1
|
Brzyska A, Płaziński W. Modeling conformational changes in alginic acid oligomers induced by external forces. Carbohydr Res 2024; 545:109294. [PMID: 39471537 DOI: 10.1016/j.carres.2024.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
In this study, the mechanism and nature of mechanical force-induced conformational transitions of alginate oligomers with different ratios of β-d-mannuronic acid (M unit) and α-l-guluronic acid (G unit) units were investigated. The influence of the type of glycosidic linkage in either homo- or heterooligomers on the nature of conformational transitions was also considered. For this purpose, two different theoretical methods were used: quantum mechanics (QM) at the DFT level with the EGO (Enforced Geometry Optimization) approach previously tested also for other saccharide systems, and molecular dynamics (MD) simulations within hybrid interaction potentials, which take into account both the ab initio (QM) level of theory and classical molecular mechanics (MM) force fields. This allowed to characterize in detail the structural and energetic properties of the conformational transition occurring upon the influence of external, mechanical forces (e.g. ring conformations at the path of ring-inversion process as well as the energies corresponding to initial, final and intermediate states). The results indicate qualitatively various responses against the applied force, depending on the G:M ratio, which have their source in differing topologies of glycosidic linkage in either G or M units. This is of potential relevance for determining the content of naturally heterogeneous alginate chains by the AFM experimental studies. The effects of explicit solvent and non-zero temperature are not of primarily importance in the context of determined stretching properties.
Collapse
Affiliation(s)
- Agnieszka Brzyska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
2
|
Homayonia S, Ling CC. Highly Efficient and Stereoselective Synthesis of 6,7‐Dideoxy‐β‐D‐ido‐octopyranuronates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saba Homayonia
- University of Calgary Department of Chemistry 2500 University Drive NW T2N 1N4 Calgary CANADA
| | - Chang-Chun Ling
- University of Calgary Department of Chemistry 2500 University Drive NW T2N 1N4 Calgary CANADA
| |
Collapse
|
3
|
Li T, Wang J, Zhu X, Zhou X, Sun S, Wang P, Cao H, Yu G, Li M. Synthesis of Rare 6-Deoxy-d-/l-Heptopyranosyl Fluorides: Assembly of a Hexasaccharide Corresponding to Campylobacter jejuni Strain CG8486 Capsular Polysaccharide. J Am Chem Soc 2021; 143:11171-11179. [PMID: 34260212 DOI: 10.1021/jacs.1c05048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Campylobacter jejuni is the leading cause of human diarrheal diseases and has been designated as one of highly resistant pathogens by the World Health Organization. The C. jejuni capsular polysaccharides feature broad existence of uncommon 6dHepp residues and have proven to be potential antigens to develop innovative antibacterial glycoconjugation vaccines. To address the lack of synthetic methods for rare 6dHepp architectures of importance, we herein describe a novel and efficient approach for the preparation of uncommon d-/l-6dHepp fluorides that have power as glycosylating agents. The synthesis is achieved by a C1-to-C5 switch strategy relying on radical decarboxylative fluorination of uronic acids arising from readily available allyl d-C-glycosides. To further showcase the application of this protocol, a structurally unique hexasaccharide composed of →3)-β-d-6didoHepp-(1→4)-β-d-GlcpNAc-(1→ units, corresponding to the capsular polysaccharide of C. jejuni strain CG8486 has been assembled for the first time. The assembly is characterized by highly efficient construction of the synthetically challenging β-(1,2-cis)-d-ido-heptopyranoside by inversion of the C2 configuration of β-(1,2-trans)-d-gulo-heptopyranoside, which is conveniently obtained by anchimerically assisted stereoselective glycosylation of the orthogonally protected 6dgulHepp fluoride. Ready accessibility of 6dHepp fluorides and the resulting glycans could serve as a rational starting point for the further development of synthetic vaccines fighting Campylobacter infection.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xinhao Zhu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Zhou
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shaozi Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongzhi Cao
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
The conformation of the idopyranose ring revisited: How subtle O-substituent induced changes can be deduced from vicinal 1H-NMR coupling constants. Carbohydr Res 2020; 496:108052. [PMID: 32738719 DOI: 10.1016/j.carres.2020.108052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023]
Abstract
