1
|
Padhan B, Ryoo W, Patel M, Dash JK, Patel R. Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations. Polymers (Basel) 2024; 16:2938. [PMID: 39458766 PMCID: PMC11511415 DOI: 10.3390/polym16202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The increasing environmental challenges caused by pharmaceutical waste, especially antibiotics and contaminants, necessitate sustainable solutions. Cellulose-based membranes are considered advanced tools and show great potential as effective materials for the removal of drugs and organic contaminants. This review introduces an environmentally friendly composite membrane for the elimination of antibiotics and dye contaminants from water and food, without the use of toxic additives. The potential of cellulose-based membranes in reducing the impact on water quality and promoting environmental sustainability is emphasized. Additionally, the benefits of using biobased cellulose membranes in membrane biological reactors for the removal of antibiotics from pharmaceutical waste and milk are explored, presenting an innovative approach to achieving a circular economy. This review provides recent and comprehensive insights into membrane bioreactor technology, making it a valuable resource for researchers seeking efficient methods to break down antibiotics in industrial wastewater, particularly in the pharmaceutical and dairy industries.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, India;
| | - Wanki Ryoo
- Bio-Convergence, Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea;
| | - Jatis Kumar Dash
- Department of Physics, SRM University-AP, Amaravati 522502, India
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
2
|
Maged A, Al-Hagar OEA, Ahmed Abu El-Magd S, Kharbish S, Bhatnagar A, Abol-Fotouh D. Bacterial nanocellulose-clay film as an eco-friendly sorbent for superior pollutants removal from aqueous solutions. ENVIRONMENTAL RESEARCH 2024; 257:119231. [PMID: 38797468 DOI: 10.1016/j.envres.2024.119231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The persistent water treatment and separation challenge necessitates innovative and sustainable advances to tackle conventional and emerging contaminants in the aquatic environment effectively. Therefore, a unique three-dimensional (3D) network composite film (BNC-KC) comprised of bacterial nanocellulose (BNC) incorporated nano-kaolinite clay particles (KC) was successfully synthesized via an in-situ approach. The microscopic characterization of BNC-KC revealed an effective integration of KC within the 3D matrix of BNC. The investigated mechanical properties of BNC-KC demonstrated a better performance compared to BNC. Thereafter, the sorption performance of BNC-KC films towards basic blue 9 dye (Bb9) and norfloxacin (NFX) antibiotic from water was investigated. The maximum sorption capacities of BNC-KC for Bb9 and NFX were 127.64 and 101.68 mg/g, respectively. Mechanistic studies showed that electrostatic interactions, multi-layered sorption, and 3D structure are pivotal in the NFX/Bb9 sorption process. The intricate architecture of BNC-KC effectively traps molecules within the interlayer spaces, significantly increasing sorption efficiency. The distinctive structural configuration of BNC-KC films effectively addressed the challenges of post-water treatment separation while concurrently mitigating waste generation. The environmental evaluation, engineering, and economic feasibility of BNC-KC are also discussed. The cost estimation assessment of BNC-KC revealed the potential to remove NFX and Bb9 from water at an economically viable cost.
Collapse
Affiliation(s)
- Ali Maged
- Geology Department, Faculty of Science, Suez University, 43221, Suez, Egypt; Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Ola E A Al-Hagar
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | | | - Sherif Kharbish
- Geology Department, Faculty of Science, Suez University, 43221, Suez, Egypt
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Deyaa Abol-Fotouh
- Department of Electronic Materials Research, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
3
|
Aminsharei F, Lahijanian A, Shiehbeigi A, Beiki SS, Ghashang M. Dual magnetization and amination of cellulosic chains for the efficient adsorption of heavy metals. Int J Biol Macromol 2024; 276:134004. [PMID: 39032894 DOI: 10.1016/j.ijbiomac.2024.134004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Compounds functionalized with hydroxyl and amino groups were found to have good potential for the adsorption of different ions. In this work, a new system of cellulosic chains was amended with amine substitutions and bonded to a magnetic core of NiFe2O4@SiO2 to form NiFe2O4@SiO2-cellulose-NH2 system. The prepared sample showed suitable magnetic separation and was characterized via XRD, FT-IR, SEM, EDS, and TGA-DTA analyses. The adsorption potential of NiFe2O4@SiO2-cellulose-NH2 system has been investigated on the heavy metals (Cd, Ni, and Pb) removal from a synthetic wastewater environment. The results show that the magnetic property created by the magnetic core increased the recycling potential of the adsorbent and the magnetic core has a positive effect on the absorption potential of the polymer. The adsorption removal of Cd(II), Ni(II), and Pb(II) ions was studied using NiFe2O4@SiO2-cellulose-NH2 systems in different pH, temperatures, metal ion concentrations, and adsorbent dosages. The maximum adsorption capacities of single heavy metal ions were obtained as 406.44 mg/g (for Cd(II) ions), 411.63 mg/g (for Ni(II) ions), and 414.68 mg/g (for Pb(II) ions) under optimized conditions as pH = 6.5, ion concentration: 500 mg/L, adsorbent dosage: 1.2 g/L and room temperature.
