yet incompletely understood biological functions in cancer. In this work, the chemical structure of the refined LNT comprising a β-D-(1, 6)-branched β-D-(1,3)-glucan was further clarified via 1D- and 2D-NMR with high resolution, and its drug resistance resulted from autophagy in human cervical cancer (CC) Hela cells besides its anti-cancer function were revealed in vitro and in vivo. In detail, LNT destroyed cellular homeostasis by significantly increasing the intracellular Ca2+ levels and promoted autophagic flux in vitro Hela cells, which was found to at least partially depend on the PI3K/Akt/mTOR-mediated pathway by up-regulating LC3-II levels and down-regulating the expression of p62, PI3K, p-Akt, and mTOR in Hela cells-transplanted BALB/c nude mice. In particular, LNT-induced autophagy led to a drug resistance against LNT-induced proliferation inhibition and apoptosis in Hela cells, and the co-treatment of autophagy inhibitors and LNT significantly enhanced the inhibition of Hela cells and tumor growth in vitro and in vivo. Therefore, the combination of LNT and autophagy inhibitors will be a novel therapeutic strategy to reduce the resistance and improve the prognosis of CC patients in the clinical.
Collapse
Affiliation(s)
- Shuqian Hu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University; College of Chemistry and Molecular Sciences; Hubei Engineering Center of Natural Polymer-Based Medical Materials; Wuhan University, Wuhan 430072, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University; College of Chemistry and Molecular Sciences; Hubei Engineering Center of Natural Polymer-Based Medical Materials; Wuhan University, Wuhan 430072, China.
| | - Xiaojuan Xu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University; College of Chemistry and Molecular Sciences; Hubei Engineering Center of Natural Polymer-Based Medical Materials; Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Liu Z, Tang R, Liu J, Zhang Z, Li Y, Zhao R. Epicatechin and β-glucan from whole highland barley grain ameliorates hyperlipidemia associated with attenuating intestinal barrier dysfunction and modulating gut microbiota in high-fat-diet-fed mice. Int J Biol Macromol 2024; 278:134917. [PMID: 39173794 DOI: 10.1016/j.ijbiomac.2024.134917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Hyperlipidemia is associated with intestinal barrier dysfunction and gut microbiota dysbiosis. Here, we aimed at investigating whether epicatechin (EC) and β-glucan (BG) from whole highland barley grain alleviated hyperlipidemia associated with ameliorating intestinal barrier dysfunction and modulating gut microbiota dysbiosis in high-fat-diet-induced mice. It was observed that EC and BG significantly improved serum lipid disorders and up-regulated expression of PPARα protein and genes. Supplementation of EC and BG attenuated intestinal barrier dysfunction via promoting goblet cells proliferation and tight junctions. Supplementation of EC and BG prevented high fat diet-induced gut microbiota dysbiosis via modulating the relative abundance of Ruminococcaceae, Lactobacillus, Desulfovibrio, Lactococcus, Allobaculum and Akkermansia, and the improving of short chain fatty acid contents. Notably, combination of EC and BG showed synergistic effect on activating PPARα expression, improving colonic physical barrier dysfunction and the relative abundance of Lactobacillus and Desulfovibrio, which may help explain the effect of whole grain highland barley on alleviating hyperlipidemia.