The idopyranose ring plays a pivotal role in the conformational, dynamical, and intermolecular binding aspects of glycosaminoglycans like heparin and dermatan sulfate and it was early on assigned a role in the Sugar Code governing biological recognition processes. There is consensus that next to the two canonical 1C4 and 4C1 chair conformations, the conformational space accessible to the idopyranose ring entails a 2SO skew-boat conformation, but the equilibrium between these three ring puckers has evaded satisfactory quantification. In this study a meta-analysis of X-ray solid-state data and vicinal NMR coupling constants is presented, based on the Truncated Fourier Puckering (TFP) formalism and the generalized Karplus (CAGPLUS) equation. This approach yields a model-free, granular and consistent reckoning of 159 idopyranose solution puckering equilibria studied by NMR and allows us to reproduce the involved 636 NMR vicinal couplings with an overall residual RMS(Jobs-Jcalc) of 0.184 Hz. Our analyses show that for all ring systems examined, the idopyranosyl chair conformations take up the same ring pucker irrespective of the ring substituent pattern or a vast variety in experimental conditions. Instead, it is the (skew-)boat conformation that adapts to the substitution pattern of the idopyranose ring or a specific sulfation pattern of neighboring saccharides. All idopyranose rings are involved in conformational equilibria that subsume the aforementioned conformers which turn out to differ only a few kJ/mole in conformational energy. Thus, the plasticity and flexibility of idopyranose remains intact under practically all circumstances and, as the glycosidic linkages in heparin are considered to be relatively stiff, the iduronic moiety functions as the linchpin of heparin flexibility thereby being rather a "space(r)" than a "letter" in the alleged Sugar Code alphabet.
Collapse
|
5
|
Computerized Molecular Modeling of Carbohydrates. Methods Mol Biol 2020. [PMID: 32617954 DOI: 10.1007/978-1-0716-0621-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Computerized molecular modeling continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to computational chemists who do not have a strong background in carbohydrates, and its comments on various methods and studies might be of more use to carbohydrate chemists who are inexperienced with computation. Work on the intrinsic variability of glucose, an overall theme, is described. Other areas of the authors' emphasis, including evaluation of hydrogen bonding by the atoms-in-molecules approach, and validation of modeling methods with crystallographic results are also presented.
Collapse
|
6
|
Zhou X, Wang P, Zhang L, Chen P, Ma M, Song N, Ren S, Li M. Transition-Metal-Free Synthesis of C-Glycosylated Phenanthridines via K 2S 2O 8-Mediated Oxidative Radical Decarboxylation of Uronic Acids. J Org Chem 2018; 83:588-603. [PMID: 29261315 DOI: 10.1021/acs.joc.7b02346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed an efficient protocol for the synthesis of C-glycosylated phenanthridines. Tetrafuranos-4-yl and pentapyranos-5-yl radicals, generated from K2S2O8-mediated oxidative decarboxylation of furan- and pyranuronic acids, undergo attack to 2-isocyanodiphenyls and ensuing homolytic aromatic substitution to provide diverse C-glycosylated phenanthridines in satisfactory yields without resort to transition metals. This reaction tolerates various functional groups, and enables ready synthesis of complex oligosaccharide-based phenanthridines. The C-glycosylated phenanthridine derived from β-cyclodextrin has been prepared, which might be potential in medicinal and biological chemistry due to its flexible conformation.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Li Zhang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Pengwei Chen
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Mingxu Ma
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Sumei Ren
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237, People's Republic of China
| |
Collapse
|
7
|
Effects of varying the 6-position oxidation state of hexopyranoses: a systematic comparative computational analysis of 48 monosaccharide stereoisomers. J Mol Model 2017; 23:214. [PMID: 28656484 DOI: 10.1007/s00894-017-3385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/04/2017] [Indexed: 01/25/2023]
Abstract
Knowledge of multi-dimensional carbohydrate structure is essential when delineating structure-function relationships in the development of analytical techniques such as ion mobility-mass spectrometry and of carbohydrate-based therapeutics, as well as in rationally modifying the chemical and physical properties of drugs and materials based on sugars. Although monosaccharides are conventionally presumed to adopt the canonical 4C1 chair conformation, it is not well known how altering the substituent identity around the pyranose ring affects the favored conformational state. This work provides a comprehensive and systematic computational comparison of all eight aldohexose isomers in the gas phase with reduction and oxidation at the C-6 position using density functional theory (M05-2X/cc-pVTZ(-f)//B3LYP/6-31G**) to determine the conformational and anomeric preference for each sugar in the gas phase. All 6-deoxyhexose and aldohexose isomers favored the 4C1 chair conformation, while oxidation at C-6 showed a shift in equilibrium to favor the 1C4 chair for β-alluronic acid, β-guluronic acid, and β-iduronic acid. The anomeric preference was found to be significantly affected by a remote change in oxidation state, with the alternate anomer favored for several isomers. These findings provide a fundamental platform to empirically test steric and electronic effects of pyranose substituents, with the goal of formulating straightforward rules that govern carbohydrate reactivity and drive quicker, more efficient syntheses. Graphical abstract A systematic comparative conformational analysis of all eight aldohexose isomers using DFT methods (M05-2X/cc-pVTZ(-f)) reveals changes in anomeric and ring conformational preference upon reduction or oxidation at the C-6 position for several sugars.
