1
|
Akinnurun OM, Riedel T, Müller S, Bunk B, Schröttner P. Current knowledge on Inquilinus limosus, a scarcely researched human pathogen. BMC Microbiol 2024; 24:474. [PMID: 39538164 PMCID: PMC11558892 DOI: 10.1186/s12866-024-03617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Inquilinus limosus belongs to the class of the Alphaproteobacteria and was first described in 2002. So far, the species has mainly been isolated from respiratory specimens of patients with cystic fibrosis. A main characteristic of Inquilinus limosus is the prolonged time until bacterial colony growth is detectable. As the defined incubation times in many laboratories are too short to detect the growth of Inquilinus limosus, it is likely that the species is less frequently detected in the clinical setting than it actually occurs. This also explains why there are currently only very few data on the incidence available. Furthermore, as an uncommon pathogen, Inquilinus limosus may be familiar to only a few specialised clinicians. Due to these reasons, only little research (e.g. case reports and research papers) have been published on this species to date. However, given that a clear human pathogenic significance can be deduced from the existing literature, we have decided to present the current state of knowledge in this review and to address further aspects for the future elucidation of the pathogenesis of Inquilinus limosus.
Collapse
Affiliation(s)
- Oluwafemi M Akinnurun
- Institute for Medical Microbiology and Virology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Stephanie Müller
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Percy Schröttner
- Institute for Medical Microbiology and Virology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Farfour E, Roux A, Sage E, Revillet H, Vasse M, Vallée A. Rarely Encountered Gram-Negative Rods and Lung Transplant Recipients: A Narrative Review. Microorganisms 2023; 11:1468. [PMID: 37374970 DOI: 10.3390/microorganisms11061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The respiratory tract of lung transplant recipients (LTR) is likely to be colonized with non-fermentative Gram-negative rods. As a consequence of the improvements in molecular sequencing and taxonomy, an increasing number of bacterial species have been described. We performed a review of the literature of bacterial infections in LTR involving non-fermentative Gram-negative rods with exclusion of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp. and Burkholderia spp. Overall, non-fermenting GNR were recovered from 17 LTR involving the following genera: Acetobacter, Bordetella, Chryseobacterium, Elizabethkinga, Inquilinus, and Pandoraea. We then discuss the issues raised by these bacteria, including detection and identification, antimicrobial resistance, pathogenesis, and cross-transmission.
Collapse
Affiliation(s)
- Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Edouard Sage
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène Hospitalière, CHU de Toulouse, 31300 Toulouse, France
- Observatoire National Burkholderia cepacia, 31403 Toulouse, France
| | - Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
- INSERM Hémostase Inflammation Thrombose HITH U1176, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Alexandre Vallée
- Service d'Epidémiologie-Data-Biostatistiques, Délégation à la Recherche Clinique et à l'Innovation, Hôpital Foch, 92150 Suresnes, France
| |
Collapse
|
3
|
Deacetylation and Desuccinylation of the Fucose-Rich Polysaccharide Fucopol: Impact on Biopolymer Physical and Chemical Properties. Molecules 2022; 27:molecules27217165. [DOI: 10.3390/molecules27217165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
FucoPol is an acylated polysaccharide with demonstrated valuable functional properties that include a shear thinning fluid behaviour, a film-forming capacity, and an emulsion forming and stabilizing capacity. In this study, the different conditions (concentration, temperature, and time) for alkaline treatment were investigated to deacylate FucoPol. Complete deacetylation and desuccinylation was achieved with 0.02 M NaOH, at 60 °C for 15 min, with no significant impact on the biopolymer’s sugar composition, pyruvate content, and molecular mass distribution. FucoPol depyruvylation by acid hydrolysis was attempted, but it resulted in a very low polymer recovery. The effect of the ionic strength, pH, and temperature on the deacetylated/desuccinylated polysaccharide, d-FucoPol, was evaluated, as well as its emulsion and film-forming capacity. d-FucoPol aqueous solutions maintained the shear thinning behaviour characteristic of FucoPol, but the apparent viscosity decreased significantly. Moreover, contrary to FucoPol, whose solutions were not affected by the media’s ionic strength, the d-FucoPol solutions had a significantly higher apparent viscosity for a higher ionic strength. On the other hand, the d-FucoPol solutions were not affected by the pH in the range of 3.6–11.5, while FucoPol had a decreased viscosity for acidic pH values and for a pH above 10.5. Although d-FucoPol displayed an emulsification activity for olive oil similar to that of FucoPol (98 ± 0%) for an oil-to-water ratio of 2:3, the emulsions were less viscous. The d-FucoPol films were flexible, with a higher Young′s modulus (798 ± 152 MPa), a stress at the break (22.5 ± 2.5 MPa), and an elongation at the break (9.3 ± 0.7%) than FucoPol (458 ± 32 MPa, 15.5 ± 0.3 MPa and 8.1 ± 1.0%, respectively). Given these findings, d-FucoPol arises as a promising novel biopolymer, with distinctive properties that may render it useful for utilization as a suspending or emulsifier agent, and as a barrier in coatings and packaging films.