Collapse
Affiliation(s)
- Zehua Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| | - Ruoxin Tang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jianshen Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Zhaowan Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yuanyuan Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
9
|
Zhao F, Li M, Luo M, Zhang M, Yuan Y, Niu H, Yue T. The dose-dependent mechanism behind the protective effect of lentinan against acute alcoholic liver injury via proliferating intestinal probiotics. Food Funct 2024; 15:10067-10087. [PMID: 39291630 DOI: 10.1039/d4fo02256d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Acute alcoholic liver injury (AALI) is a widespread disease that can develop into hepatitis, liver fibrosis, and cirrhosis. In severe cases, it can be life-threatening, while drug treatment presents various side effects. This study characterized the structure of natural lentinan (LNT) from the Qinba Mountain area and investigated the protective mechanism of different LNT doses (100 mg kg-1, 200 mg kg-1, and 400 mg kg-1) on AALI. The results showed that LNT was a glucose-dominated pyran polysaccharide with a triple-helical structure and a molecular weight (Mw) of 7.56 × 106 Da. An AALI mouse model showed that all the LNT doses protected liver function, reduced hepatic steatosis, alleviated oxidative stress and inflammatory response, and stimulated probiotic proliferation. Low-dose LNT increased anti-oxidant-associated beneficial bacteria, medium-dose LNT improved liver swelling and promoted anti-oxidant-associated probiotics, and high-dose LNT increased the probiotics that helped protect liver function and anti-oxidant and anti-inflammatory properties. All the LNT doses inhibited pathogenic growth, including Oscillospiraceae, Weeksellaceae, Streptococcaceae, Akkermansiaceae, Morganellaceae, and Proteus. These results indicated that the protective effect of LNT against AALI was mediated by the proliferation of various intestinal probiotics and was related to the consumption doses. These findings offer new strategies for comprehensively utilizing Lentinula edodes from the Qinba Mountain area and preventing AALI using natural food-based substances.
Collapse
Affiliation(s)
- Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Min Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Mingyue Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Meng Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
10
|
Kaewsaen R, Wichienchot S, Thayanukul P, Charoensiddhi S, Chanput WP. Chemical Profile and In Vitro Gut Microbiota Modulation of Wild Edible Mushroom Phallus atrovolvatus Fruiting Body at Different Maturity Stages. Nutrients 2024; 16:2553. [PMID: 39125432 PMCID: PMC11313837 DOI: 10.3390/nu16152553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Phallus atrovolvatus, a wild edible mushroom, has attracted increasing interest for consumption due to its unique taste and beneficial health benefits. This study determined the chemical components in the so-called fruiting body during the egg and mature stages and investigated its gut microbiota-modulating activities. The egg stage contained higher total carbohydrates, dietary fiber, glucans, ash, and fat, while the total protein content was lower than in the mature stage. Two consumption forms, including cooked mushrooms and a mushroom aqueous extract from both stages, were used in this study. An in vitro gut fermentation was performed for 24 h to assess gut microbiota regulation. All mushroom-supplemented fermentations increased short-chain fatty acid (SCFA) production compared to the blank control. Furthermore, all mushroom supplementations promoted the growth of Bifidobacterium and Streptococcus. Samples from the mature stage increased the relative abundance of Clostridium sensu stricto 1, while those from the egg stage increased the Bacteroides group. The inhibition of harmful bacteria, including Escherichia-Shigella, Klebsiella, and Veillonella, was only observed for the mature body. Our findings demonstrate that P. atrovolvatus exhibits potential benefits on gut health by promoting SCFA production and the growth of beneficial bacteria, with the mature stage demonstrating superior effects compared to the egg stage.
Collapse
Affiliation(s)
- Raweephorn Kaewsaen
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand;
| | - Santad Wichienchot
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand;
| | - Wasaporn Preteseille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand;
| |
Collapse
|
11
|
Xu Y, Huang C, Xu T, Xiang X, Amakye WK, Zhao Z, Yao M, Zhu Y, Ren J. A Water Polysaccharide-Protein Complex from Grifola frondosa Inhibit the Growth of Subcutaneous but Not Peritoneal Colon Tumor under Fasting Condition. Mol Nutr Food Res 2024; 68:e2400023. [PMID: 38924315 DOI: 10.1002/mnfr.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Indexed: 06/28/2024]
Abstract