Collapse
|
8
|
Hevey R, Ling CC. Studies on the 6-homologation of β-D-idopyranosides. Carbohydr Res 2017; 445:65-74. [DOI: 10.1016/j.carres.2017.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|
9
|
Bose-Basu B, Zhang W, Kennedy JLW, Hadad MJ, Carmichael I, Serianni AS. 13C-Labeled Idohexopyranosyl Rings: Effects of Methyl Glycosidation and C6 Oxidation on Ring Conformational Equilibria. J Org Chem 2017; 82:1356-1370. [DOI: 10.1021/acs.joc.6b02399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bidisha Bose-Basu
- Department
of Chemistry and Physics, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
High-resolution NMR and density functional theory (DFT) calculations have been applied to analysis of heparin pentasaccharide 3D structure in aqueous solution. The fully optimized molecular geometry of two pentasaccharide conformations (differing from each other in the form, one (1)C4 and the other (2)S0, of the sulfated iduronic acid residue) were obtained using the B3LYP/6-311+G(d,p) level of theory in the presence of solvent, the latter included as explicit water molecules. The presented approach enabled insight into variations of the bond lengths, bond angles, and torsion angles, formations of intra- and intermolecular hydrogen bonds, and ionic interactions in the two pentasaccharide conformations. A rather complex hydrogen bond network is formed, including inter-residue and intraresidue bonds between the NH group in the GlcN,3,6S with oxygens linked to C-2 at the IdoA2S residue and the glycosidic O-1 and the neighboring OSO3(-) group linked to C-3 in the same residue. On the other hand, because the first hydration shell is strongly influenced by strong ion-ion and ion-dipole interactions between sodium ions, sulfates, carboxylates, and -OH groups, ionic interactions play an important role in the stabilization of the 3D structure. The DFT-computed three-bond proton-proton coupling constants also showed that best agreement with experiment was obtained with a weighted average of 15:85 ((1)C4/(2)S0) of the sulfated iduronic acid forms indicating that the ratio is even more shifted toward the (2)S0 form than previously supposed. The DFT-computed pentasaccharide conformation differs from the previously published data, with the main changes at the glycosidic linkages, namely, the ψ1 torsion angles and the ϕ3 angle. The comparison of the glycosidic linkage torsion angle values in solution with the antithrombin-pentasaccharide complex also indicates that the pentasaccharide conformation changes upon binding to antithrombin III. The data supports the assumption that the protein selects the more populated (2)S0 conformer of heparin pentasaccharide and, consequently, the binding process of heparin pentasaccharide with antithrombin III is energetically more favorable than formerly expected.