Collapse
|
4
|
Lamberti YA, Debandi M, Carrica MDC, Hayes JA, Rodriguez ME. Intracellular replication of Inquilinus limosus in bronchial epithelial cells. Microb Pathog 2022; 171:105742. [PMID: 36049652 DOI: 10.1016/j.micpath.2022.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Inquilinus limosus is an emerging multi-resistant opportunistic pathogen documented mainly in cystic fibrosis patients. Infection with I. limosus is accompanied by either an acute respiratory exacerbation or a progressive loss of pulmonary function. This study examined the interaction of Inquilinus limosus with the bronquial human epithelial cell line 16HBE14o-. Almost 100% of the bacteria that attached to the bronquial cells were found internalized and located in acidic LAMP2 positive compartments. According to confocal studies combined with antibiotic protection assays, I. limosus is able to survive and eventually replicate in these compartments. I. limosus was found nontoxic to cells and did not induce neither IL-6 nor IL-8 cytokine production, a characteristic that may help the bacteria to evade host immune response. Overall, this study indicates that I. limosus displays pathogenic properties based on its ability to survive intracellularly in epithelial cells eventually leading to antibiotic failure and chronic infection.
Collapse
Affiliation(s)
- Yanina Andrea Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela Del Carmen Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
5
|
Clinical characteristics and outcomes associated with Inquilinus infection in cystic fibrosis. J Cyst Fibros 2020; 20:310-315. [PMID: 32747193 DOI: 10.1016/j.jcf.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Molecular diagnostics have led to the identification of a broad range of bacterial species in cystic fibrosis (CF) including Inquilinus. The clinical significance of Inquilinus in CF has not been thoroughly characterized. METHODS Retrospective, case-control study of persons with CF from two CF centers with at least one respiratory culture positive for Inquilinus spp. compared with age-matched CF controls with chronic Pseudomonas aeruginosa. Percent predicted forced expiratory volume in one second (ppFEV1) and body mass index percentile (BMI) were modeled from time of first positive culture up to 5 years later. Rates of pulmonary exacerbations were compared. Inquilinus isolates were genotyped to evaluate strain diversity. RESULTS Seventeen patients with Inquilinus infection were identified with a mean age of 13 years at first positive culture. Most cases had multiple cultures positive for Inquilinus. ppFEV1 was not different between cases versus controls (80.2% vs 81.6%, p = 0.97 at baseline, 67.5% vs. 73.3%, p = 0.82 at 5 years). Patients were undernourished and BMI percentiles did not differ between groups (30.7% vs 43.4%, p = 0.32 at baseline, 37.9% vs. 37.6%, p = 0.98 at 5 years). There was no difference in the pulmonary exacerbation rate (3.0/year vs 2.5/year, p = 0.34). Genotyping showed diverse genetic strains between patients. CONCLUSIONS Inquilinus can present in childhood and is often associated with chronic infection in CF. Lung function and nutrition status at time of detection, lung function decline, and pulmonary exacerbation rates in Inquilinus cases were similar to those with chronic P. aeruginosa, a well-established CF pathogen.
