1
|
Analysis of the Structure and Biosynthesis of the Lipopolysaccharide Core Oligosaccharide of Pseudomonas syringae pv. tomato DC3000. Int J Mol Sci 2021; 22:ijms22063250. [PMID: 33806795 PMCID: PMC8005017 DOI: 10.3390/ijms22063250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is important for bacterial viability in general and host-pathogen interactions in particular. Negative charges at its core oligosaccharide (core-OS) contribute to membrane integrity through bridging interactions with divalent cations. The molecular structure and synthesis of the core-OS have been resolved in various bacteria including the mammalian pathogen Pseudomonas aeruginosa. A few core-OS structures of plant-associated Pseudomonas strains have been solved to date, but the genetic components of the underlying biosynthesis remained unclear. We conducted a comparative genome analysis of the core-OS gene cluster in Pseudomonas syringae pv. tomato (Pst) DC3000, a widely used model pathogen in plant-microbe interactions, within the P. syringae species complex and to other plant-associated Pseudomonas strains. Our results suggest a genetic and structural conservation of the inner core-OS but variation in outer core-OS composition within the P. syringae species complex. Structural analysis of the core-OS of Pst DC3000 shows an uncommonly high phosphorylation and presence of an O-acetylated sugar. Finally, we combined the results of our genomic survey with available structure information to estimate the core-OS composition of other Pseudomonas species.
Collapse
|
2
|
Zhang Y, Zhang H, Zhao Y, Guo Z, Gao J. Efficient Strategy for α-Selective Glycosidation of d-Glucosamine and Its Application to the Synthesis of a Bacterial Capsular Polysaccharide Repeating Unit Containing Multiple α-Linked GlcNAc Residues. Org Lett 2020; 22:1520-1524. [DOI: 10.1021/acs.orglett.0c00101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yanxin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Han Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Ying Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Di Lorenzo F, Palmigiano A, Albitar-Nehme S, Pallach M, Kokoulin M, Komandrova N, Romanenko L, Bernardini ML, Garozzo D, Molinaro A, Silipo A. Lipid A Structure and Immunoinhibitory Effect of the Marine Bacterium Cobetia pacifica
KMM 3879T. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 80126 Naples Italy
| | - Angelo Palmigiano
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB; Via P. Gaifami 18 95126 Catania Italy
| | - Sami Albitar-Nehme
- Department of Biology and Biotechnology “Charles Darwin”; Sapienza - University of Rome; Piazzale Aldo Moro 5 00185 Roma Italy
| | - Mateusz Pallach
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 80126 Naples Italy
| | - Maxim Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far East Branch of the Russian Academy of Sciences; Svetlanskaya St 50 690022 Vladivostok Russia
| | - Nadezhda Komandrova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far East Branch of the Russian Academy of Sciences; Svetlanskaya St 50 690022 Vladivostok Russia
| | - Lyudmila Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far East Branch of the Russian Academy of Sciences; Svetlanskaya St 50 690022 Vladivostok Russia
| | - Maria Lina Bernardini
- Department of Biology and Biotechnology “Charles Darwin”; Sapienza - University of Rome; Piazzale Aldo Moro 5 00185 Roma Italy
| | - Domenico Garozzo
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB; Via P. Gaifami 18 95126 Catania Italy
| | - Antonio Molinaro
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
4
|
Lorenzo FD, Palmigiano A, Paciello I, Pallach M, Garozzo D, Bernardini ML, Cono VL, Yakimov MM, Molinaro A, Silipo A. The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Mar Drugs 2017; 15:md15070201. [PMID: 28653982 PMCID: PMC5532643 DOI: 10.3390/md15070201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 11/24/2022] Open
Abstract
The structural characterization of the lipopolysaccharide (LPS) from extremophiles has important implications in several biomedical and therapeutic applications. The polyextremophile Gram-negative bacterium Halobacteroideslacunaris TB21, isolated from one of the most extreme habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating microorganism to investigate in terms of its LPS component. Here we report the elucidation of the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an inhibitor of the toxic Escherichia coli LPS.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Angelo Palmigiano
- CNR-Istituto per i Polimeri, Compositi e Biomateriali IPCB-Unità di Catania, 95126 Catania, Italy.