Collapse
Affiliation(s)
- Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences , 845 38 Bratislava, Slovakia
| |
Collapse
|
11
|
Khodabandeh MH, Rezaeianpour S, Davari MD, Sakhaee N, Zare K, Anary M, Naderi F. Quantum chemical study of the equatorial/axial exchange of different substituents in nitrogen and phosphorous-containing 6-membered rings: Role of charge transfer interactions. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614500473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the nature of equatorial/axial conversion in six-membered rings is important because of involvement of these motifs in some biological systems. In this work we have studied the equatorial/axial exchange of nitrogen and phosphorous bearing six-membered rings with different representative substituents by using quantum chemistry methods. Three possible routes, i.e. heteroatom inversion and two ring flipping modes were considered. The feasibility of equatorial/axial conversion (based on ΔE#) for the substituted piperidine rings with substituents was in the following order; H > CH 3> Cl ~ OH ~ F , whereas for the phosphorous bearing six-membered rings it was H ~ F > OH > Cl ~ CH 3. In the piperidine system hydrogen and methyl substituents preferred the atom inversion route while the other substituents ( Cl , F , OH ) favored C4 site ring flipping in equatorial/axial conversion. For the phosphorous bearing rings, however, phosphorous retards the atom inversion mechanism and heteroatom site ring flipping is the preferred route for all substituents. We demonstrate that charge transfer effect is one of the key factors that determines the favored route in the presence of various substituents. We show how wave function analysis by natural bond orbital (NBO) method can be used as a straightforward technique to explain the most favored route in the equatorial/axial conversion of substituted 6-membered rings.
Collapse
Affiliation(s)
- M. Hassan Khodabandeh
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin 19839-6313, Tehran, Iran
| | - Sedigheh Rezaeianpour
- Department of Chemistry, North Tehran Branch Islamic Azad University, 19585/936 Tehran, Iran
| | - Mehdi D. Davari
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin 19839-6313, Tehran, Iran
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Nader Sakhaee
- Department of Chemistry, Khajeh Nasir Toosi University of Technology, Shariati St., Tehran, Iran
| | - Karim Zare
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin 19839-6313, Tehran, Iran
| | - Mohammad Anary
- Department of Chemistry, Rafsanjan Valie-e-Asr University, P. O. Box 77176, Rafsanjan, Iran
| | - Fereshteh Naderi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Makeneni S, Foley BL, Woods RJ. BFMP: a method for discretizing and visualizing pyranose conformations. J Chem Inf Model 2014; 54:2744-50. [PMID: 25289680 PMCID: PMC4210171 DOI: 10.1021/ci500325b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new classification method for pyranose ring conformations called Best-fit, Four-Membered Plane (BFMP), which describes pyranose ring conformations based on reference planes defined by four atoms. The method is able to characterize all asymmetrical and symmetrical shapes of a pyran ring, is readily automated, easy to interpret, and maps trivially to IUPAC definitions. It also provides a qualitative measurement of the distortion of the ring. Example applications include the analysis of data from crystal structures and molecular dynamics simulations.
Collapse
Affiliation(s)
- Spandana Makeneni
- Complex Carbohydrate Research Center, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | | | | |
Collapse
|
13
|
Munoz-Garcia JC, Corzana F, de Paz JL, Angulo J, Nieto PM. Conformations of the iduronate ring in short heparin fragments described by time-averaged distance restrained molecular dynamics. Glycobiology 2013; 23:1220-9. [DOI: 10.1093/glycob/cwt058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Hevey R, Chen X, Ling CC. Role of the 4,6-O-acetal in the regio- and stereoselective conversion of 2,3-di-O-sulfonyl-β-d-galactopyranosides to d-idopyranosides. Carbohydr Res 2013; 376:37-48. [DOI: 10.1016/j.carres.2013.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/26/2022]
|
15
|
Oborský P, Tvaroška I, Králová B, Spiwok V. Toward an accurate conformational modeling of iduronic acid. J Phys Chem B 2013; 117:1003-9. [PMID: 23286518 DOI: 10.1021/jp3100552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Iduronic acid (IdoA), unlike most other monosaccharides, can adopt different ring conformations, depending on the context of the molecular structure. Accurate modeling of this building block is essential for understanding the role of glycosaminoglycans and other glycoconjugates. Here, we use metadynamics to predict equilibria of (1)C(4), (4)C(1) and (2)S(O) conformations of α-L-IdoA-OMe and α-L-IdoA2S-OMe. Different schemes of scaling of atoms separated by three bonds (1-4 interaction) were tested. It was found that scaling (reduction) of 1-4 electrostatic interactions significantly changes conformational preferences toward the (4)C(1) conformation. More interestingly, scaling of 1-4 van der Waals interaction favors skew-boat conformations. This shows that a minor modification of noncovalent 1-4 interactions parameters can provide a good agreement between populations of conformers of iduronic acid in water from simulations and experiments.
