1
|
Li X, Wang D, Zhang P, Yu G, Cai C. Recent Advances in the Chemical Synthesis of Marine Acidic Carbohydrates. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201230120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ocean supplies abundant active compounds, including small organic molecules,
proteins, lipids, and carbohydrates, with diverse biological functions. The high-value
transformation of marine carbohydrates primarily refers to their pharmaceutical, food, and
cosmetic applications. However, it is still a big challenge to obtain these marine carbohydrates
in well-defined structures. Synthesis is a powerful approach to access marine oligosaccharides,
polysaccharide derivatives, and glycomimetics. In this review, we focus on the
chemical synthesis of marine acidic carbohydrates with uronic acid building blocks such as
alginate, and glycosaminoglycans. Regioselective sulfation using a chemical approach is also
highlighted in the synthesis of marine oligosaccharides, as well as the multivalent glycodendrimers
and glycopolymers for achieving specific functions. This review summarizes recent
advances in the synthesis of marine acidic carbohydrates, as well as their preliminary structure activity relationship
(SAR) studies, which establishes a foundation for the development of novel marine carbohydrate-based drugs and
functional reagents.
Collapse
Affiliation(s)
- Xinru Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Depeng Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
3
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
4
|
Hagen B, Ali S, Overkleeft HS, van der Marel GA, Codée JDC. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides. J Org Chem 2017; 82:848-868. [PMID: 28051314 PMCID: PMC5332126 DOI: 10.1021/acs.joc.6b02593] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of complex oligosaccharides is often hindered by a lack of knowledge on the reactivity and selectivity of their constituent building blocks. We investigated the reactivity and selectivity of 2-azidofucosyl (FucN3) donors, valuable synthons in the synthesis of 2-acetamido-2-deoxyfucose (FucNAc) containing oligosaccharides. Six FucN3 donors, bearing benzyl, benzoyl, or tert-butyldimethylsilyl protecting groups at the C3-O and C4-O positions, were synthesized, and their reactivity was assessed in a series of glycosylations using acceptors of varying nucleophilicity and size. It was found that more reactive nucleophiles and electron-withdrawing benzoyl groups on the donor favor the formation of β-glycosides, while poorly reactive nucleophiles and electron-donating protecting groups on the donor favor α-glycosidic bond formation. Low-temperature NMR activation studies of Bn- and Bz-protected donors revealed the formation of covalent FucN3 triflates and oxosulfonium triflates. From these results, a mechanistic explanation is offered in which more reactive acceptors preferentially react via an SN2-like pathway, while less reactive acceptors react via an SN1-like pathway. The knowledge obtained in this reactivity study was then applied in the construction of α-FucN3 linkages relevant to bacterial saccharides. Finally, a modular synthesis of the Staphylococcus aureus type 5 capsular polysaccharide repeating unit, a trisaccharide consisting of two FucNAc units, is described.
Collapse
Affiliation(s)
- Bas Hagen
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Sara Ali
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
5
|
Si A, Misra AK. Concise synthesis of the pyruvic acid acetal containing pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O156. RSC Adv 2017. [DOI: 10.1039/c7ra07567g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pentasaccharide repeating unit of the cell wall O-antigen ofEscherichia coliO156 containing 4,6-O-(R)-pyruvate acetal was synthesized using stereoselective [2 + 3] block glycosylation in satisfactory yield.
Collapse
Affiliation(s)
- Anshupriya Si
- Bose Institute
- Division of Molecular Medicine
- Kolkata 700054
- India
| | | |
Collapse
|
6
|
Mandal PK, Chheda PR. Synthesis of a pentasaccharide repeating unit of the O-specific polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O28. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Tengdelius M, Lee CJ, Grenegård M, Griffith M, Påhlsson P, Konradsson P. Synthesis and Biological Evaluation of Fucoidan-Mimetic Glycopolymers through Cyanoxyl-Mediated Free-Radical Polymerization. Biomacromolecules 2014; 15:2359-68. [DOI: 10.1021/bm5002312] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Magnus Grenegård
- Department
of Clinical Medicine, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | | |
Collapse
|
8
|
Zhou J, Yang L, Hu W. Stereoselective synthesis of a sulfated tetrasaccharide corresponding to a rare sequence in the galactofucan isolated from Sargassum polycystum. J Org Chem 2014; 79:4718-26. [PMID: 24766314 DOI: 10.1021/jo500503r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first chemical synthesis of a highly sulfated tetrasaccharide 1, as the rare sequence in the galactofucan isolated from the brown alga Sargassum polycystum, was achieved in a convergent and stereoselective manner. The key features of the synthetic strategy include construction of multiple contiguous 1,2-cis glycosidic bonds and [2 + 2] assembly based on the rationally developed d-galactose building block 6. The synthesized oligosaccharides were fully characterized using a combination of coupled-HSQC and other 2D NMR techniques.
