1
|
Grabek-Lejko D, Miłek M, Dżugan M. The comparison of the antioxidant, antibacterial and antiviral potential of Polish fir honeydew and Manuka honeys. Sci Rep 2024; 14:31170. [PMID: 39732871 DOI: 10.1038/s41598-024-82429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The aim of the present study was to compare the antioxidant, antibacterial and antiviral activities of Podkarpackie coniferous honeydew honey and Manuka honey. The quality of tested honey samples (honeydew-12 and Manuka-4) regarding honey standard was evaluated as well as additional indicators (methylglyoxal, total phenolics and HPTLC phenolic profile, antioxidant potential, glucose oxidase activity, and hydrogen peroxide) were compared. Antibacterial potential was analyzed against Gram-positive (S. aureus and B. cereus) and Gram-negative (E. coli and S. enterica) bacteria. Antiviral activity against different RNA (phi6, MS2) and DNA (T7, phiX174) bacteriophages considered as "viral surrogates" was determined. Based on the determined physicochemical parameters the good quality of tested honeys was confirmed, excluding two samples. The content of polyphenolic compounds in honeydew honey ranged from 583.87 to 1102.42 mg of gallic acid/kg and was strongly correlated with the antioxidant properties. Moreover, for samples with the strongest activity these parameters were comparable to Manuka honey. However, the obtained HPTLC polyphenolic profiles were completely different for honeydew than for Manuka honey which exhibited additional bands (Rf = 0.74 and 0.52). Honeydew honeys were characterized by a strong antiviral and antibacterial properties most of all against Gram-positive bacteria. The MICs (minimal inhibitory concentrations) for S. aureus and B. cereus ranged 15-35% and 8-15% for honeydew and Manuka honeys, respectively. The strongest antiviral properties of honeydew honey were demonstrated mainly against RNA bacteriophages (phi6, MS2) which was even higher than for Manuka honey, especially against MS2 virus. The obtained results suggest that Podkarpackie honeydew honey with the controlled glucose oxidase activity may be a natural substance used to combat viral and bacterial diseases.
Collapse
Affiliation(s)
- Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 Street, Rzeszow, 35-601, Poland.
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St, Rzeszow, 35-601, Poland
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St, Rzeszow, 35-601, Poland
| |
Collapse
|
2
|
Chahal S, Tian L, Bilamjian S, Balogh F, De Leoz L, Anumol T, Cuthbertson D, Bayen S. Rapid Convolutional Algorithm for the Discovery of Blueberry Honey Authenticity Markers via Nontargeted LC-MS Analysis. Anal Chem 2024; 96:17922-17930. [PMID: 39479961 DOI: 10.1021/acs.analchem.4c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Bees produce honey through the collection and transformation of nectar, whose botanical origin impacts the taste, nutritional value, and, therefore, the market price of the resulting honey. This phenomenon has led some to mislabel their honey so that it can be sold at a higher price. Metabolomics has been gaining popularity in food authentication, but rapid data mining algorithms are needed to facilitate the discovery of new authenticity markers. A nontargeted high-resolution liquid chromatography-mass spectrometry (HR/LC-MS) analysis of 262 monofloral honey samples, of which 50 were blueberry honey, was performed. Data mining methods were demonstrated for the discovery of binary single-markers (compound was only detected in blueberry honey), threshold single-markers (compound had the highest concentration in blueberry honey), and interval ratio-markers (the ratio of two compounds was within a unique interval in blueberry honey). A novel convolutional algorithm was developed for the discovery of interval ratio-markers, which trained 14× faster and achieved a 0.2 Matthews correlation coefficient (MCC) units higher classification score than existing open-source implementations. The convolutional algorithm also had classification performance similar to that of a brute-force search but trained 1521× faster. A pipeline for shortlisting candidate authenticity markers from the LC-MS spectra that may be suitable for chemical structure identification was also demonstrated and led to the identification of niacin as a blueberry honey threshold single-marker. This work demonstrates an end-to-end approach to mine the honey metabolome for novel authenticity markers and can readily be applied to other types of food and analytical chemistry instruments.