Collapse
Affiliation(s)
- Farham Aminsharei
- Department of Safety, Health and Environment, Najafabad Branch, Islamic Azad University, Najafabad 85141-43131, Iran.
| | - Akramolmolok Lahijanian
- Department of Environmental Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Andisheh Shiehbeigi
- Department of Environmental Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadi Shieh Beiki
- Department of Environmental Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Ghashang
- Department of Chemistry, Najafabad Branch, Islamic Azad University, P.O. Box: 517; Najafabad, Iran.
| |
Collapse
|
4
|
Catalá-Icardo M, Gómez-Benito C, Martínez-Pérez-Cejuela H, Simó-Alfonso EF, Herrero-Martínez JM. Green synthesis of MIL53(Al)-modified paper-based analytical device for efficient extraction of neonicotinoid insecticides from environmental water samples. Anal Chim Acta 2024; 1316:342841. [PMID: 38969405 DOI: 10.1016/j.aca.2024.342841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is a need to develop low-cost, reliable and portable devices to enhance the efficiency of microextraction techniques in complex samples. Metal-organic frameworks (MOFs) have proven to be promising sorbents due to their well-documented properties. However, their green preparation and combination with paper-based substrates have not been satisfactorily explored to fabricate sustainable sorptive phases. RESULTS In this work, the hybridization of a paper substrate (as a sustainable support) with MOFs (as a sorptive phase) was carried out by one-pot approach. Concretely, the selected MOF, MIL-53(Al), was in-situ growth onto the paper surface in aqueous solution without the need for high temperature or pressure, thereby aligning with the Green Analytical Chemistry principles. The optimized composite (MIL-53(Al)@cellulose paper) was characterized and evaluated as extraction sorbent for five neonicotinoids (NEOs) (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid). Furthermore, its feasibility was demonstrated by isolating these pollutants from environmental water samples, followed their determination by HPLC coupled to diode array detection. The whole method showed satisfactory analytical performance with recoveries between 86 and 114 %, suitable precision (with RSD lower than 14 %), and limits of detection ranged from 1.0 to 1.6 μg L-1. Besides, the greenness of the method was assessed by application of different existing metrics. The developed extraction device was affordable (<0.08 €/device) and mechanical and chemically stable, being possible its reuse more than 11 cycles, thus demonstrating its suitability for rapid screening of pesticides in environmental samples. SIGNIFICANCE This report presents, for the first time, the green synthesis of MIL-53(Al)cellulose paper composite and its application as a sorptive phase for the extraction of NEOs from environmental water samples. We believe that the proposed strategy for fabricating these sustainable paper-based sorptive phases paves the way for further hybridizations with other MOFs or materials. Additionally, it opens up large possibilities for their application in extraction of pollutants or other hazardous compounds in aquatic environments.
Collapse
Affiliation(s)
- Mónica Catalá-Icardo
- Research Institute for the Integrated Management of Coastal Zones, Gandía Campus, Universitat Politècnica de València, C/ Paranimf 1, Grao de Gandía, 46730, Valencia, Spain.
| | - Carmen Gómez-Benito
- Research Institute for the Integrated Management of Coastal Zones, Gandía Campus, Universitat Politècnica de València, C/ Paranimf 1, Grao de Gandía, 46730, Valencia, Spain
| | | | | | | |
Collapse
|
5
|
Lee K, Jeon Y, Kwon G, Lee S, Ko Y, Park J, Kim J, You J. Multiporous ZIF-8 carbon/cellulose composite beads: Highly efficient and scalable adsorbents for water treatment. Carbohydr Polym 2024; 335:122047. [PMID: 38616086 DOI: 10.1016/j.carbpol.2024.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Metal-organic framework (MOF) particles are one of the most promising adsorbents for removing organic contaminants from wastewater. However, powder-type MOF particles face challenges in terms of utilization and recovery. In this study, a novel bead-type adsorbent was prepared using activated carbon based on the zeolitic imidazolate framework-8 (AC-ZIF-8) and a regenerated cellulose hydrogel for dye removal. AC-ZIF-8 particles with a large surface area were obtained by carbonization and chemical activation with KOH. The AC-ZIF-8 powders were efficiently immobilized in hydrophilic cellulose hydrogel beads via cellulose dissolution/regeneration. The prepared AC-ZIF-8/cellulose hydrogel (AC-ZIF-8/CH) composite beads exhibit a large specific surface area of 1412.8 m2/g and an excellent maximum adsorption capacity of 565.13 mg/g for Rhodamine B (RhB). Moreover, the AC-ZIF-8/CH beads were effective over a wide range of pH, temperatures and for different types of dyes. These composite beads also offer economic benefits through desorption of dyes for recycling. The AC-ZIF-8/CH beads can be produced in substantial amounts and used as fillers in a fixed-bed column system, which can purify the continuous inflow of dye solutions. These findings suggest that our simple approach for preparing high-performance adsorbent beads will broaden the application of dye adsorbents, oil-water separation, and catalysts.
