1
|
Prokopidis K, Morwani-Mangnani J, McDowell G, Lip GYH, Venturelli M, Sankaranarayanan R, Isanejad M. Sarcopenia is linked to higher levels of B-type natriuretic peptide and its N-terminal fragment in heart failure: a systematic review and meta-analysis. Eur Geriatr Med 2024; 15:893-901. [PMID: 38457043 PMCID: PMC11377361 DOI: 10.1007/s41999-024-00950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
AIMS Sarcopenia is linked to impaired physical function and exercise tolerance. The aim of this systematic review and meta-analysis was to examine the association of sarcopenia and low appendicular skeletal muscle (ASM) with biomarkers of cardiac function, B-type natriuretic peptide (BNP) and its N-terminal fragment (NT-proBNP), in patients with heart failure (HF). METHODS AND RESULTS From inception until May 2023, a systematic literature search of observational studies was undertaken utilizing the PubMed, Web of Science, Scopus, and Cochrane Library databases. A meta-analysis employing a random-effects model was used to compute the pooled effects (CRD42023418465). Overall, 16 studies were included in this systematic review and meta-analysis. Our main analysis showed that sarcopenia in HF was linked to significantly higher levels of BNP (MD: 87.76, 95% CI 20.74-154.78, I2 = 61%, P = 0.01) and NT-proBNP (MD: 947.45, 95% CI 98.97-1795.93, I2 = 35%, P = 0.03). Similarly, low ASM was associated with significantly higher levels of BNP (MD: 118.95, 95% CI 46.91-191.00, I2 = 93%, P < 0.01) and NT-proBNP (MD: 672.01, 95% CI 383.72-960.30, I2 = 2%, P < 0.01). The quality of the included cohort studies was considered moderate, using the binary AXIS checklist and the Cochrane Tool to Assess the Risk of Bias in Cohort Studies. CONCLUSIONS In patients with HF, sarcopenia and reduced ASM are associated with considerably higher plasma levels of BNP and NT-proBNP. Future research is required to investigate whether sarcopenia may express dysregulated biomarkers of cardiac function.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | | | - Garry McDowell
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Research Lab, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rajiv Sankaranarayanan
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Masoud Isanejad
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Zhou M, Chai X, Liu X, Li M. Effects of Toll-Like Receptor4 Gene Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Transplantation on Expression of Basic Fibroblast Growth Factor (bFGF) and Follistatin-Like-1 (FSTL1) in Myocardial Ischemia-Reperfusion Rats. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study assesses the effects of TLR4 gene modified BMSCs transplantation on the expression of bFGF and FSTL1 in myocardial ischemia-reperfusion rats. 30 male SD rats were assigned into control group (myocardial ischemia model), BMSCs group (model + BMSCs transplantation) and transfection
group (model + TLR4 gene modified BMSCs transplantation) followed by analysis of TLR4 expression, EGFP, apoptosis and expression of bFGF and FSTL1. Compared with control group (TLR4 concentration 2.86 pg/5×105 cells/mL). The expression of TLR4 in BMSCs group (25.24 pg/5×105
cells/mL) and transfection group (31.55 pg/5×105 cells/mL) was significantly increased (P <0.05), and it was more significant in transfection group. The myocardial tissue of rats in control group produced a large number of scars, hypertrophy and hyperplasia of myocardial
cells accompanied by a large number of necrosis; The scar tissue of the myocardium in BMSCs group and transfection group decreased, and viable myocardium increased, with more significant effect in transfection group. Control group showed a large number of blue collagen fibers in the infarction
area of left ventricle, which were in the shape of cords, and part of the collagen fibers were fused. The blue collagen fibers in the control group and the transfection group were significantly reduced. Compared with control group, BMSCs group had lower apoptosis, and increased bFGF and FSTL1
levels (P <0.05). Compared with BMSCs group, the apoptosis rate of myocardial cells was decreased, and the levels of bFGF and FSTL1 were increased (P < 0.05). In conclusion, transplantation of BMSCs modified with TLR4 can increase bFGF and FSTL1 levels, reduce the rate
of myocardial apoptosis and improve the myocardial pathological tissue, thus playing a therapeutic role.