Collapse
Affiliation(s)
- Shawninder Chahal
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Shaghig Bilamjian
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Ferenc Balogh
- Department of Mathematics, John Abbott College, 21275 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3L9, Canada
| | - Lorna De Leoz
- Agilent CrossLab Group, Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Tarun Anumol
- Agilent CrossLab Group, Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Daniel Cuthbertson
- Agilent CrossLab Group, Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
3
|
Kaźmierczak-Barańska J, Karwowski BT. The Antioxidant Potential of Commercial Manuka Honey from New Zealand-Biochemical and Cellular Studies. Curr Issues Mol Biol 2024; 46:6366-6376. [PMID: 39057022 PMCID: PMC11275220 DOI: 10.3390/cimb46070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Manuka honey (MH) is considered a superfood mainly because of its various health-promoting properties, including its anti-cancer, anti-inflammatory, and clinically proven antibacterial properties. A unique feature of Manuka honey is the high content of methylglyoxal, which has antibacterial potential. Additionally, it contains bioactive and antioxidant substances such as polyphenols that contribute to its protective effects against oxidative stress. In this study, commercially available Manuka honey was tested for its total polyphenol content and DPPH radical scavenging ability. It was then tested in vitro on human fibroblast cells exposed to UV radiation to assess its potential to protect cells against oxidative stress. The results showed that the honey itself significantly interfered with cell metabolism, and its presence only slightly alleviated the effects of UV exposure. This study also suggested that the MGO content has a minor impact on reducing oxidative stress in UV-irradiated cells and efficiency in scavenging the DPPH radical.
Collapse
Affiliation(s)
| | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, Ul. Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
4
|
Onyango LA, Liang J. Manuka honey as a non-antibiotic alternative against Staphylococcus spp. and their small colony variant (SCVs) phenotypes. Front Cell Infect Microbiol 2024; 14:1380289. [PMID: 38868298 PMCID: PMC11168119 DOI: 10.3389/fcimb.2024.1380289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
The antibiotic resistance (ABR) crisis is an urgent global health priority. Staphylococci are among the problematic bacteria contributing to this emergency owing to their recalcitrance to many clinically important antibiotics. Staphylococcal pathogenesis is further complicated by the presence of small colony variants (SCVs), a bacterial subpopulation displaying atypical characteristics including retarded growth, prolific biofilm formation, heightened antibiotic tolerance, and enhanced intracellular persistence. These capabilities severely impede current chemotherapeutics, resulting in chronic infections, poor patient outcomes, and significant economic burden. Tackling ABR requires alternative measures beyond the conventional options that have dominated treatment regimens over the past 8 decades. Non-antibiotic therapies are gaining interest in this arena, including the use of honey, which despite having ancient therapeutic roots has now been reimagined as an alternative treatment beyond just traditional topical use, to include the treatment of an array of difficult-to-treat staphylococcal infections. This literature review focused on Manuka honey (MH) and its efficacy as an anti-staphylococcal treatment. We summarized the studies that have used this product and the technologies employed to study the antibacterial mechanisms that render MH a suitable agent for the management of problematic staphylococcal infections, including those involving staphylococcal SCVs. We also discussed the status of staphylococcal resistance development to MH and other factors that may impact its efficacy as an alternative therapy to help combat ABR.
Collapse
Affiliation(s)
- Laura A. Onyango
- Department of Biology, Trinity Western University, Langley, BC, Canada
| | | |
Collapse
|
5
|
Nyarko K, Greenlief CM. Investigations of Major α-Dicarbonyl Content in U.S. Honey of Different Geographical Origins. Molecules 2024; 29:1588. [PMID: 38611866 PMCID: PMC11013281 DOI: 10.3390/molecules29071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.
Collapse
|
6
|
Grierson ERP, Thrimawithana AH, van Klink JW, Lewis DH, Carvajal I, Shiller J, Miller P, Deroles SC, Clearwater MJ, Davies KM, Chagné D, Schwinn KE. A phosphatase gene is linked to nectar dihydroxyacetone accumulation in mānuka (Leptospermum scoparium). THE NEW PHYTOLOGIST 2024. [PMID: 38532557 DOI: 10.1111/nph.19714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Floral nectar composition beyond common sugars shows great diversity but contributing genetic factors are generally unknown. Mānuka (Leptospermum scoparium) is renowned for the antimicrobial compound methylglyoxal in its derived honey, which originates from the precursor, dihydroxyacetone (DHA), accumulating in the nectar. Although this nectar trait is highly variable, genetic contribution to the trait is unclear. Therefore, we investigated key gene(s) and genomic regions underpinning this trait. We used RNAseq analysis to identify nectary-associated genes differentially expressed between high and low nectar DHA genotypes. We also used a mānuka high-density linkage map and quantitative trait loci (QTL) mapping population, supported by an improved genome assembly, to reveal genetic regions associated with nectar DHA content. Expression and QTL analyses both pointed to the involvement of a phosphatase gene, LsSgpp2. The expression pattern of LsSgpp2 correlated with nectar DHA accumulation, and it co-located with a QTL on chromosome 4. The identification of three QTLs, some of the first reported for a plant nectar trait, indicates polygenic control of DHA content. We have established plant genetics as a key influence on DHA accumulation. The data suggest the hypothesis of LsSGPP2 releasing DHA from DHA-phosphate and variability in LsSgpp2 gene expression contributing to the trait variability.