SCOPE Grifola frondosa has been shown to induce immune modulatory, modulate autophagy, and apoptosis in cancer cells. However, little is known about its potential for managing tumor progression as an adjunct to nutrient restriction. METHODS AND RESULTS Water extract produces a G. frondosa polysaccharide-protein complex (G. frondosa PPC) of average molecular weight of 46.48 kDa, with glucose (54.8%) as the main constituent. Under serum-restricted conditions, G. frondosa PPC can significantly inhibit MC38 colorectal tumor cell migration in vitro. Under alternate-day fasting condition, G. frondosa PPC can only significantly inhibit the growth of subcutaneous (s.c.) tumor, but is feeble in halting its spread in the intraperitoneal (i.p.) cavity in tumor-bearing mice. Histopathological examination and Raman imaging show a significant increase in lipid content in the tumor microenvironment (TME) tissue of the s.c. tumor-bearing mice. G. frondosa PPC significantly increases C17:0 and C24:0 saturated fatty acids and significantly decreases C16:1 and C18:1 monounsaturated fatty acids in the TME of s.c. tumor-bearing mice compared with the i.p. cavity model. CONCLUSION G. frondosa PPC significantly inhibits tumor growth in s.c. tumor-bearing mice under intermittent fasting conditions by altering the fatty acid composition of the TME.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiong Xiang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zikuan Zhao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou, Guangdong, 510665, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
12
|
Wang M, Pan J, Xiang W, You Z, Zhang Y, Wang J, Zhang A. β-glucan: a potent adjuvant in immunotherapy for digestive tract tumors. Front Immunol 2024; 15:1424261. [PMID: 39100668 PMCID: PMC11294916 DOI: 10.3389/fimmu.2024.1424261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The immunotherapy for gastrointestinal tumors, as a significant research direction in the field of oncology treatment in recent years, has garnered extensive attention due to its potential therapeutic efficacy and promising clinical application prospects. Recent advances in immunotherapy notwithstanding, challenges persist, such as side effects, the complexity of the tumor immune microenvironment, variable patient responses, and drug resistance. Consequently, there is a pressing need to explore novel adjunctive therapeutic modalities. β-glucan, an immunomodulatory agent, has exhibited promising anti-tumor efficacy in preclinical studies involving colorectal cancer, pancreatic cancer, and gastric cancer, while also mitigating the adverse reactions associated with chemotherapy and enhancing patients' quality of life. However, further clinical and fundamental research is warranted to comprehensively evaluate its therapeutic potential and underlying biological mechanisms. In the future, β-glucan holds promise as an adjunctive treatment for gastrointestinal tumors, potentially bringing significant benefits to patients.
Collapse
Affiliation(s)
- Meiyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jinhua Pan
- Department of Ophthalmology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Wu Xiang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Fan P, Ding L, Du G, Wei C. Effect of mastectomy on gut microbiota and its metabolites in patients with breast cancer. Front Microbiol 2024; 15:1269558. [PMID: 38860221 PMCID: PMC11163111 DOI: 10.3389/fmicb.2024.1269558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Background The relationship between gut microbiota and breast cancer has been extensively studied; however, changes in gut microbiota after breast cancer surgery are still largely unknown. Materials and methods A total of 20 patients with breast cancer underwent routine open surgery at the First Affiliated Hospital of Hainan Medical College from 1 June 2022 to 1 December 2022. Stool samples were collected from the patients undergoing mastectomy for breast cancer preoperatively, 3 days later, and 7 days later postoperatively. The stool samples were subjected to 16s rRNA sequencing. Results Surgery did not affect the α-diversity of gut microbiota. The β-diversity and composition of gut microorganisms were significantly affected by surgery in breast cancer patients. Both linear discriminant analysis effect size (LEfSe) analysis and between-group differences analysis showed that surgery led to a decrease in the abundance of Firmicutes and Lachnospiraceae and an increase in the abundance of Proteobacteria and Enterobacteriaceae. Moreover, 127 differential metabolites were screened and classified into 5 categories based on their changing trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed significant changes in the phenylalanine metabolic pathway and exogenous substance metabolic pathway. Eight characterized metabolites were screened using ROC analysis. Conclusion Our study found that breast cancer surgery significantly altered gut microbiota composition and metabolites, with a decrease in beneficial bacteria and an increase in potentially harmful bacteria. This underscores the importance of enhanced postoperative management to optimize gut microbiota.