Collapse
Affiliation(s)
- Kangyun Lee
- Department of Plant & Environmental New Resources and Graduate School of Green-Bio Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Youngho Jeon
- Department of Plant & Environmental New Resources and Graduate School of Green-Bio Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Goomin Kwon
- Department of Plant & Environmental New Resources and Graduate School of Green-Bio Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Suji Lee
- Department of Plant & Environmental New Resources and Graduate School of Green-Bio Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Youngsang Ko
- Department of Plant & Environmental New Resources and Graduate School of Green-Bio Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Jisoo Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| | - Jungmok You
- Department of Plant & Environmental New Resources and Graduate School of Green-Bio Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea.
| |
Collapse
|
6
|
Wang L, Yan X, Chen X, Li Y, Wu D. Magnetic polyimide nanocomposite for analysis of parabens in cooking wine by magnetic solid-phase extraction coupled with gas chromatography - Mass spectrometry. J Chromatogr A 2024; 1720:464814. [PMID: 38490140 DOI: 10.1016/j.chroma.2024.464814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
A magnetic polyimide (PI) nanocomposite has been synthesized by phase inversion of PI and simultaneous encapsulation of Fe3O4 nanoparticles. The Fe3O4/PI nanocomposite was characterized by a variety of characterization techniques, including infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, and vibrating sample magnetometry. The results showed that the prepared nanocomposite had a homogeneous structure, adequate specific surface area (76.1 m2/g) and high saturation magnetization (42.9 emu/g). Using parabens as model analytes, the performance of the Fe3O4/PI nanocomposite as an adsorbent for magnetic solid-phase extraction (MSPE) was evaluated. The extracted parabens were desorbed and determined by gas chromatography-mass spectrometry (GC-MS). The parameters affecting the extraction and desorption efficiency of parabens were optimized. Under the optimal conditions, the developed MSPE/GC-MS method was successfully applied to the determination of parabens in cooking wine. The MSPE/GC-MS method exhibited broad linearity (0.2-100 µg/L), low detection limits (0.04-0.05 µg/L), and satisfactory extraction recoveries (79.2 %-113.3 %) with relative standard deviations (RSDs) ranging from 0.7 % to 10.4 %. For real cooking wine samples, the spiked recoveries ranged from 91.7 % to 118.7 % with RSDs of 1.0 %-11.2 %. The results demonstrated that the Fe3O4/PI nanocomposite was an effective adsorbent, and this work provides a novel reference for the easy preparation of magnetic adsorbent materials.
Collapse
Affiliation(s)
- Liuxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Xianzhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanshuo Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
7
|
Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Da Oh W. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:145. [PMID: 38568460 DOI: 10.1007/s10653-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria.
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina CityKatsina, 2137, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria
| | | | - Asmaa' Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Ismael A Wadi
- Basic Science Unit, Prince Sattam Bin Abdulaziz University, 16278, Alkharj, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| |
Collapse
|
8
|
Guo P, Xu M, Zhong F, Liu C, Cui X, Zhang J, Zhao M, Yang Z, Jia L, Yang C, Xue W, Fan D. Molecularly imprinted solid-phase extraction combined with non-ionic hydrophobic deep eutectic solvents dispersed liquid-liquid microextraction for efficient enrichment and determination of the estrogens in serum samples. Talanta 2024; 269:125480. [PMID: 38039681 DOI: 10.1016/j.talanta.2023.125480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Hormonal drugs in biological samples are usually in low concentration and highly intrusive. It is of great significance to enhance the sensitivity and specificity of the detection process of hormone drugs in biological samples by utilizing appropriate sample pretreatment methods for the detection of hormone drugs. In this study, a sample pretreatment method was developed to effectively enrich estrogens in serum samples by combining molecularly imprinted solid-phase extraction, which has high specificity, and non-ionic hydrophobic deep eutectic solvent-dispersive liquid-liquid microextraction, which has a high enrichment ability. The theoretical basis for the effective enrichment of estrogens by non-ionic hydrophobic deep eutectic solvent was also computed by simulation. The results showed that the combination of molecularly imprinted solid-phase extraction and deep eutectic solvent-dispersive liquid-liquid microextraction could improve the sensitivity of HPLC by 33∼125 folds, and at the same time effectively reduce the interference. In addition, the non-ionic hydrophobic deep eutectic solvent has a relatively low solvation energy for estrogen and possesses a surface charge similar to that of estrogen, and thus can effectively enrich estrogen. The study provides ideas and methods for the extraction and determination of low-concentration drugs in biological samples and also provides a theoretical basis for the application of non-ionic hydrophobic deep eutectic solvent extraction.