Collapse
Affiliation(s)
- Pavel Oborský
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic
| | | | | | | |
Collapse
|
16
|
Azofra LM, Alkorta I, Elguero J, Popelier PL. Conformational study of the open-chain and furanose structures of d-erythrose and d-threose. Carbohydr Res 2012; 358:96-105. [DOI: 10.1016/j.carres.2012.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
17
|
Hevey R, Morland A, Ling CC. A Scalable Approach to Obtaining Orthogonally Protected β-d-Idopyranosides. J Org Chem 2012; 77:6760-72. [DOI: 10.1021/jo300764k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel Hevey
- Alberta Glycomics
Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary,
Alberta T2N 1N4, Canada
| | - Alizée Morland
- Alberta Glycomics
Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary,
Alberta T2N 1N4, Canada
| | - Chang-Chun Ling
- Alberta Glycomics
Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary,
Alberta T2N 1N4, Canada
| |
Collapse
|
18
|
Sattelle BM, Bose-Basu B, Tessier M, Woods RJ, Serianni AS, Almond A. Dependence of pyranose ring puckering on anomeric configuration: methyl idopyranosides. J Phys Chem B 2012; 116:6380-6. [PMID: 22577942 DOI: 10.1021/jp303183y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the aldohexopyranose idose, the unique presence of three axial ring hydroxyl groups causes considerable conformational flexibility, rendering it challenging to study experimentally and an excellent model for rationalizing the relationship between puckering and anomeric configuration. Puckering in methyl α- and β-L-idopyranosides was predicted from kinetically rigorous 10 μs simulations using GLYCAM11 and three explicit water models (TIP3P, TIP4P, and TIP4P-EW). In each case, computed pyranose ring three-bond (vicinal) (1)H-(1)H spin couplings ((3)J(H,H)) trended with NMR measurements. These values, calculated puckering exchange rates and free energies, were independent of the water model. The α- and β-anomers were (1)C(4) chairs for 85 and >99% of their respective trajectories and underwent (1)C(4)→(4)C(1) exchange at rates of 20 μs(-1) and 1 μs(-1). Computed α-anomer (1)C(4)↔(4)C(1) puckering rates depended on the exocyclic C6 substituent, comparing hydroxymethyl with carboxyl from previous work. The slower kinetics and restricted pseudorotational profile of the β-anomer were caused by water occupying a cavity bounded by the anomeric 1-O-methyl and the C6 hydroxymethyl groups. This finding rationalizes the different methyl α- and β-L-idopyranoside (3)J(H,H) values. Identifying a relationship between idopyranose anomeric configuration, microsecond puckering, and water structure facilitates engineering of biologically and commercially important derivatives and underpins deciphering presently elusive structure-function relationships in the glycome.
Collapse
Affiliation(s)
- Benedict M Sattelle
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
19
|
Alkorta I, Popelier PLA. Computational study of mutarotation in erythrose and threose. Carbohydr Res 2011; 346:2933-9. [DOI: 10.1016/j.carres.2011.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/26/2022]
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006-Madrid, Spain.
| | | |
Collapse
|
20
|
Ochsenbein P, Bonin M, Schenk-Joss K, El-Hajji M. The 2S(O) skew-boat conformation in L-iduronic acid. Angew Chem Int Ed Engl 2011; 50:11637-9. [PMID: 21998079 DOI: 10.1002/anie.201105172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Philippe Ochsenbein
- Sanofi LG-CR, 371, Rue du Professeur Blayac, F-34184 Montpellier Cedex 04, France
| | | | | | | |
Collapse
|
21
|
Ochsenbein P, Bonin M, Schenk-Joß K, El-Hajji M. The 2SO Skew-Boat Conformation in L-Iduronic Acid. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Abstract
Computerized molecular modeling continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studies might be of more use to computation-inexperienced carbohydrate chemists. New work on intrinsic variability of glucose, an overall theme, is described.