Collapse
Affiliation(s)
- Pingming Fan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Linwei Ding
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
14
|
Wei X, Wang F, Tan P, Huang H, Wang Z, Xie J, Wang L, Liu D, Hu Z. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol Res 2024; 203:107148. [PMID: 38522760 DOI: 10.1016/j.phrs.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
15
|
Liu YL, Cao YG, Hao FX, Zeng MN, Niu Y, Chen L, Chen X, Zheng XK, Feng WS. Chemical constituents from stipes of Lentinus edodes and their protective effects against Aβ 25-35-induced N9 microglia cells injury. PHYTOCHEMISTRY 2024; 222:114098. [PMID: 38648960 DOI: 10.1016/j.phytochem.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Nine undescribed compounds, along with eight known compounds, were isolated from the stipes of Lentinus edodes. Their structures were established by extensive spectroscopic and circular dichroism analyses. The protective effects against Aβ25-35-induced N9 microglia cells injury of these compounds were tested by MTT method, and the levels of apoptosis and ROS were detected by flow cytometry. In addition, the binding sites and interactions of compound with amyloid precursor protein were revealed using molecular docking simulations. These findings further establish the structural diversity and bioactivity of stipes of L. edodes, and provide an experimental basis for targeting Alzheimer's disease as a potential strategy.
Collapse
Affiliation(s)
- Yan-Ling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Feng-Xiao Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Meng-Nan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Ying Niu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Lan Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease Diagnosis by Henan and Education Ministry of P. R. China,Zhengzhou 450046, China.
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China,Zhengzhou 450046,China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease Diagnosis by Henan and Education Ministry of P. R. China,Zhengzhou 450046, China.
| |
Collapse
|
16
|
Pérez-Valero Á, Magadán-Corpas P, Ye S, Serna-Diestro J, Sordon S, Huszcza E, Popłoński J, Villar CJ, Lombó F. Antitumor Effect and Gut Microbiota Modulation by Quercetin, Luteolin, and Xanthohumol in a Rat Model for Colorectal Cancer Prevention. Nutrients 2024; 16:1161. [PMID: 38674851 PMCID: PMC11054239 DOI: 10.3390/nu16081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer stands as the third most prevalent form of cancer worldwide, with a notable increase in incidence in Western countries, mainly attributable to unhealthy dietary habits and other factors, such as smoking or reduced physical activity. Greater consumption of vegetables and fruits has been associated with a lower incidence of colorectal cancer, which is attributed to their high content of fiber and bioactive compounds, such as flavonoids. In this study, we have tested the flavonoids quercetin, luteolin, and xanthohumol as potential antitumor agents in an animal model of colorectal cancer induced by azoxymethane and dodecyl sodium sulphate. Forty rats were divided into four cohorts: Cohort 1 (control cohort), Cohort 2 (quercetin cohort), Cohort 3 (luteolin cohort), and Cohort 4 (xanthohumol cohort). These flavonoids were administered intraperitoneally to evaluate their antitumor potential as pharmaceutical agents. At the end of the experiment, after euthanasia, different physical parameters and the intestinal microbiota populations were analyzed. Luteolin was effective in significantly reducing the number of tumors compared to the control cohort. Furthermore, the main significant differences at the microbiota level were observed between the control cohort and the cohort treated with luteolin, which experienced a significant reduction in the abundance of genera associated with disease or inflammatory conditions, such as Clostridia UCG-014 or Turicibacter. On the other hand, genera associated with a healthy state, such as Muribaculum, showed a significant increase in the luteolin cohort. These results underline the anti-colorectal cancer potential of luteolin, manifested through a modulation of the intestinal microbiota and a reduction in the number of tumors.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Juan Serna-Diestro
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
17
|