Collapse
Affiliation(s)
- Ella R P Grierson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | | | - John W van Klink
- PFR, Chemistry Department, University of Otago, Dunedin, 9016, New Zealand
| | - David H Lewis
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | | | - Jason Shiller
- PFR, Te Puke Research Centre, Te Puke, 3182, New Zealand
| | - Poppy Miller
- PFR, Te Puke Research Centre, Te Puke, 3182, New Zealand
| | | | - Michael J Clearwater
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| |
Collapse
|
7
|
Gouletsou PG, Zacharopoulou T, Skampardonis V, Georgiou SG, Doukas D, Galatos AD, Flouraki E, Dermisiadou E, Margeti C, Barbagianni M, Sideri A, Tsioli V. First-Intention Incisional Wound Healing in Dogs and Cats: A Controlled Trial of Dermapliq and Manuka Honey. Vet Sci 2024; 11:64. [PMID: 38393082 PMCID: PMC10892332 DOI: 10.3390/vetsci11020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to compare incisional wound healing in cats and dogs after the topical application of Μanuka honey and a new medical device, Dermapliq. Comparisons were made between each treatment and control, between the two treatments, and between dogs and cats. Twelve cats and twelve dogs were included in this study, and the impact of the two substances was examined through cosmetic, clinical, ultrasonographical, and histological evaluation. The use of Dermapliq in first-intention wound healing achieved a significantly better cosmetic evaluation score and better total clinical score at days 20-41, compared to the control, in both dogs and cats. The ultrasonographically estimated wound area was smaller with Dermapliq compared to the control. Wounds treated with Dermapliq showed histologically less inflammation compared to the control. The use of Manuka honey did not show a significantly better cosmetic score compared to the control. Skin thickening was significantly higher after using Manuka honey compared to the control and so was the total clinical score. However, the median wound area, as was evaluated ultrasonographically, was significantly smaller when wounds were treated with Manuka honey, the difference being more apparent in dogs. Dermapliq was proven to be a better choice in achieving favorable wound healing than Manuka honey in dogs and cats in first-intention healing. In our study, cats had a statistically better cosmetic score and less skin thickening and scar width compared to dogs. Histologically, cats showed significantly less edema, higher inflammation and angiogenesis scores, and lower fibroblast and epidermis thickening scores when compared to dogs.
Collapse
Affiliation(s)
- Pagona G. Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece
| | - Theodora Zacharopoulou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassilis Skampardonis
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Stefanos G. Georgiou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Apostolos D. Galatos
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eugenia Flouraki
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eleftheria Dermisiadou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Chryssoula Margeti
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Mariana Barbagianni
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Aikaterini Sideri
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassiliki Tsioli
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| |
Collapse
|
8
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
9
|
Çatak J, Özdoğan N, Ede-Cintesun E, Demirci M, Yaman M. Investigation of the effects of sugar type on the formation of α-dicarbonyl compounds in jams under in vitro digestive system model. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
10
|
Obeng-Darko SA, Sloan J, Binks RM, Brooks PR, Veneklaas EJ, Finnegan PM. Dihydroxyacetone in the Floral Nectar of Ericomyrtus serpyllifolia (Turcz.) Rye (Myrtaceae) and Verticordia chrysantha Endl. (Myrtaceae) Demonstrates That This Precursor to Bioactive Honey Is Not Restricted to the Genus Leptospermum (Myrtaceae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7703-7709. [PMID: 37191313 DOI: 10.1021/acs.jafc.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ma̅nuka honey is known for its strong bioactivity, which arises from the autocatalytic conversion of 1,3-dihydroxyacetone (dihydroxyacetone, DHA) in the floral nectar of Leptospermum scoparium (Myrtaceae) to the non-peroxide antibacterial compound methylglyoxal during honey maturation. DHA is also a minor constituent of the nectar of several other Leptospermum species. This study used high-performance liquid chromatography to test whether DHA was present in the floral nectar of five species in other genera of the family Myrtaceae: Ericomyrtus serpyllifolia (Turcz.) Rye, Chamelaucium sp. Bendering (T.J. Alford 110), Kunzea pulchella (Lindl.) A.S. George, Verticordia chrysantha Endl., and Verticordia picta Endl. DHA was found in the floral nectar of two of the five species: E. serpyllifolia and V. chrysantha. The average amount of DHA detected was 0.08 and 0.64 μg per flower, respectively. These findings suggest that the accumulation of DHA in floral nectar is a shared trait among several genera within the family Myrtaceae. Consequently, non-peroxide-based bioactive honey may be sourced from floral nectar outside the genus Leptospermum.