Collapse
|
6
|
Neveling DP, Ahire JJ, Laubscher W, Rautenbach M, Dicks LMT. Genetic and Phenotypic Characteristics of a Multi-strain Probiotic for Broilers. Curr Microbiol 2019; 77:369-387. [PMID: 31832841 DOI: 10.1007/s00284-019-01797-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Bacteria isolated from different segments of the gastro-intestinal tract (GIT) of healthy free-range broilers were screened for probiotic properties. Six strains were selected and identified as Lactobacillus gallinarum, Lactobacillus johnsonii, Lactobacillus salivarius, Lactobacillus crispatus, Enterococcus faecalis and Bacillus amyloliquefaciens based on 16S rRNA, gyrB and recA gene sequence analyses. All six strains produced exopolysaccharides (EPS) and formed biofilms under conditions simulating the broiler GIT. Lactobacillus johnsonii DPN184 and L. salivarius DPN181 produced hydrogen peroxide, and L. crispatus DPN167 and E. faecalis DPN94 produced bile salt hydrolase (BSH) and phytase. Bacillus amyloliquefaciens DPN123 produced phytase, amylase, surfactin and iturin A1. No abnormalities were observed when broilers were fed the multi-strain combination, suggesting that it could be used as a probiotic.
Collapse
Affiliation(s)
- Deon P Neveling
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - Jayesh J Ahire
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - Wikus Laubscher
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
7
|
Hager FF, Sützl L, Stefanović C, Blaukopf M, Schäffer C. Pyruvate Substitutions on Glycoconjugates. Int J Mol Sci 2019; 20:E4929. [PMID: 31590345 PMCID: PMC6801904 DOI: 10.3390/ijms20194929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides. Among these modifications is pyruvylation, which is present either in enol or ketal form. The most commonly best-understood example of pyruvylation is enol-pyruvylation of N-acetylglucosamine, which occurs at an early stage in the biosynthesis of the bacterial cell wall component peptidoglycan. Ketal-pyruvylation, in contrast, is present in diverse classes of glycoconjugates, from bacteria to algae to yeast-but not in humans. Mild purification strategies preventing the loss of the acid-labile ketal-pyruvyl group have led to a collection of elucidated pyruvylated glycan structures. However, knowledge of involved pyruvyltransferases creating a ring structure on various monosaccharides is scarce, mainly due to the lack of knowledge of fingerprint motifs of these enzymes and the unavailability of genome sequences of the organisms undergoing pyruvylation. This review compiles the current information on the widespread but under-investigated ketal-pyruvylation of monosaccharides, starting with different classes of pyruvylated glycoconjugates and associated functions, leading to pyruvyltransferases, their specificity and sequence space, and insight into pyruvate analytics.
Collapse
Affiliation(s)
- Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Leander Sützl
- Department of Food Science and Technology, Food Biotechnology Laboratory, Muthgasse 11, Universität für Bodenkultur Wien, A-1190 Vienna, Austria.
| | - Cordula Stefanović
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Markus Blaukopf
- Department of Chemistry, Division of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
8
|
McHugh KE, Rhoads DD, Wilson DA, Highland KB, Richter SS, Procop GW. Inquilinus limosus in pulmonary disease: case report and review of the literature. Diagn Microbiol Infect Dis 2016; 86:446-449. [DOI: 10.1016/j.diagmicrobio.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 11/25/2022]
|
9
|
Bacteremic Inquilinus limosus empyema in an Australian lung transplant patient with cystic fibrosis. J Heart Lung Transplant 2015; 34:1220-3. [DOI: 10.1016/j.healun.2015.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/22/2015] [Accepted: 06/24/2015] [Indexed: 11/21/2022] Open
|
10
|
Pino M, Power P, Gutkind G, Di Conza JA. INQ-1, a chromosome-encoded AmpC β-lactamase from Inquilinus limosus. J Antimicrob Chemother 2013; 69:560-2. [PMID: 24072168 DOI: 10.1093/jac/dkt378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marylu Pino
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (CP 1113), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Saimmai A, Rukadee O, Onlamool T, Sobhon V, Maneerat S. Characterization and Phylogenetic Analysis of Microbial Surface Active Compound-Producing Bacteria. Appl Biochem Biotechnol 2012; 168:1003-18. [DOI: 10.1007/s12010-012-9836-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/06/2012] [Indexed: 11/25/2022]
|
12
|
Kuttel M, Ravenscroft N, Foschiatti M, Cescutti P, Rizzo R. Conformational properties of two exopolysaccharides produced by Inquilinus limosus, a cystic fibrosis lung pathogen. Carbohydr Res 2012; 350:40-8. [PMID: 22261278 DOI: 10.1016/j.carres.2011.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/23/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
Abstract
Inquilinus limosus is a multi-resistant bacterium found in the respiratory tract of patients with cystic fibrosis. This bacterium produces two unique fully pyruvylated exopolysaccharides in similar quantities: an α-(1→2)-linked mannan and a β-(1→3)-linked glucan. We employed molecular modelling methods to probe the characteristic conformations and dynamics of these polysaccharides, with corroboration from potentiometric titrations and circular dichroism experiments. Our calculations reveal different structural motifs for the mannan and glucan polysaccharides: the glucan forms primarily right-handed helices with a wide range of extensions, while the mannan forms only left-handed helices. This finding is supported by our circular dichroism experiments. Our calculations also show that the (1→3)-β-d-Glcp linkage is more dynamically flexible than the (1→2)-α-d-Manp: the glucan characteristically forms a range of wide helices with large central cavities. In contrast, the mannan forms rigid regular 'bottlebrush' helices with a minimal central cavity. The widely different character of these two polymers suggests a possible differentiation of biological roles.