Li H, He W, Xu S, Wang R, Ge S, Xu H, Shan Y, Ding S. Grafting chlorogenic acid enhanced the antioxidant activity of curdlan oligosaccharides and modulated gut microbiota. Food Chem X 2024; 21:101075. [PMID: 38205160 PMCID: PMC10776644 DOI: 10.1016/j.fochx.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, the effects of grafting chlorogenic acid (CA) on the antioxidant and probiotic activities of curdlan oligosaccharides (CDOS) were investigated. CDOS with degrees of polymerization of 3-6 was first obtained by degradation of curdlan with hydrogen peroxide and then grafted with CA using a free radical-mediated method under an ultrasonication-assisted Fenton system. The thermal stability and antioxidant ability of CDOS were enhanced after grafting with CA. In vitro fermentation, supplementation of CDOS-CA stimulated the proliferation of Prevotella and Faecalibacterium while inhibiting the growth of harmful microbiota. Notably, the concentration of total short-chain fatty acids and the relative abundance of beneficial bacteria markedly increased after fermentation of CDOS-CA, indicating that CA grafting could improve the probiotic activity of CDOS. Overall, the covalent binding of CDOS and CA could enhance the antioxidant and probiotic activities of CDOS, suggesting potential improvements in gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Huan Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
| | - Wenjiang He
- R&D Centre, Infinitus (China) Company Ltd., Guangzhou, 510520, China
| | - Saiqing Xu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Shuai Ge
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Haishan Xu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Yang Shan
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Shenghua Ding
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| |
Collapse
|
18
|
Rajabi A, Nejati M, Homayoonfal M, Arj A, Razavi ZS, Ostadian A, Mohammadzadeh B, Vosough M, Karimi M, Rahimian N, Hamblin MR, Anoushirvani AA, Mirzaei H. Doxorubicin-loaded zymosan nanoparticles: Synergistic cytotoxicity and modulation of apoptosis and Wnt/β-catenin signaling pathway in C26 colorectal cancer cells. Int J Biol Macromol 2024; 260:128949. [PMID: 38143055 DOI: 10.1016/j.ijbiomac.2023.128949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Zymosan is a β-glucan isolated from Saccharomyces cerevisiae that could be employed for drug delivery. We synthesized zymosan nanoparticles and measured their structural and morphological properties using XRD, UV-Vis spectroscopy, TEM and AFM. The loading of doxorubicin (DOX) onto the nanoparticles was confirmed by FT-IR, and the DOX release was shown to be pH-dependent. The effect of these agents on C26 cell viability was evaluated by MTT tests and the expression of genes connected with the Wnt/β-catenin pathway and apoptosis were analyzed by RT-qPCR and Western blotting. Treatments were able to suppress the proliferation of C26 cells, and the zymosan nanocarriers loaded with DOX enhanced the anti-proliferative effect of DOX in a synergistic manner. Zymosan nanoparticles were able to suppress the expression of cyclin D1, VEGF, ZEB1, and Twist mRNAs. Treatment groups upregulated the expression of caspase-8, while reducing the Bax/Bcl-2 ratio, thus promoting apoptosis. In conclusion, zymosan nanoparticles as DOX nanocarriers could provide a more targeted drug delivery through pH-responsiveness, and showed synergistic cytotoxicity by modifying Wnt/β-catenin signaling and apoptosis.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abbas Arj
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Internal Medicine, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Ali Arash Anoushirvani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Liu W, Gao B, Yu F, Wu X, Li L. Editorial: Edible mushrooms and the gut microbiota. Front Nutr 2023; 10:1349429. [PMID: 38178974 PMCID: PMC10765529 DOI: 10.3389/fnut.2023.1349429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
20
|
Hu S, Xu H, Xie C, Meng Y, Xu X. Inhibition of human cervical cancer development through p53-dependent pathways induced by the specified triple helical β-glucan. Int J Biol Macromol 2023; 251:126222. [PMID: 37586625 DOI: 10.1016/j.ijbiomac.2023.126222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
This study demonstrates that the purified β-glucan (LNT) with a triple helix and relatively narrow molecular weight distribution, extracted and purified from artificially cultured Lentinus edodes, showed a significant cervical cancer inhibition with little cytotoxicity against normal cells in vitro and in vivo. From the in vitro data, the potential mechanism of anti-cervical cancer was preliminarily revealed as follows: LNT was firstly recognized by the human cervical cancer cell line of Hela and induced cell proliferation inhibition through p21 and apoptosis via a mitochondrion-dependent pathway by targeting the tumor suppressor of p53, indicated by an increase in reactive oxygen species (ROS) generation and a loss of mitochondrial membrane potential (Δψm), in a significant dosage-dependent manner. Meanwhile, LNT repressed tumor growth with an inhibition ratio of 61.2 % and induced tumor cell apoptosis through endogenous MDM2/p53/Bax/mitochondrion signal pathway by up-regulating the expression of p53, Bax, Cyt. c, caspase 9, and caspase 3, as well as down-regulating Bcl-2, MDM2, and PARP1 levels in Hela cells-transplanted BALB/c nude mice. This study provides a scientific basis for the clinical treatment of cervical cancer with LNT as a potential drug candidate characterized by the triple helix and specified molecular weight with a relatively narrow distribution.