Collapse
Affiliation(s)
- Sylvester A Obeng-Darko
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
| | - Jean Sloan
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
| | - Rachel M Binks
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia 6983, Australia
| | - Peter R Brooks
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
- School of Sciences, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Erik J Veneklaas
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
11
|
Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. Monitoring the Release of Methylglyoxal (MGO) from Honey and Honey-Based Formulations. Molecules 2023; 28:molecules28062858. [PMID: 36985830 PMCID: PMC10051060 DOI: 10.3390/molecules28062858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Methylglyoxal (MGO) is considered to be one of the vital components responsible for the anti-bacterial activity of Leptospermum spp. (Manuka) honey. While many studies have demonstrated a dose-dependent antibacterial activity for MGO in vitro, from a therapeutic viewpoint, it is also important to confirm its release from Manuka honey and also from Manuka honey-based formulations. This study is the first to report on the release profile of MGO from five commercial products containing Manuka honey using a Franz diffusion cell and High-Performance Liquid Chromatography (HPLC) analysis. The release of MGO expressed as percentage release of MGO content at baseline was monitored over a 12 h period and found to be 99.49 and 98.05% from an artificial honey matrix and NZ Manuka honey, respectively. For the investigated formulations, a time-dependent % MGO release between 85% and 97.18% was noted over the 12 h study period.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| |
Collapse
|
12
|
Thierig M, Raupbach J, Wolf D, Mascher T, Subramanian K, Henle T. 3-Phenyllactic Acid and Polyphenols Are Substances Enhancing the Antibacterial Effect of Methylglyoxal in Manuka Honey. Foods 2023; 12:foods12051098. [PMID: 36900615 PMCID: PMC10000891 DOI: 10.3390/foods12051098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Manuka honey is known for its unique antibacterial activity, which is due to methylglyoxal (MGO). After establishing a suitable assay for measuring the bacteriostatic effect in a liquid culture with a time dependent and continuous measurement of the optical density, we were able to show that honey differs in its growth retardingeffect on Bacillus subtilis despite the same content of MGO, indicating the presence of potentially synergistic compounds. In model studies using artificial honey with varying amounts of MGO and 3-phenyllactic acid (3-PLA), it was shown that 3-PLA in concentrations above 500 mg/kg enhances the bacteriostatic effect of the model honeys containing 250 mg/kg MGO or more. It has been shown that the effect correlates with the contents of 3-PLA and polyphenols in commercial manuka honey samples. Additionally, yet unknown substances further enhance the antibacterial effect of MGO in manuka honey. The results contribute to the understanding of the antibacterial effect of MGO in honey.
Collapse
Affiliation(s)
- Marcus Thierig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Jana Raupbach
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), D-14558 Nuthetal, Germany
| | - Diana Wolf
- Chair of General Microbiology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Kannan Subramanian
- Manuka Health New Zealand Limited, 66 Weona Court, Te Awamutu 3800, New Zealand
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
- Correspondence:
| |
Collapse
|
13
|
Paget BW, Kleffmann T, Whiteman KE, Thomas MF, McMahon CD. Quantitative comparison of manuka and clover honey proteomes with royal jelly. PLoS One 2023; 18:e0272898. [PMID: 36763642 PMCID: PMC9916596 DOI: 10.1371/journal.pone.0272898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Royal jelly and honey are two substances produced successively by the worker bee caste. Modern proteomics approaches have been used to explore the protein component of each substance independently, but to date none have quantitatively compared the protein profile of honey and royal jelly directly. Sequential window acquisition of all theoretical fragment-ion spectra mass spectrometry (SWATH-MS) was used to compare protein quantities of bee origin in mānuka and clover honey to royal jelly. Two analysis techniques identified 76 proteins in total. Peptide intensity was directly compared for a subset of 31 proteins that were identified with high confidence, and the relative changes in protein abundance were compared between each honey type and royal jelly. Major Royal Jelly Proteins (MRJPs) had similar profiles in both honeys, except MRJP6, which was significantly more abundant in clover honey. Proteins involved in nectar metabolism were more abundant in honey than in royal jelly as expected. However, the trend revealed a potential catalytic role for MRJP6 in clover honey and a nectar- or honey-specific role for uncharacterised protein LOC408608. The abundance of MRJP6 in mānuka honey was equivalent to royal jelly suggesting a potential effect of nectar type on expression of this protein. Data are available via ProteomeXchange with identifier PXD038889.