Collapse
Affiliation(s)
- Michelle Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, South Africa.
| | | | | | | | | |
Collapse
|
13
|
Piacente F, Marin M, Molinaro A, De Castro C, Seltzer V, Salis A, Damonte G, Bernardi C, Claverie JM, Abergel C, Tonetti M. Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-D-glucose (Viosamine). J Biol Chem 2012; 287:3009-18. [PMID: 22157758 PMCID: PMC3270958 DOI: 10.1074/jbc.m111.314559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A novel highly charged exopolysaccharide produced by two strains of Stenotrophomonas maltophilia recovered from patients with cystic fibrosis. Carbohydr Res 2011; 346:1916-23. [DOI: 10.1016/j.carres.2011.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/02/2011] [Accepted: 05/09/2011] [Indexed: 11/22/2022]
|
15
|
Foschiatti M, Cescutti P, Tossi A, Rizzo R. Inhibition of cathelicidin activity by bacterial exopolysaccharides. Mol Microbiol 2009; 72:1137-46. [PMID: 19400793 DOI: 10.1111/j.1365-2958.2009.06707.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of bacterial exopolysaccharides, produced by opportunistic lung pathogens, with antimicrobial peptides of the innate primate immune system was investigated. The exopolysaccharides were produced by Pseudomonas aeruginosa, Inquilinus limosus and clinical isolates of the Burkholderia cepacia complex, bacteria that are all involved in lung infections of cystic fibrosis patients. The effects of the biological activities of three orthologous cathelicidins from Homo sapiens sapiens, Pongo pygmaeus (orangutan) and Presbitys obscurus (dusky leaf monkey) were examined. Inhibition of the antimicrobial activity of peptides was assessed using minimum inhibitory concentration assays on a reference Escherichia coli strain in the presence and absence of exopolysaccharides, whereas complex formation between peptides and exopolysaccharides was investigated by means of circular dichroism, fluorescence spectroscopy and atomic force microscopy. Biological assays revealed that the higher the negative charge of exopolysaccharides the stronger was their inhibiting effect. Spectroscopic studies indicated the formation of molecular complexes of varying stability between peptides and exopolysaccharides, explaining the inhibition. Atomic force microscopy provided a direct visualization of the molecular complexes. A model is proposed where peptides with an alpha-helical conformation interact with exopolysaccharides through electrostatic and other non-covalent interactions.
Collapse
|
16
|
Woo P, Lau S, Teng J, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 2008; 14:908-34. [DOI: 10.1111/j.1469-0691.2008.02070.x] [Citation(s) in RCA: 524] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Bittar F, Leydier A, Bosdure E, Toro A, Reynaud-Gaubert M, Boniface S, Stremler N, Dubus JC, Sarles J, Raoult D, Rolain JM. Inquilinus limosus and cystic fibrosis. Emerg Infect Dis 2008; 14:993-5. [PMID: 18507928 PMCID: PMC2600277 DOI: 10.3201/eid1406.071355] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Fadi Bittar
- Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|