| | - Ida Paciello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza-University of Rome, 00185 Rome, Italy.
| | - Mateusz Pallach
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Domenico Garozzo
- CNR-Istituto per i Polimeri, Compositi e Biomateriali IPCB-Unità di Catania, 95126 Catania, Italy.
| | - Maria-Lina Bernardini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza-University of Rome, 00185 Rome, Italy.
| | - Violetta La Cono
- Marine Molecular Microbiology & Biotechnology, CNR-Institute for Coastal Marine Environment, 98122 Messina, Italy.
| | - Michail M Yakimov
- Marine Molecular Microbiology & Biotechnology, CNR-Institute for Coastal Marine Environment, 98122 Messina, Italy.
- Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia.
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
5
|
Di Lorenzo F, Palmigiano A, Duda KA, Pallach M, Busset N, Sturiale L, Giraud E, Garozzo D, Molinaro A, Silipo A. Structure of the Lipopolysaccharide from the Bradyrhizobium sp. ORS285 rfaL Mutant Strain. ChemistryOpen 2017; 6:541-553. [PMID: 28794950 PMCID: PMC5542761 DOI: 10.1002/open.201700074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
The importance of the outer membrane and of its main constituent, lipopolysaccharide, in the symbiosis between rhizobia and leguminous host plants has been well studied. Here, the first complete structural characterization of the entire lipopolysaccharide from an O‐chain‐deficient Bradyrhizobium ORS285 rfaL mutant is achieved by a combination of chemical analysis, NMR spectroscopy, MALDI MS and MS/MS. The lipid A structure is shown to be consistent with previously reported Bradyrhizobium lipid A, that is, a heterogeneous blend of penta‐ to hepta‐acylated species carrying a nonstoichiometric hopanoid unit and possessing very‐long‐chain fatty acids ranging from 26:0(25‐OH) to 32:0(31‐OH). The structure of the core oligosaccharide region, fully characterized for the first time here, is revealed to be a nonphosphorylated linear chain with methylated sugar residues, with a heptose residue exclusively present in the outer core region, and with the presence of two singly substituted 3‐deoxy‐d‐manno‐oct‐2‐ulosonic acid (Kdo) residues, one of which is located in the outer core region. The lipid A moiety is linked to the core moiety through an uncommon 4‐substituted Kdo unit.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Angelo Palmigiano
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB-Unità di CataniaVia Gaifami 18 95126 Catania Italy
| | - Katarzyna A Duda
- Junior Group of Allergobiochemistry, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Airway Research Center North (ARCN) German Center for Lung Research 23845 Borstel Germany
| | - Mateusz Pallach
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Nicolas Busset
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J34398 Montpellier Cedex 5 France
| | - Luisa Sturiale
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB-Unità di CataniaVia Gaifami 18 95126 Catania Italy
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J34398 Montpellier Cedex 5 France
| | - Domenico Garozzo
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB-Unità di CataniaVia Gaifami 18 95126 Catania Italy
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
6
|
The structure of the lipooligosaccharide from Xanthomonas oryzae pv. Oryzae: the causal agent of the bacterial leaf blight in rice. Carbohydr Res 2016; 427:38-43. [DOI: 10.1016/j.carres.2016.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/09/2023]
|
7
|
Di Lorenzo F, Silipo A, Matier T, Hanuszkiewicz A, Elborn JS, Lanzetta R, Sturiale L, Scamporrino A, Garozzo D, Valvano MA, Tunney MM, Molinaro A. Prevotella denticolaLipopolysaccharide from a Cystic Fibrosis Isolate Possesses a Unique Chemical Structure. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Varbanets LD, Zdorovenko EL, Kiprianova EA, Avdeeva LV, Brovarskaya OS, Rybalko SL. Characterization of the lipipolysaccharides of Pseudomonas chlororaphis. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Zdorovenko EL, Shashkov AS, Zhurina MV, Plakunov VK, Knirel YA. Structure of the O-specific polysaccharides from planktonic and biofilm cultures of Pseudomonas chlororaphis 449. Carbohydr Res 2014; 404:93-7. [PMID: 25665785 DOI: 10.1016/j.carres.2014.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/19/2023]
Abstract
O-Specific polysaccharides were obtained from the lipopolysaccharides isolated from the planktonic and biofilm cultures of Pseudomonas chlororaphis 449 and studied by composition analysis and 1D and 2D (1)H and (13)C NMR spectroscopy. The following structure was established: -->4)-α-D-GalpNAc6Ac-(1-->3)-β-D-QuipNAc-(1-->6)-α-D-GlcpNAc-(1-->β-D-GlcpNAc-(1-->3) where the degree of non-stoichiometric 6-O-acetylation of GalNAc is ∼ 60% in the planktonic form or ∼ 10% in biofilm.
