1
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
2
|
Genome Editing and Cardiac Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:37-52. [DOI: 10.1007/978-981-19-5642-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Khan K, Caron C, Mahmoud I, Derish I, Schwertani A, Cecere R. Extracellular Vesicles as a Cell-free Therapy for Cardiac Repair: a Systematic Review and Meta-analysis of Randomized Controlled Preclinical Trials in Animal Myocardial Infarction Models. Stem Cell Rev Rep 2022; 18:1143-1167. [PMID: 35107768 DOI: 10.1007/s12015-021-10289-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Stem cell therapy for cardiac regeneration has been gaining traction as a possible intervention for the reduction of the burden associated with MI and heart failure. However, stem cell therapies have several shortcomings, including poor engraftment, limited improvements in cardiac function, and possible teratogenicity. Recently, extracellular vesicles (EVs) from stem cell sources have been explored as a novel therapy to regenerate the injured myocardium in several animal MI trials. In this systematic review and meta-analysis, we investigate the use of stem cell-derived EVs for cardiac repair preclinical trials in animal MI models. Cochrane Library, Medline, Embase, PubMed, Scopus and Web of Science and grey literature (Canadian Agency for Drugs, Technologies in Health, and Google Scholar) were searched through August 20, 2020 and 37 articles were included in the final analysis. The overall effect size observed in EV-treated small animals after MI for ejection fraction (EF) was 10.85 [95 %CI: 8.79, 12.90] and for fractional shortening (FS) was 7.19 [95 %CI: 5.43, 8.96] compared to control-treated animals. The most abundant stem cell source used were mesenchymal stem cells which showed robust improvements in EF and FS (MD = 11.89 [95 % CI: 9.44, 14.34] and MD = 6.96 [95 % CI: 4.97, 8.96], respectively). Significant publication bias was detected for EF and FS outcomes. This study supports the use of EVs derived from stem cells as a novel therapy for cardiac repair after MI. Further investigation in larger animal studies may be necessary before clinical trials.PROSPERO registration number: CRD42019142218.
Collapse
Affiliation(s)
- Kashif Khan
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Christophe Caron
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Ibtisam Mahmoud
- McConnell Resource Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ida Derish
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Adel Schwertani
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Renzo Cecere
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Buja LM, Zhao B, Segura A, Lelenwa L, McDonald M, Michaud K. Cardiovascular pathology: guide to practice and training. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
Buja LM, Schoen FJ. The pathology of cardiovascular interventions and devices for coronary artery disease, vascular disease, heart failure, and arrhythmias. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Effectiveness of the Pharmacist-Involved Multidisciplinary Management of Heart Failure to Improve Hospitalizations and Mortality Rates in 4630 Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Card Fail 2019; 25:744-756. [DOI: 10.1016/j.cardfail.2019.07.455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
|
7
|
Buja LM, Ottaviani G, Mitchell RN. Pathobiology of cardiovascular diseases: an update. Cardiovasc Pathol 2019; 42:44-53. [PMID: 31255975 DOI: 10.1016/j.carpath.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official journal of the Society for Cardiovascular Pathology (SCVP). This CVP Special Issue showcases a series of commemorative review articles in celebration of the 25th anniversary of CVP originally published in 2016 and now compiled into a virtual collection with online access for the cardiovascular pathology community. This overview also provides updates on the major categories of cardiovascular diseases from the perspective of cardiovascular pathologists, highlighting publications from CVP, as well as additional important review articles and clinicopathologic references.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Cardiovascular Pathology Research Laboratory, Texas Heart Institute, CHI St. Luke's Hospital, Houston, TX, USA.
| | - Giulia Ottaviani
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and sudden infant death syndrome, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Khan K, Makhoul G, Yu B, Schwertani A, Cecere R. The cytoprotective impact of yes-associated protein 1 after ischemia-reperfusion injury in AC16 human cardiomyocytes. Exp Biol Med (Maywood) 2019; 244:802-812. [PMID: 31142144 DOI: 10.1177/1535370219851243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Hippo-signaling pathway is a mechanism implicated in cardiomyocyte cytoprotection and regeneration after a myocardial infarction. Yes-associated protein 1, the main effector protein of this pathway, acts as a co-transcriptional activator to promote cardiomyocyte proliferation and survival. However, the biological mechanisms by which yes-associated protein 1 protects the heart post-MI are currently unknown. Here, we propose that yes-associated protein 1 plays a critical role in cardiomyocyte cytoprotection after simulated ischemia-reperfusion injury. AC16 human cardiomyocytes were infected with lentiviral plasmids containing normal human yes-associated protein 1 and a constitutively active form of YAP, YAP1S127A. Cells were exposed to ischemia-reperfusion injury using a hypoxic chamber. Hippo-signaling characterization after ischemia-reperfusion injury was performed via Western blotting and reverse transcriptase polymerase chain reaction. Cell viability, apoptosis, and cellular hypertrophy were assessed as a measure of cytoprotection. The GSK3β inhibitor CHIR99021 was used to investigate cross-talk between Hippo and Wnt-signaling and their role in cytoprotection after ischemia-reperfusion-injury. Ischemia-reperfusion injury resulted in significant decreased expression of the non-phosphorylated Hippo signaling kinases MST1 and LATS1, along with decreased expression of YAP/TAZ. Overexpression of yes-associated protein 1 improved cellular viability, while reducing hypertrophy and apoptosis via the ATM/ATR DNA damage response pathway. Activation of β-catenin in YAP-infected cardiomyocytes synergistically reduced cellular hypertrophy after ischemia-reperfusion-injury. Our findings indicate that yes-associated protein 1 is cytoprotective in AC16 human cardiomyocytes after ischemia-reperfusion injury, which may be mediated by co-activation of the canonical Wnt/β-catenin pathway. Thus, activation of yes-associated protein 1 may be a novel therapeutic to repair the infarcted myocardium. Impact statement Genetically engineering the cells of the heart after myocardial infarction to display a more regenerative phenotype is a promising therapy for heart failure patients. Here, we support a regenerative role for yes-associated protein 1, the main effector protein of the Hippo signaling pathway, in AC16 human cardiomyocytes as a potential therapeutic gene target for cardiac repair after myocardial infarction.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Georges Makhoul