Collapse
|
23
|
Hricovíni M. Effect of Solvent and Counterions upon Structure and NMR Spin−Spin Coupling Constants in Heparin Disaccharide. J Phys Chem B 2011; 115:1503-11. [DOI: 10.1021/jp1098552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
24
|
Hosoya T, Nakao Y, Sato H, Sakaki S. Theoretical study of 1,6-anhydrosugar formation from phenyl D-glucosides under basic condition: reasons for higher reactivity of β-anomer. J Org Chem 2010; 75:8400-9. [PMID: 21082769 DOI: 10.1021/jo101494g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Degradation of anomeric phenyl d-glucosides to levoglucosan under basic condition is theoretically studied. MP4(SDQ)//DFT(B3LYP)-computational results indicate that the degradation of phenyl α-glucoside (R(α)) occurs via the S(N)icB mechanism. In this mechanism, the oxyanion at the C6, which is formed through deprotonation of the OH group, directly attacks the anomeric carbon. On the other hand, the degradation of phenyl β-glucoside (R(β)) occurs via the S(N)icB(2) mechanism. In this mechanism, the oxyanion at the C2 attacks the anomeric carbon in a nucleophilic manner to afford 1,2-anhydride intermediate and then the oxyanion at the C6 attacks the anomeric carbon to afford levoglucosan. The activation barrier is much lower in the reaction of R(β) (ΔG(0++) = 25.6 kcal/mol and E(a) = 26.5 kcal/mol) than in the reaction of R(α) (ΔG(0++) = 38.1 kcal/mol and E(a) = 37.2 kcal/mol), which is consistent with the experimental observation that β-glucoside is generally much more reactive than the corresponding α-glucoside. The lower activation barrier of the reaction of R(β) arises from the stereoelectronic effect, which is induced by the charge transfer from the ring oxygen to the anomeric carbon, and the staggered conformation around the C1-C2 bond. When the stereoelectronic effect is absent, the degradation needs larger activation energy; for instance, the degradation of phenyl 5a-carba-β-d-glucoside (R(Cβ)) occurs with large ΔG(0++) and E(a) values like those of α-glucosides, because the methylene group of R(Cβ) does not contribute to the stereoelectronic effect. Also, the conformation around the C1-C2 bond is staggered in the transition state of the R(β) reaction but eclipsed in that of the R(α) reaction, which also leads to the larger reactivity of R(β).
Collapse
Affiliation(s)
- Takashi Hosoya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwaketyo, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
25
|
Perić-Hassler L, Hansen HS, Baron R, Hünenberger PH. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Carbohydr Res 2010; 345:1781-801. [PMID: 20576257 DOI: 10.1016/j.carres.2010.05.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
Explicit-solvent molecular dynamics (MD) simulations of the 11 glucose-based disaccharides in water at 300K and 1bar are reported. The simulations were carried out with the GROMOS 45A4 force-field and the sampling along the glycosidic dihedral angles phi and psi was artificially enhanced using the local elevation umbrella sampling (LEUS) method. The trajectories are analyzed in terms of free-energy maps, stable and metastable conformational states (relative free energies and estimated transition timescales), intramolecular H-bonds, single molecule configurational entropies, and agreement with experimental data. All disaccharides considered are found to be characterized either by a single stable (overwhelmingly populated) state ((1-->n)-linked disaccharides with n=1, 2, 3, or 4) or by two stable (comparably populated and differing in the third glycosidic dihedral angle omega ; gg or gt) states with a low interconversion barrier ((1-->6)-linked disaccharides). Metastable (anti-phi or anti-psi) states are also identified with relative free energies in the range of 8-22 kJ mol(-1). The 11 compounds can be classified into four families: (i) the alpha(1-->1)alpha-linked disaccharide trehalose (axial-axial linkage) presents no metastable state, the lowest configurational entropy, and no intramolecular H-bonds; (ii) the four alpha(1-->n)-linked disaccharides (n=1, 2, 3, or 4; axial-equatorial linkage) present one metastable (anti-psi) state, an intermediate configurational entropy, and two alternative intramolecular H-bonds; (iii) the four beta(1-->n)-linked disaccharides (n=1, 2, 3, or 4; equatorial-equatorial linkage) present two metastable (anti-phi and anti-psi) states, an intermediate configurational entropy, and one intramolecular H-bond; (iv) the two (1-->6)-linked disaccharides (additional glycosidic dihedral angle) present no (isomaltose) or a pair of (gentiobiose) metastable (anti-phi) states, the highest configurational entropy, and no intramolecular H-bonds. The observed conformational preferences appear to be dictated by four main driving forces (ring conformational preferences, exo-anomeric effect, steric constraints, and possible presence of a third glycosidic dihedral angle), leaving a secondary role to intramolecular H-bonding and specific solvation effects. In spite of the weak conformational driving force attributed to solvent-exposed H-bonds in water (highly polar protic solvent), intramolecular H-bonds may still have a significant influence on the physico-chemical properties of the disaccharide by decreasing its hydrophilicity. Along with previous work, the results also complete the suggestion of a spectrum of approximate transition timescales for carbohydrates up to the disaccharide level, namely: approximately 30 ps (hydroxyl groups), approximately 1 ns (free lactol group, free hydroxymethyl groups, glycosidic dihedral angleomega in (1-->6)-linked disaccharides), approximately 10 ns to 2 micros (ring conformation, glycosidic dihedral angles phi and psi). The calculated average values of the glycosidic torsional angles agree well with the available experimental data, providing validation for the force-field and simulation methodology employed.