Collapse
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research Centre of Molecular Therapeutics and New Drug Development, and Department of Chemistry, East China Normal University , Shanghai, 200062, PR China
| | | | | |
Collapse
|
9
|
Synthesis and biological evaluation of sialic acid derivatives containing a long hydrophobic chain at the anomeric position and their C-5 linked polymers as potent influenza virus inhibitors. Bioorg Med Chem 2012; 20:446-54. [DOI: 10.1016/j.bmc.2011.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022]
|
10
|
Fujiwara R, Horito S. Solvent-induced anomeric diastereoselectivity switching using a single glycosyl donor. Carbohydr Res 2011; 346:2098-103. [PMID: 21784419 DOI: 10.1016/j.carres.2011.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Highly diastereoselective glycosylation reactions have been developed; however, not all glycosylation reactions are diastereoselective and these reactions have probably not been reported. For some fucosylation reactions, unusually low or abnormally opposite selectivities have been demonstrated. In the present study, the fucosylation reaction of long-chain hydrocarbon alcohols, ethyl 9-hydroxynonanoate and decanol using a series of the 2-O-benzyl-protected fucopyranosyl donors were investigated. The resulting products demonstrated the solvent-induced diastereoselectivity switching using diethyl ether (Et(2)O) or dichloromethane (CH(2)Cl(2)). Practical α-selectivities were observed using ether solvents. In contrast, practical β-selectivities were observed using CH(2)Cl(2). The anomeric diastereoselectivity switching was similarly observed in the alcohol galactosylation reaction. The larger spin-lattice relaxation time constant (T(1)) actually indicated that molecular motion of ethyl 9-hydroxynonanoate was more vigorous in Et(2)O than in CH(2)Cl(2), suggesting its dissociation in Et(2)O and association in CH(2)Cl(2). The bulkiness of the associated alcohols is most likely responsible for the observed diastereoselectivity.
Collapse
Affiliation(s)
- Ryuta Fujiwara
- Department of Biological Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | |
Collapse
|
11
|
Krylov VB, Kaskova ZM, Vinnitskiy DZ, Ustyuzhanina NE, Grachev AA, Chizhov AO, Nifantiev NE. Acid-promoted synthesis of per-O-sulfated fucooligosaccharides related to fucoidan fragments. Carbohydr Res 2011; 346:540-50. [DOI: 10.1016/j.carres.2011.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/02/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
|
12
|
Zong C, Li Z, Sun T, Wang P, Ding N, Li Y. Convenient synthesis of sulfated oligofucosides. Carbohydr Res 2010; 345:1522-32. [DOI: 10.1016/j.carres.2010.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/03/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
13
|
Clément MJ, Tissot B, Chevolot L, Adjadj E, Du Y, Curmi PA, Daniel R. NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology 2010; 20:883-94. [PMID: 20356826 DOI: 10.1093/glycob/cwq046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fucoidan is a potent inhibitor of the human complement system whose activity is mediated through interactions with certain proteins belonging to the classical pathway, particularly the protein C4. Branched fucoidan oligosaccharides displayed a higher anticomplementary activity as compared to linear structures. Nuclear magnetic resonance (NMR) characterization of the branched oligosaccharides and saturation transfer difference-NMR experiment of the interaction with the protein C4 allowed the identification of the glycan residues in close contact with the target protein. Transferred nuclear Overhauser effect spectroscopy experiment and molecular modeling of fucoidan oligosaccharides indicated that the presence of side chains reduces the flexibility of the oligosaccharide backbone, which thus adopts a conformation which is very close to the one recognized by the protein C4. Together, these results suggest that branching of fucoidan oligosaccharides, determining their conformational state, has a major impact on their anticomplementary activity.