Collapse
Key Words
- 4′, 6-Diamidino-2-Phenylindole (DAPI, PubChem CID: 2954)
- Acetic acid (HAc, PubChem CID:176)
- Anti-cervical cancer
- Deuterated dimethyl sulfoxide (DMSO‑d(6), PubChem CID: 75151)
- Dimethyl Sulfoxide (DMSO, PubChem CID: 679)
- Eosin (PubChem CID: 11048)
- Fluorescein isothiocyanate isomer (FITC, PubChem CID: 18730)
- Hematoxylin (PubChem CID: 442514)
- Hydrogen peroxide (H(2)O(2), PubChem CID: 784)
- Narrow molecular weight distribution
- Phenol (PubChem CID: 996)
- Sodium borohydride (NaBH(4), PubChem CID: 4311764)
- Sodium chloride (NaCl, PubChem CID: 5234)
- Sodium hydroxide (NaOH, PubChem CID: 14798)
- Sulfuric acid (PubChem CID: 1118)
- Trifluoroacetic acid (TFA, PubChem CID: 6422)
- Triple helix β-glucan
Collapse
Affiliation(s)
- Shuqian Hu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Hui Xu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China; Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
21
|
Luo B, Yang F, Chen P, Zuo HY, Liang YF, Xian MH, Tang N, Wang GE. A Novel Polysaccharide Separated from Panax Notoginseng Residue Ameliorates Restraint Stress- and Lipopolysaccharide-induced Enteritis in Mice. Chem Biodivers 2023; 20:e202300648. [PMID: 37615232 DOI: 10.1002/cbdv.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Polysaccharides are rich in Panax notoginseng residue after extraction. This study aims to explore the structural characteristics of PNP-20, which is a homogeneous polysaccharide, separated from P. notoginseng residue by fractional precipitation and evaluate the anti-enteritis effect of PNP-20. The structure of PNP-20 was determined by spectroscopic analyses. A mouse model with enteritis induced by restraint stress (RS) and lipopolysaccharide (LPS) was used to evaluate the pharmacological effect of PNP-20. The results indicated that PNP-20 consisted of glucose (Glc), galactose (Gal), Mannose (Man) and Rhamnose (Rha). PNP-20 was composed of Glcp-(1→, →4)-α-Glcp-(1→, →4)-α-Galp-(1→, →4,6)-α-Glcp-(1→, →4)-Manp-(1→ and →3)-Rhap-(1→, and contained two backbone fragments of →4)-α-Glcp-(1→4)- α-Glcp-(1→ and →4)-α-Galp-(1→4)-α-Glcp-(1→. PNP-20 reduced intestinal injury and inflammatory cell infiltration in RS- and LPS-induced enteritis in mice. PNP-20 decreased the expression of intestinal tumor necrosis factor-α, NOD-like receptor family pyrin domain containing 3, and nuclear factor-κB and increased the expression of intestinal superoxide dismutase 2. In conclusion, PNP-20 may be a promising material basis of P. Notoginseng for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Bi Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Fan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Peng Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| | - Hao-Yu Zuo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Yun-Fei Liang
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou, China
| | - Ming-Hua Xian
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| | - Nan Tang
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, 396 Tongfu Zhong Road, Guangzhou, China
| | - Guo-En Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou, China
| |
Collapse
|
22
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023; 64:12242-12271. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|