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Marina V Zhurina
- S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Vladimir K Plakunov
- S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
10
|
Di Lorenzo F, Silipo A, Bianconi I, Lore' NI, Scamporrino A, Sturiale L, Garozzo D, Lanzetta R, Parrilli M, Bragonzi A, Molinaro A. Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity. Mol Immunol 2014; 63:166-75. [PMID: 24856407 DOI: 10.1016/j.molimm.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa, the major pathogen involved in lethal infections in cystic fibrosis (CF) population, is able to cause permanent chronic infections that can persist over the years. This ability to chronic colonize CF airways is related to a series of adaptive bacterial changes involving the immunostimulant lipopolysaccharide (LPS) molecule. The structure of LPSs isolated from several P. aeruginosa strains showed conserved features that can undergo chemical changes during the establishment of the chronic infection. In the present paper, we report the elucidation of the structure and the biological activity of the R-LPS (lipooligosaccharide, LOS) isolated from the persistent CF isolate P. aeruginosa strain RP73, in order to give further insights in the adaptation mechanism of the pathogen in the CF environment. The complete structural analysis of P. aeruginosa RP73 LOS was achieved by chemical analyses, NMR spectroscopy and MALDI MS spectrometry, while the assessment of the biological activity was attained testing the in vivo pro-inflammatory capacity of the isolated LOS molecule. While a typical CF LPS is able to trigger a high immune response and production of pro-inflammatory molecules, this P. aeruginosa RP73 LOS showed to possess a low pro-inflammatory capacity. This was possible due to a singular chemical structure possessing an under-acylated lipid A very similar to the LPS of P. aeruginosa found in chronic lung diseases such as bronchiectstasis.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Irene Bianconi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Ivan Lore'
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Andrea Scamporrino
- Istituto di Chimica e Tecnologia dei Polimeri - ICTP - CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Luisa Sturiale
- Istituto di Chimica e Tecnologia dei Polimeri - ICTP - CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Domenico Garozzo
- Istituto di Chimica e Tecnologia dei Polimeri - ICTP - CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Rosa Lanzetta
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Michelangelo Parrilli
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy.