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Renzo Cecere
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| |
Collapse
|
9
|
Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. ANNUAL REVIEW OF PATHOLOGY 2019; 14:211-238. [PMID: 30332561 PMCID: PMC6442682 DOI: 10.1146/annurev-pathmechdis-012418-012827] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases exist across all developed countries. Biomarkers that can predict or diagnose diseases early in their pathogeneses can reduce their morbidity and mortality in afflicted individuals. microRNAs are small regulatory RNAs that modulate translation and have been identified as potential fluid-based biomarkers across numerous maladies. We describe the current state of cardiovascular disease biomarkers across a range of diseases, including myocardial infarction, acute coronary syndrome, myocarditis, hypertension, heart failure, heart transplantation, aortic stenosis, diabetic cardiomyopathy, atrial fibrillation, and sepsis. We present the current understanding of microRNAs as possible biomarkers in these categories and where their best opportunities exist to enter clinical practice.
Collapse
Affiliation(s)
- Perry V Halushka
- Department of Pharmacology, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
- Department of Medicine, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
10
|
Glass CH, Christakis A, Fishbein GA, Watkins JC, Strickland KC, Mitchell RN, Padera RF. Thrombus on the inflow cannula of the HeartWare HVAD: an update. Cardiovasc Pathol 2019; 38:14-20. [DOI: 10.1016/j.carpath.2018.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/06/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022] Open
|
11
|
Khan K, Gasbarrino K, Mahmoud I, Makhoul G, Yu B, Dufresne L, Daskalopoulou SS, Schwertani A, Cecere R. Bioactive scaffolds in stem-cell-based therapies for cardiac repair: protocol for a meta-analysis of randomized controlled preclinical trials in animal myocardial infarction models. Syst Rev 2018; 7:225. [PMID: 30518435 PMCID: PMC6280361 DOI: 10.1186/s13643-018-0845-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (MI) remains one of the leading causes of death worldwide with no curative therapy available. Stem cell therapies have been gaining interest as a means to repair the cardiac tissue after MI and prevent the onset of heart failure. Many in vivo reports suggest that the use of stem cells is promising, yet clinical trials suggest that the cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function and repair. To battle this limitation, the combination of using stem cells embedded in a bioactive scaffold that promotes cell retention is growing in interest. Yet, a systematic review of the literature on the use of stem cells embedded in bioactive scaffolds for cardiac repair has not yet been performed. In this protocol, we outline a systematic review and meta-analysis of preclinical trials in animal MI models that utilize stem cell-embedded scaffolds for cardiac repair and compare their effects to stem cell-treated animals without the use of a scaffold. METHODS/DESIGN We will search the following electronic databases: Cochrane Library, MEDLINE, Embase, PubMed, Scopus and Web of Science, and gray literature: Canadian Agency for Drugs and Technologies in Health and Google Scholar. We will only include randomly controlled preclinical trials that have directly investigated the effects of stem cells embedded in a scaffold for cardiac repair in an animal MI model. Two investigators will independently review each article included in the final analysis. The primary endpoint that will be investigated is left ventricular ejection fraction. Secondary endpoints will include infarct size, end systolic volume, end diastolic volume, fractional shortening and left ventricular wall thickness. Pooled analyses will be conducted using the DerSimonian-Laird random effects and Mantel-Haenszel fixed-effect models. Between-studies heterogeneity will be quantified and determined using the Tau2 and I2 statistics. Publication bias will be assessed using visual inspection of funnel plots and complemented by Begg's and Egger's statistical tests. Possible sources of heterogeneity will be assessed using subgroup-meta analysis and meta-regression. DISCUSSION To date, the use of scaffolds in myocardial repair has not yet been systematically reviewed. The results of this meta-analysis will aid in determining the efficacy of stem cell-embedded scaffolds for cardiac repair and help bring this therapy to the clinic.
Collapse
Affiliation(s)
- Kashif Khan
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Karina Gasbarrino
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, Montreal, Quebec Canada
| | - Ibtisam Mahmoud
- McConnell Resource Centre, McGill University Health Centre, Montreal, Quebec Canada
| | - Georges Makhoul
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Bin Yu
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Line Dufresne
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Stella S. Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, Montreal, Quebec Canada
| | - Adel Schwertani
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
| | - Renzo Cecere
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec Canada
- Glen Campus-The Royal Victoria Hospital, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec H4A 3J1 Canada
| |
Collapse
|
12
|
|
13
|
|