1
|
Liu Y, Song Y, Wang J, Shao Z. Elevating Postinjection Stability in Silk Nanofibril Hydrogels to Prevent Intervertebral Disc Degeneration. Biomacromolecules 2024; 25:7828-7837. [PMID: 39571083 DOI: 10.1021/acs.biomac.4c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Injectable hydrogels offer a minimally invasive approach to treating intervertebral disc degeneration, a prevalent condition that affects 90% of individuals and often leads to significant pain and disability. Despite being a critical yet often overlooked issue that could lead to suboptimal therapeutic outcomes, the mechanical integrity of these gels frequently diminishes postinjection due to the injection process itself. To address this challenge, our research developed a silk-nanofibril-based hydrogel enhanced through simple in situ polymerization of dopamine. The resulting hydrogel not only effectively preserved its modulus at over 1000 Pa postinjection, matching the mechanical properties of the nucleus pulposus, but also significantly enhanced its antioxidative properties to four times that of the original silk nanofibril-based hydrogel. Furthermore, both cell-based and animal studies substantiated that such a silk nanofibril-based hydrogel integrated with polydopamine exhibited significant therapeutic efficacy in the injectable treatment of intervertebral disc degeneration. Therefore, this work introduced a new perspective on the design of injectable hydrogels that could effectively address both the mechanical and biochemical challenges of degenerative disc diseases, providing a platform for subsequent therapeutic interventions.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Lab of Advanced Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yifei Song
- State Key Laboratory of Molecular Engineering of Polymers, Lab of Advanced Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jin Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Lab of Advanced Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Wang D, Cui F, Xi L, Tan X, Li J, Li T. Preparation of a multifunctional non-stick tamarind polysaccharide-polyvinyl alcohol hydrogel immobilized with a quorum quenching enzyme for maintaining fish freshness. Carbohydr Polym 2023; 302:120382. [PMID: 36604060 DOI: 10.1016/j.carbpol.2022.120382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Hydrogels have become promising materials for food packaging due to their unique microstructure. However, hydrogel materials suitable for seafood preservation have rarely been reported. In this study, a tamarind polysaccharide-polyvinyl alcohol hydrogel with the ability to maintain seafood freshness was prepared and characterized. The hydrogel possesses quick self-healing, good tissue fitting, and freezing tolerance capability. Moreover, a peeling force of only 0.1 N between the hydrogel and the fillet tissue confirmed the non-stick properties. The FTIR characteristic peak at 1600 cm-1 and 1450 cm-1 proved the ester bond-based chemical cross-linking of the hydrogel. Release profiles at pH 6.0 to 8.0 verified the pH-responsive release of quorum-quenching (QQ) enzymes over 120 h, which enabled the hydrogel to achieve biofilm and protease inhibitory activities. In vivo spoilage tests showed that the shelf life of hydrogel-coated red snapper fillets was extended by >3 days. These results illustrate the potential of the prepared hydrogel as functional packaging for seafood preservation.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Liqing Xi
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiqian Tan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China.
| |
Collapse
|
3
|
Fan Z, Cheng P, Zhang P, Zhang G, Han J. Rheological insight of polysaccharide/protein based hydrogels in recent food and biomedical fields: A review. Int J Biol Macromol 2022; 222:1642-1664. [DOI: 10.1016/j.ijbiomac.2022.10.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
4
|
Electrospun Bioscaffold Based on Cellulose Acetate and Dendrimer-modified Cellulose Nanocrystals for Controlled Drug Release. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Investigation of the viscoelastic behavior of PVA-P(AAm/AMPS) IPN hydrogel with enhanced mechanical strength and excellent recoverability. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|