Collapse
Affiliation(s)
- Blake W. Paget
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
- * E-mail:
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | | | - Mark F. Thomas
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
| | | |
Collapse
|
14
|
Huang H, Chen J, Zheng M, Zhang L, Ji H, Cao H, Dai F, Wang L. Precursors and formation pathways of furfural in sugarcane juice during thermal treatment. Food Chem 2023; 402:134318. [DOI: 10.1016/j.foodchem.2022.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
|
15
|
Kok DN, Hendrickson HL. Save our bees: bacteriophages to protect honey bees against the pathogen causing American foulbrood in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2022.2157847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Danielle N. Kok
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | |
Collapse
|
16
|
Sinha S, Sehgal A, Ray S, Sehgal R. Benefits of Manuka Honey in the Management of Infectious Diseases: Recent Advances and Prospects. Mini Rev Med Chem 2023; 23:1928-1941. [PMID: 37282661 DOI: 10.2174/1389557523666230605120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/08/2023]
Abstract
The benefits of honey have been recognized since ancient times for treating numerous diseases. However, in today's modern era, the use of traditional remedies has been rapidly diminishing due to the complexities of modern lifestyles. While antibiotics are commonly used and effective in treating pathogenic infections, their inappropriate use can lead to the development of resistance among microorganisms, resulting in their widespread prevalence. Therefore, new approaches are constantly required to combat drug-resistant microorganisms, and one practical and useful approach is the use of drug combination treatments. Manuka honey, derived from the manuka tree (Leptospermum scoparium) found exclusively in New Zealand, has garnered significant attention for its biological potential, particularly due to its antioxidant and antimicrobial properties. Moreover, when combined with antibiotics, it has demonstrated the ability to enhance their effectiveness. In this review, we delve into the chemical markers of manuka honey that are currently known, as well as detail the impact of manuka honey on the management of infectious diseases up to the present.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Alka Sehgal
- Department of Obstetrics & Gynaecology, GMCH, Chandigarh, 160030, India
| | - Sudip Ray
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
- New Zealand Institute for Minerals to Materials Research, Greymouth, 7805, New Zealand
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
17
|
Synergic Effect of Honey with Other Natural Agents in Developing Efficient Wound Dressings. Antioxidants (Basel) 2022; 12:antiox12010034. [PMID: 36670896 PMCID: PMC9854511 DOI: 10.3390/antiox12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Honey has been used for therapeutic and nutritional purposes since ancient times. It was considered one of the essential medical assets in wound healing. According to research, honeybees have significant antibacterial, antioxidant, anti-inflammatory, antitumor, and wound-healing properties. Lately, scientific researchers have focused on apitherapy, using bee products to protect and strengthen the immune system. Since honey is the most important natural product rich in minerals, proteins, and vitamins, it has been intensively used in such therapies. Honey has gained significant consideration because of the beneficial role of its antioxidant compounds, such as enzymes, proteins, amino and organic acids, polyphenols, and carotenoids, but mainly due to flavonoids and phenolic acids. It has been proven that phenolic compounds are responsible for honey's biological activity and that its physicochemical properties, antioxidants, and antimicrobial potential are significant for human health. The review also presents some mechanisms of action and the medical applications of honey, such as wound healing dressings, skin grafts, honey-based nanofibers, and cochlear implants, as the most promising wound healing tools. This extensive review has been written to highlight honey's applications in medicine; its composition with the most important bioactive compounds also illustrates its synergistic effect with other natural products having remarkable therapeutic properties in wound healing.
Collapse
|
18
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
19
|
Romário-Silva D, Alencar SM, Bueno-Silva B, Sardi JDCO, Franchin M, de Carvalho RDP, Ferreira TEDSA, Rosalen PL. Antimicrobial Activity of Honey against Oral Microorganisms: Current Reality, Methodological Challenges and Solutions. Microorganisms 2022; 10:microorganisms10122325. [PMID: 36557578 PMCID: PMC9781356 DOI: 10.3390/microorganisms10122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Honey has been shown to have antimicrobial activity against different microorganisms, but its effects on oral biofilms are largely unknown. In this review, we analyzed the currently available literature on the antimicrobial activity of honey against oral biofilms in order to determine its potential as a functional food in the treatment and/or prevention of oral diseases. Here, we compare studies reporting on the antimicrobial activity of honey against systemic and oral bacteria, discuss methodological strategies, and point out current gaps in the literature. To date, there are no consistent studies supporting the use of honey as a therapy for oral diseases of bacterial origin, but current evidence in the field is promising. The lack of studies examining the antibiofilm activity of honey against oral microorganisms reveals a need for additional research to better define aspects such as chemical composition, the mechanism(s) of action, and antimicrobial action.