Collapse
Affiliation(s)
- Min Zhou
- Department of Critical Medicine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Xiaoli Chai
- Department of Cardiology, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Xiulan Liu
- Department of Emergency Department, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Manli Li
- Department of Critical Medicine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| |
Collapse
|
3
|
Horak M, Fairweather D, Kokkonen P, Bednar D, Bienertova-Vasku J. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail Rev 2022; 27:2251-2265. [PMID: 35867287 PMCID: PMC11140762 DOI: 10.1007/s10741-022-10262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.
Collapse
Affiliation(s)
- Martin Horak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Piia Kokkonen
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Bednar
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
4
|
Yamazaki Y, Kishimoto Y, Saita E, Aoyama M, Ikegami Y, Ohmori R, Tanimoto K, Kondo K, Momiyama Y. Association between Plasma Follistatin-like Protein 1 Levels and the Presence and Severity of Coronary Artery Disease. Int Heart J 2021; 62:1207-1212. [PMID: 34853217 DOI: 10.1536/ihj.21-203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein known for its role in inflammation. However, plasma FSTL1 levels in patients with coronary artery disease (CAD) have not been fully elucidated. Thus, in this study, we investigated the plasma FSTL1 levels of 350 patients who underwent elective coronary angiography. The severity of CAD was represented as the numbers of > 50% stenotic vessels and segments and the severity score. CAD was detected in 196 patients, of whom 84 had 1-vessel disease (1-VD), 62 had 2-VD, and 50 had 3-VD. Plasma high-sensitivity C-reactive protein (hsCRP) levels were higher in patients with CAD than in those without CAD (median 0.56 versus 0.44 mg/L, P < 0.01). Notably, plasma FSTL1 levels were higher in patients with CAD than in those without CAD (median 4.05 versus 3.47 ng/mL, P < 0.02). A stepwise increase in FSTL1 levels was found depending on the number of > 50% stenotic vessels: 3.47 in CAD (-), 3.74 in 1-VD, 4.42 in 2-VD, and 4.65 ng/mL in 3-VD (P < 0.05). FSTL1 levels also correlated with the number of > 50% stenotic segments and the severity score (r = 0.14 and r = 0.15, respectively, P < 0.005) and hsCRP levels (r = 0.10, P < 0.05). In the multivariate analysis, FSTL1 levels were an independent factor associated with CAD. The odds ratio for CAD was 1.61 (95% CI = 1.01-2.58) for high FSTL1 level of > 3.6 ng/mL (P < 0.05). In conclusion, plasma FSTL1 levels in patients with CAD were found to be high and associated with the presence and severity of CAD, thus, suggesting that FSTL1 may play a role in the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Yurie Yamazaki
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | | | - Emi Saita
- Institute of Transformative Bio-Molecules, Nagoya University
| | - Masayuki Aoyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Yukinori Ikegami
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University
| | - Kojiro Tanimoto
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | | | - Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| |
Collapse
|
5
|
Ausoni S, Azzarello G. Development of Cancer in Patients With Heart Failure: How Systemic Inflammation Can Lay the Groundwork. Front Cardiovasc Med 2020; 7:598384. [PMID: 33195486 PMCID: PMC7649135 DOI: 10.3389/fcvm.2020.598384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, cardiologists and oncologists have provided clinical and experimental evidence that cancer, and not only chemotherapeutic agents, can cause detrimental effects on heart structure and function, a consequence that has serious clinical implications for patient management. In parallel, the intriguing idea that heart failure (HF) may be an oncogenic condition has also received growing attention. A number of epidemiological and clinical studies have reported that patients with HF have a higher risk of developing cancer. Chronic low-grade systemic inflammation has been proposed as a major pathophysiological process linking the failing heart to the multi-step process of carcinogenesis. According to this view, pro-inflammatory mediators secreted by the damaged heart generate a favorable milieu that promotes tumor development and accelerates malignant transformation. HF-associated inflammation synergizes with tumor-associated inflammation, so that over time it is no longer possible to distinguish the effects of one or the other. Experimental studies have just begun to search for the molecular effectors of this process, with the ultimate goal that of identifying mechanisms suitable for anti-cancer target therapy to reduce the risk of incident cancer in patients already affected by HF. In this review we critically discuss strengths and limitations of clinical and experimental studies that support a causal relationship between HF and cancer, and focus on HF-associated inflammation, cardiokines and their endocrine functions linking one and the other disease.
Collapse
Affiliation(s)
- Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Giuseppe Azzarello
- Local Health Unit 3 Serenissima, Department of Medical Oncology, Mirano Hospital, Venice, Italy
| |
Collapse
|