Collapse
Affiliation(s)
- Pengqi Guo
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| | - Mingyang Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Fanru Zhong
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Chenming Liu
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Xia Cui
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, PR China
| | - Jing Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Min Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Ziwei Yang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Liru Jia
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Chuanming Yang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Daidi Fan
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| |
Collapse
|
9
|
Yan X, Du Y, Chen X, Wang L, Li Y, Wu D. Magnetic polyimide nanosheet strings for determination of anabolic androgenic steroids in tap-water, functional drink, and external drug by magnetic solid-phase extraction combined with gas chromatography-mass spectrometry. J Chromatogr A 2023; 1712:464473. [PMID: 39491275 DOI: 10.1016/j.chroma.2023.464473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Magnetic polyimide (PI) nanosheet strings were prepared by wrapping PI nanosheets around the γ-Fe2O3 nanowires. The γ-Fe2O3/PIs composite was successfully used for magnetic solid-phase extraction (MSPE) of anabolic androgenic steroids (AASs). The γ-Fe2O3/PIs composite possessed adequate saturation magnetic strength (8.7 emu/g) from inner γ-Fe2O3 nanowires, and large specific surface area (154.1 m2/g) for high adsorption capacity (≥ 8.9 μg/mg for selected 9 AASs) from outer PI nanosheets. Subsequently, trace AASs in water were extracted by γ-Fe2O3/PIs and determined by gas chromatography-mass spectrometry (GC-MS) after desorption and derivatization. Under the optimized extraction and desorption conditions, the MSPE of AASs based on γ-Fe2O3/PIs was established. For purified water, the linear range was 0.01-100, 0.02-100, 0.05-100, 0.1-100 or 0.2-100 μg/L with determination coefficients (R2) greater than 0.9950. The recoveries ranged from 78.3% to 115.7%, with relative standard deviations (RSDs) between 1.9 and 11.8%. The limits of detection (LODs) were in the range of 0.0025-0.046 μg/L. For the three real samples, tap-water, functional drink, and external analgesic aerosol drug, the recoveries were 68.8-119.0%, and the corresponding RSDs were 0.4-11.0%. This study provides a new strategy for the preparation of magnetic adsorption materials and an alternative method for the detection of pollutants in aqueous samples.
Collapse
Affiliation(s)
- Xiaohui Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xianzhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liuxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanshuo Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
10
|
Kaushal N, Singh AK. Advancement in utilization of bio-based materials including cellulose, lignin, chitosan for bio-inspired surface coatings with special wetting behavior: A review on fabrication and applications. Int J Biol Macromol 2023; 246:125709. [PMID: 37414313 DOI: 10.1016/j.ijbiomac.2023.125709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Natural bio-material surface with hydrophobic behavior (aqueous droplet to roll off from its surface) has inspired researchers to design sustainable artificial coatings with hydrophobic or superhydrophobic behavior. The developed hydrophobic or superhydrophobic artificial coatings are highly useful in various applications such as water remediation, oil/water separation, self-cleaning, anti-fouling, anti-corrosion and also in medical fields including anti-viral, anti-bacterial efficacy. In recent years, among various coating materials, bio-based materials derived from plants and animals (cellulose, lignin, sugarcane bagasse, peanut shell, rice husk, egg cell etc.) are applied on various surfaces in order to develop fluorine free hydrophobic coatings with longer durability by lowering the surface energy and increasing the surface roughness. This review summarized recent developments in hydrophobic/superhydrophobic coating fabrication methods, properties and applications with the use of different bio-based materials and their combinations. In addition, basic mechanisms behind the coating fabrication process and their durability under different environmental conditions are also discussed. Moreover, prospects and limitations of bio-based coatings in practical applications have been highlighted.
Collapse
Affiliation(s)
- Natasha Kaushal
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|