Collapse
Affiliation(s)
- Diego Romário-Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Severino Matias Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture (Escola Superior de Agricultura “Luiz de Queiroz”—ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| | | | - Thayná Ellen de Sousa Alves Ferreira
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| |
Collapse
|
20
|
Wultańska D, Paterczyk B, Nowakowska J, Pituch H. The Effect of Selected Bee Products on Adhesion and Biofilm of Clostridioides difficile Strains Belonging to Different Ribotypes. Molecules 2022; 27:7385. [PMID: 36364211 PMCID: PMC9654997 DOI: 10.3390/molecules27217385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/20/2024] Open
Abstract
There is an ongoing search for alternative treatments for Clostridioides difficile infections. The aim of the study was to investigate the antibacterial and antibiotic activity of bee products against C. difficile strains with different polymerase chain reaction ribotypes (RTs). The minimum inhibitory concentration (MICs) of Manuka honey 550+, goldenrod honey, pine honey, and bee bread were determined by the broth dilution method. C. difficile adhesion to HT-29, HT-29 MTX, and CCD 841 CoN cell lines was assessed. Biofilm was cultured in titration plates and visualized by confocal microscopy. The MICs of Manuka honey for C. difficile 630 and ATCC 9689 strains and control strain, M 120, were 6.25%, 6.25%, and 1.56% (v/v), respectively; of goldenrod honey, 50%, 50%, and 12.5%, respectively; of pine honey, 25%, 25%, and 25%, respectively; and of bee bread, 100 mg/L, 50 mg/L, and 100 mg/L, respectively. Manuka honey (1%) increased adhesion of C. difficile RT176 strains, and one strain of RT023, to the CCD 841 cell line. Pine honey (1%) increased RT027 adhesion to the HT-29 cell line. Manuka honey, pine honey, and bee bread at subinhibitory concentrations increased the adhesion of C. difficile. Our research proved that bee products are active against the tested strains of C. difficile.
Collapse
Affiliation(s)
- Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Bohdan Paterczyk
- Imaging Laboratory, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Julita Nowakowska
- Imaging Laboratory, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
21
|
Obeng-Darko SA, Brooks PR, Veneklaas EJ, Finnegan PM. Sugar and dihydroxyacetone ratios in floral nectar suggest continuous exudation and reabsorption in Leptospermum polygalifolium Salisb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111378. [PMID: 35842059 DOI: 10.1016/j.plantsci.2022.111378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Leptospermum polygalifolium Salisb. can accumulate high concentrations of dihydroxyacetone (DHA), precursor of the antimicrobial compound methylglyoxal found in honey obtained from floral nectar of Leptospermum spp. Floral nectar dynamics over flower lifespan depends on internal and external factors that invariably impact nectar quality. Current models to estimate nectar quality in Leptospermum spp. overlook time of day, daily (24 h), and long-term dynamics of nectar exudation and accumulation over flower lifespan. To explain the dynamics of nectar quality over flower lifespan, accumulated nectar from flowers of different ages was collected from two L. polygalifolium clones, and then re-collected 24 h later from the same flowers. High-Performance Liquid Chromatography was used to quantify DHA amount and total equivalents of glucose + fructose (Tsugar) per flower in the nectar. DHA and Tsugar amount per flower differed with flower age and between clones. In accumulated nectar, the amount of DHA and Tsugar per flower rose to a broad peak post-anthesis before decreasing. Immediately after peaking DHA declined more quickly than Tsugar in accumulated nectar due to a greater decrease in the exudation of DHA than for Tsugar. The DHA : Tsugar ratios in accumulated nectar and in nectar exuded over the next 24 h were similar and decreased with flower age, indicating that exudation and reabsorption occurred concomitantly across flower development. Hence there is a balance between exudation and reabsorption. A quantitative model suggested that flowers have the potential to exude more DHA and Tsugar than actually accumulated.