Collapse
Affiliation(s)
- Lovorka Perić-Hassler
- Laboratory of Physical Chemistry, ETH Zürich, ETH Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
26
|
|
27
|
Schnupf U, Willett J, Momany F. DFTMD studies of glucose and epimers: anomeric ratios, rotamer populations, and hydration energies. Carbohydr Res 2010; 345:503-11. [DOI: 10.1016/j.carres.2009.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/24/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
|
28
|
Several transition states from 4C1 to skew conformations of β-d-glucopyranose. Carbohydr Res 2009; 344:2266-9. [DOI: 10.1016/j.carres.2009.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 07/18/2009] [Accepted: 08/18/2009] [Indexed: 11/23/2022]
|
29
|
Spiwok V, Tvaroska I. Conformational free energy surface of alpha-N-acetylneuraminic acid: an interplay between hydrogen bonding and solvation. J Phys Chem B 2009; 113:9589-94. [PMID: 19374421 DOI: 10.1021/jp8113495] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational free energy surface of alpha-N-acetylneuraminic acid (Neu5Ac, sialic acid) in the space of ring-puckering coordinates was calculated using the metadynamics method. Free energy surfaces in vacuum and with an explicit solvent were calculated in GLYCAM 06 force field. In vacuum three structures are almost equivalently populated, namely, the (2)C(5) chair and the B(3,6)/(2)S(6) and (O)S(3) boat/skew-boat conformations. The B(3,6)/(2)S(6) structure is stabilized by an ionic hydrogen bond between the amide N-H bond and the carboxylic group. However, this structure is unfavorable in a water environment in which the experimentally observed (2)C(5) chair conformation is predicted to be more stable than the other structures. These results indicate that environment significantly influences conformation of Neu5Ac and that Neu5Ac-processing enzymes might modify a conformation of their substrates solely by a changing polarity of the environment. The structure of Neu5Ac bound in influenza neuraminidase ((4)S(2)/B(2,5)) belongs to conformations preferred in a water environment. The free energy penalty of this conformational change was calculated (relative to (2)C(5)) as 10.2 +/- 2.0 and 17.3 +/- 2.0 kJ/mol for (4,O)B/(O)S(3) and (4)S(2), respectively. This result indicates that mimicking of the enzyme-bound conformation is likely to be a viable strategy for the design of neuraminidase inhibitors.
Collapse
Affiliation(s)
- Vojtech Spiwok
- Department of Structure and Function of Saccharides, Centre for Glycomics, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic.