| |
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Leonelli F, Capuzzi M, Bodo E, Passacantilli P, Piancatelli G. Synthesis of new 2-phosphono-α-d-glycoside derivatives by stereoselective oxa-Michael addition to a d-galacto derived enone. Carbohydr Res 2008; 343:1133-41. [DOI: 10.1016/j.carres.2008.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 02/28/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
13
|
Aich U, Loganathan D. Stereoselective single-step synthesis and X-ray crystallographic investigation of acetylated aryl 1,2-trans glycopyranosides and aryl 1,2-cis C2-hydroxy-glycopyranosides. Carbohydr Res 2006; 341:19-28. [PMID: 16307733 DOI: 10.1016/j.carres.2005.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/09/2005] [Accepted: 10/14/2005] [Indexed: 11/23/2022]
Abstract
Reported is an attractive and environmentally friendly method for the synthesis of the title compounds in moderate yield using inexpensive 1,2,3,4,6-penta-O-acetyl-beta-D-gluco- and galactopyranoses as sugar donors, five different phenols as acceptors and H-beta zeolite as the catalyst. The yield (23-28%) of aryl 3,4,6-tri-O-acetyl-alpha-D-glycopyranosides obtained in this single-step procedure is considerably higher than that obtained using previously reported methods. Treatment of an orthoacetate, 3,4,6-tri-O-acetyl-[1,2-O-(1-p-fluorophenoxyethylidene)]-alpha-D-glucopyranose, with p-fluorophenol under the same solvent-free reaction conditions also led to the formation of the title compounds in similar yield and composition. X-ray crystallographic analysis of phenyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranoside and p-fluorophenyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranoside showed that the molecular packing is stabilized by C-H...O, C-H...pi and C-H...F interactions, in addition to regular hydrogen bonding patterns.
Collapse
Affiliation(s)
- Udayanath Aich
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
14
|
Yuan H, Zhang W, Li X, Lü X, Li N, Gao X, Song J. Preparation and in vitro antioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res 2005; 340:685-92. [PMID: 15721341 DOI: 10.1016/j.carres.2004.12.026] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
In order to study the relationship between chemical structure and properties of modified carrageenans versus antioxidant activity in vitro, kappa-carrageenan oligosaccharides were prepared through mild hydrochloric acid hydrolysis of the polysaccharide, and these were used as starting materials for the partial synthesis of their oversulfated, acetylated, and phosphorylated derivatives. The structure and substitution pattern of the oligosaccharides and their derivatives were studied using FTIR and (13)C NMR spectroscopy, and their in vitro antioxidant activities were investigated. Certain derivatives of the carrageenan oligosaccharides exhibited higher antioxidant activity than the polysaccharides and oligosaccharides in certain antioxidant systems. The oversulfated and acetylated derivatives, which scavenge superoxide radicals, the phosphorylated and low-DS acetylated derivatives, which scavenge hydroxyl radicals, and the phosphorylated derivatives, which scavenge DPPH radicals, all exhibited significant antioxidant activities in the systems examined. The effect of the molecular weight of the carrageenan on antioxidant activities, however, is not obvious from these studies.
Collapse
Affiliation(s)
- Huamao Yuan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Zdorovenko EL, Vinogradov E, Zdorovenko GM, Lindner B, Bystrova OV, Shashkov AS, Rudolph K, Zähringer U, Knirel YA. Structure of the core oligosaccharide of a rough-type lipopolysaccharide of Pseudomonas syringae pv. phaseolicola. ACTA ACUST UNITED AC 2005; 271:4968-77. [PMID: 15606785 DOI: 10.1111/j.1432-1033.2004.04467.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The core structure of the lipopolysaccharide (LPS) isolated from a rough strain of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola, GSPB 711, was investigated by sugar and methylation analyses, Fourier transform ion-cyclotron resonance ESI MS, and one- and two-dimensional 1H-, 13C- and 31P-NMR spectroscopy. Strong alkaline deacylation of the LPS resulted in two core-lipid A backbone undecasaccharide pentakisphosphates in the ratio approximately 2.5 : 1, which corresponded to outer core glycoforms 1 and 2 terminated with either L-rhamnose or 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), respectively. Mild acid degradation of the LPS gave the major glycoform 1 core octasaccharide and a minor truncated glycoform 2 core heptasaccharide, which resulted from the cleavage of the terminal Kdo residues. The inner core of P. syringae is distinguished by a high degree of phosphorylation of L-glycero-D-manno-heptose residues with phosphate, diphosphate and ethanolamine diphosphate groups. The glycoform 1 core is structurally similar but not identical to one of the core glycoforms of the human pathogenic bacterium Pseudomonas aeruginosa. The outer core composition and structure may be useful as a chemotaxonomic marker for the P. syringae group of bacteria, whereas a more conserved inner core structure appears to be representative for the whole genus Pseudomonas.
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|