Collapse
Affiliation(s)
- Sylvester A Obeng-Darko
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia.
| | - Peter R Brooks
- School of Sciences, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia; CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
| | - Erik J Veneklaas
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
22
|
Al-Sayaghi AM, Al-Kabsi AM, Abduh MS, Saghir SAM, Alshawsh MA. Antibacterial Mechanism of Action of Two Types of Honey against Escherichia coli through Interfering with Bacterial Membrane Permeability, Inhibiting Proteins, and Inducing Bacterial DNA Damage. Antibiotics (Basel) 2022; 11:antibiotics11091182. [PMID: 36139961 PMCID: PMC9495090 DOI: 10.3390/antibiotics11091182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Honey is a sweet natural food produced by bees from flower nectar or some part of plant secretions that exhibit antimicrobial activity against many microorganisms. It has been used as traditional therapy for skin infections. Antibiotics play an essential role in managing wound infection; however, some pathogenic bacteria have begun to possess resistance against them, which may cause chronic infections and severe adverse effects. This study investigates the antibacterial activities and mechanism of action of Yemeni Sidr honey (SH) and Manuka honey (MH) against Escherichia coli. The inhibitory effects of SH and MH using the disk diffusion method on bacterial growth were remarkable at 700 mg/disk. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were similar for both kinds of honey. However, MH showed a better bactericidal effect (30%) than SH (50%). The antimicrobial mechanism of action showed that SH substantially impacted the bacterial membrane’s permeability and increased the potassium and protein leakage rate. On the contrary, MH demonstrated remarkable inhibition of bacterial protein synthesis, while both kinds of honey caused bacterial DNA damage. These data reveal that SH and MH could be used as a remedy for skin infections and might be further developed as a promising dressing for bacterial wound infections.
Collapse
Affiliation(s)
| | - Abdelkodose Mohammed Al-Kabsi
- Faculty of Medicine, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Malaysia
- Correspondence: (A.M.A.-K.); (M.A.A.)
| | - Maisa Siddiq Abduh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Sultan Ayesh Mohammed Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.M.A.-K.); (M.A.A.)
| |
Collapse
|
23
|
Green KJ, Lawag IL, Locher C, Hammer KA. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS One 2022; 17:e0272376. [PMID: 35901185 PMCID: PMC9333225 DOI: 10.1371/journal.pone.0272376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Variation in the antibacterial potency of manuka honey has been reported in several published studies. However, many of these studies examine only a few honey samples, or test activity against only a few bacterial isolates. To address this deficit, a collection of 29 manuka/Leptospermum honeys was obtained, comprising commercial manuka honeys from Australia and New Zealand and several Western Australian Leptospermum honeys obtained directly from beekeepers. The antibacterial activity of honeys was quantified using several methods, including the broth microdilution method to determine minimum inhibitory concentrations (MICs) against four species of test bacteria, the phenol equivalence method, determination of antibacterial activity values from optical density, and time kill assays. Several physicochemical parameters or components were also quantified, including methylglyoxal (MGO), dihydroxyacetone (DHA), hydroxymethylfurfural (HMF) and total phenolics content as well as pH, colour and refractive index. Total antioxidant activity was also determined using the DPPH* (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing–antioxidant power) assays. Levels of MGO quantified in each honey were compared to the levels stated on the product labels, which revealed mostly minor differences. Antibacterial activity studies showed that MICs varied between different honey samples and between bacterial species. Correlation of the MGO content of honey with antibacterial activity showed differing relationships for each test organism, with Pseudomonas aeruginosa showing no relationship, Staphylococcus aureus showing a moderate relationship and both Enterococcus faecalis and Escherichia coli showing strong positive correlations. The association between MGO content and antibacterial activity was further investigated by adding known concentrations of MGO to a multifloral honey and quantifying activity, and by also conducting checkerboard assays. These investigations showed that interactions were largely additive in nature, and that synergistic interactions between MGO and the honey matrix did not occur.