| | | |
Collapse
|
30
|
Hosoya T, Nakao Y, Sato H, Kawamoto H, Sakaki S. Thermal Degradation of Methyl β-d-Glucoside. A Theoretical Study of Plausible Reaction Mechanisms. J Org Chem 2009; 74:6891-4. [DOI: 10.1021/jo900457k] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Hosoya
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihide Nakao
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruo Kawamoto
- Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeyoshi Sakaki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
31
|
Computational studies of the role of glycopyranosyl oxacarbenium ions in glycobiology and glycochemistry. Adv Carbohydr Chem Biochem 2009; 62:83-159. [PMID: 19501705 DOI: 10.1016/s0065-2318(09)00004-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Hou D, Lowary TL. 2,3-Anhydrosugars in glycoside bond synthesis. Application to 2,6-dideoxypyranosides. J Org Chem 2009; 74:2278-89. [PMID: 19249832 DOI: 10.1021/jo900131a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe here the first use of 2,3-anhydrosugars as glycosylating agents for the preparation of 2-deoxypyranosides. In particular, the methodology was used to assemble 2,6-dideoxysugar glycosides. Glycosylation of a panel of alcohols with one of two 6-deoxy-2,3-anhydrosugar thioglycosides (8 and 9) in the presence of a Lewis acid afforded 2,6-dideoxy-2-thiotolyl glycoside products in generally excellent yields with an exclusively syn relationship between the aglycon and the C-3 hydroxyl group. Removal of the 2-thiotolyl group can be achieved upon reaction with tri-n-butyltin hydride and AIBN to give the corresponding 2,6-dideoxy pyranosides. Once developed, the method was applied to the synthesis of oligosaccharide moieties in the natural products apoptolidin and olivomycin A.
Collapse
Affiliation(s)
- Dianjie Hou
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | | |
Collapse
|
33
|
Csonka GI, French AD, Johnson GP, Stortz CA. Evaluation of Density Functionals and Basis Sets for Carbohydrates. J Chem Theory Comput 2009; 5:679-92. [DOI: 10.1021/ct8004479] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Gábor I. Csonka
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology, Szent Gellért tér 4, Budapest, H-1521 Hungary, Southern Regional Research Center, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, and Departamento de Química Orgánica-CIHIDECAR, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Alfred D. French
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology, Szent Gellért tér 4, Budapest, H-1521 Hungary, Southern Regional Research Center, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, and Departamento de Química Orgánica-CIHIDECAR, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Glenn P. Johnson
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology, Szent Gellért tér 4, Budapest, H-1521 Hungary, Southern Regional Research Center, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, and Departamento de Química Orgánica-CIHIDECAR, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Carlos A. Stortz
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology, Szent Gellért tér 4, Budapest, H-1521 Hungary, Southern Regional Research Center, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, and Departamento de Química Orgánica-CIHIDECAR, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
34
|
Nowacki A, Liberek B. Methyl 3-Amino-2,3,6,-trideoxy-l-hexopyranosides in DFT Level Theory Conformational Studies. J Phys Chem A 2008; 112:7072-9. [DOI: 10.1021/jp802248d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrzej Nowacki
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, PL-80-952 Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, PL-80-952 Gdańsk, Poland
| |
Collapse
|
35
|
Kräutler V, Müller M, Hünenberger PH. Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field. Carbohydr Res 2007; 342:2097-124. [PMID: 17573054 DOI: 10.1016/j.carres.2007.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 04/06/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.
Collapse
Affiliation(s)
- Vincent Kräutler
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
36
|
Biarnés X, Ardèvol A, Planas A, Rovira C, Laio A, Parrinello M. The Conformational Free Energy Landscape of β-d-Glucopyranose. Implications for Substrate Preactivation in β-Glucoside Hydrolases. J Am Chem Soc 2007; 129:10686-93. [PMID: 17696342 DOI: 10.1021/ja068411o] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using ab initio metadynamics we have computed the conformational free energy landscape of beta-D-glucopyranose as a function of the puckering coordinates. We show that the correspondence between the free energy and the Stoddard's pseudorotational itinerary for the system is rather poor. The number of free energy minima (9) is smaller than the number of ideal structures (13). Moreover, only six minima correspond to a canonical conformation. The structural features, the electronic properties, and the relative stability of the predicted conformers permit the rationalization of the occurrence of distorted sugar conformations in all the available X-ray structures of beta-glucoside hydrolase Michaelis complexes. We show that these enzymes recognize the most stable distorted conformers of the isolated substrate and at the same time the ones better prepared for catalysis in terms of bond elongation/shrinking and charge distribution. This suggests that the factors governing the distortions present in these complexes are largely dictated by the intrinsic properties of a single glucose unit.
Collapse
Affiliation(s)
- Xevi Biarnés
- Centre especial de Recerca en Química Teorica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|