Collapse
Affiliation(s)
- Marie-Jeanne Clément
- CNRS UMR 8587, Laboratoire Analyse et Environnement, Université d'Evry Val d'Essonne, rue du Père Jarlan, 91025 Evry Cedex, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Suzuki K, Sakamoto JI, Koyama T, Yingsakmongkon S, Suzuki Y, Hatano K, Terunuma D, Matsuoka K. Synthesis of sialic acid derivatives having a CC double bond substituted at the C-5 position and their glycopolymers. Bioorg Med Chem Lett 2009; 19:5105-8. [DOI: 10.1016/j.bmcl.2009.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
16
|
Fermas S, Gonnet F, Sutton A, Charnaux N, Mulloy B, Du Y, Baleux F, Daniel R. Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology 2008; 18:1054-64. [PMID: 18796646 DOI: 10.1093/glycob/cwn088] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemokine stromal cell-derived factor-1 (SDF-1) is a potent chemoattractant involved in leukocyte trafficking and metastasis. Heparan sulfate on the cell surface binds SDF-1 and may modulate its function as a coreceptor of this chemokine. A major effect of the glycosaminoglycan binding may be on the quaternary structure of SDF-1, which has been controversially reported as a monomer or a dimer. We have investigated the effect of sulfated oligosaccharides on the oligomerization of SDF-1 and of its mutated form SDF-1 (3/6), using affinity capillary electrophoresis (ACE) hyphenated to mass spectrometry (MS). Coupled to MS, ACE allowed the study for the first time of the effect of size-defined oligosaccharides on the quaternary organization of SDF-1 in muM range concentrations, i.e., lower values than the mM values previously reported in NMR, light scattering, and ultracentrifugation experiments. Our results showed that in the absence of sulfated oligosaccharides, SDF-1 is mostly monomeric in solution. However, dimer formation was observed upon interaction with heparin-sulfated oligosaccharides despite the mM Kd values for dimerization. A SDF-1/oligosaccharide 2/1 complex was detected, indicating that oligosaccharide binding promoted the dimerization of SDF-1. Heparin tetrasaccharide but not disaccharide promoted dimer formation, suggesting that the dimer required to be stabilized by a long enough bound oligosaccharide. The SDF-1/oligosaccharide 1/1 complex was only observed with heparin disaccharide and fucoidan pentasaccharide, pointing out the role of specific structural determinants in promoting dimer formation. These results underline the importance of dimerization induced by glycosaminoglycans for chemokine functionality.
Collapse
|
17
|
Mousa SA, Feng X, Xie J, Du Y, Hua Y, He H, O'Connor L, Linhardt RJ. Synthetic oligosaccharide stimulates and stabilizes angiogenesis: structure-function relationships and potential mechanisms. J Cardiovasc Pharmacol 2006; 48:6-13. [PMID: 16954815 PMCID: PMC4140568 DOI: 10.1097/01.fjc.0000238591.90062.62] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To determine the proangiogenesis effect of series of saccharides and a synthetic oligosaccharide and potential mechanisms, an in vitro 3-dimensional endothelial cell sprouting (3D-ECS) assay and the chick chorioallantoic membrane (CAM) model were used. We demonstrated that a sulfated oligosaccharide significantly promotes the endothelial capillary network initiated by vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF). Furthermore, although the capillary network initiated by VEGF and b-FGF lasts no more than 7 days, addition of a sulfated oligosaccharide significantly amplifies angiogenesis and stabilizes the capillary network of new blood vessels. In the CAM model, sulfated oligosaccharide also stimulated angiogenesis. In both the CAM and the 3D-ECS assay, structure-function studies reveal that increased saccharide chain length up to the hexa- to decasaccharide show optimal proangiogenesis efficacy. In addition, the sulfation and molecular shape (branched vs linear) of oligosaccharide are important for sustained proangiogenesis efficacy. Data indicate that chemically defined synthetic oligosaccharides can play an important role in regulation of capillary structure and stability, which may contribute to future advances in therapeutic angiogenesis. The proangiogenesis efficacy of an oligosaccharide is mediated via integrin alphavbeta3 and involves mitogen-activated protein kinase signaling mechanisms.
Collapse
Affiliation(s)
- S A Mousa
- Pharmaceutical Research Institute at Albany and Albany College of Pharmacy, Albany, NY 12208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bedini E, Carabellese A, Schiattarella M, Parrilli M. First synthesis of an α-d-Fucp3NAc containing oligosaccharide: a study on d-Fucp3NAc glycosylation. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|