Collapse
Affiliation(s)
- Kathryn J. Green
- School of Biomedical Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
| | - Ivan L. Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- Division of Pharmacy, School of Allied Health, UWA, Crawley, WA, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- Division of Pharmacy, School of Allied Health, UWA, Crawley, WA, Australia
| | - Katherine A. Hammer
- School of Biomedical Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, UWA, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
24
|
Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics (Basel) 2022; 11:antibiotics11070975. [PMID: 35884229 PMCID: PMC9312033 DOI: 10.3390/antibiotics11070975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Honey, a naturally sweet and viscous substance is mainly produced by honeybees (Apis mellifera) from flower nectar. Honey exerts a plethora of biological and pharmacological activities, namely, antioxidant, antimicrobial and anti-inflammatory activity, because of the presence of an extensive variety of bioactive compounds. The antibacterial activity is one of the most reported biological properties, with many studies demonstrating that honey is active against clinically important pathogens. As a result, beside honey’s widespread utilization as a common food and flavouring agent, honey is an attractive natural antimicrobial agent. However, the use of neat honey for therapeutic purposes poses some problems, for instance, its stickiness may hamper its appeal to consumers and health care professionals, and the maintenance of an adequate therapeutic concentration over a sufficient timeframe may be challenging due to honey liquidity and leakage. It has motivated researchers to integrate honey into diverse formulations, for example, hydrogels, dressings, ointments, pastes and lozenges. The antibacterial activity of these formulations should be scientifically determined to underscore claims of effectiveness. Some researchers have made efforts to adapt the disc carrier and suspension test to assess the antimicrobial activity of topical products (e.g., silver-based wound dressings). However, there is currently no established and validated method for determining the in vitro antimicrobial potential of natural product-based formulations, including those containing honey as the active principle. Against the backdrop of a brief discussion of the parameters that contribute to its antibacterial activity, this review provides an outline of the methods currently used for investigating the antibacterial activity of neat honey and discusses their limitations for application to honey-based formulations.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia;
- CRC for Honey Bee Products, University of Western Australia, Crawley 6009, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
- CRC for Honey Bee Products, University of Western Australia, Crawley 6009, Australia
- Correspondence:
| |
Collapse
|
25
|
Fuller ID, de Lange PJ, Burgess EJ, Sansom CE, van Klink JW, Perry NB. Chemical diversity of kānuka: Inter- and intraspecific variation of foliage terpenes and flavanones of Kunzea (Myrtaceae) in Aotearoa/New Zealand. PHYTOCHEMISTRY 2022; 196:113098. [PMID: 35051785 DOI: 10.1016/j.phytochem.2022.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Kunzea (Myrtaceae) trees and shrubs, generally called kānuka, grow across most of Aotearoa/New Zealand (NZ). With the exception of K. sinclairii, an offshore island endemic, kānuka had been treated as an Australasian species K. ericoides. However, a 2014 taxonomic revision recognized ten species, all endemic to NZ. Kānuka chemistry is less studied than that of its closest relative in NZ, mānuka (Leptospermum scoparium), which shows very distinct regional foliage chemotypes. We have used a miniaturized method with GC and 1H NMR to analyze foliage chemistry of voucher specimens from across the geographic ranges of the ten NZ Kunzea species. We found common mono- and sesquiterpenes, with α-pinene dominant in all samples, but only traces of antimicrobial triketones. Two unusual flavanones, with unsubstituted B-rings and known bioactivity against Phytophthora, did distinguish some of the samples. 5,7-Dihydroxy-6,8-dimethyl flavanone was only found at high concentrations in the three K. sinclairii samples in this study's sample set, but this compound has separately been reported in K. robusta samples from a nearby region. Therefore none of the NZ Kunzea species was distinguished by the chemistry analyzed in this study, but there is a possibility of regional flavonoid chemotypes cutting across the species boundaries.
Collapse
Affiliation(s)
- Ioan D Fuller
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Peter J de Lange
- Department of Environmental and Animal Sciences, UNITEC, Auckland, New Zealand
| | - Elaine J Burgess
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Catherine E Sansom
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Nigel B Perry
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
26
|
Chen J, Lin Y, Xing W, Zhang X, Xu H, Wang W, Lou K. An anthracenecarboximide-guanidine fluorescent probe for selective detection of glyoxals under weak acidic conditions. RSC Adv 2022; 12:9473-9477. [PMID: 35424850 PMCID: PMC8985128 DOI: 10.1039/d2ra00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022] Open
Abstract
An anthracenecarboximide-guanidine based turn-on fluorescent probe ANC-DCP-1 for selective detection of glyoxals (methylglyoxal and glyoxal, GOS) over formaldehyde under weak acidic conditions around pH 6.0 was reported. The probe showed great potential in studying relative GOS levels in weak acidic biological fluids such as in urine for diabetic diagnosis and prognosis, and also found application in the food industry such as for fast unique manuka factor (UMF) scale determination of Manuka honey. Formation of 5-membered dihydroxyimidazolidines with increased deprotonation at around pH 6.0 and enhanced intramolecular charge transfer for turn-on fluorescence detection of glyoxals.![]()
Collapse
Affiliation(s)
- Junwei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuna Lin
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Wanjin Xing
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Xingchen Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Huan Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Wei Wang
- A Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona Tucson AZ 85721-0207 USA
| | - Kaiyan Lou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
27
|
2-Year-Old and 3-Year-Old Italian ALS Patients with Novel ALS2 Mutations: Identification of Key Metabolites in Their Serum and Plasma. Metabolites 2022; 12:metabo12020174. [PMID: 35208248 PMCID: PMC8878019 DOI: 10.3390/metabo12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Pathogenic variants in ALS2 have been detected mostly in juvenile cases of amyotrophic lateral sclerosis (ALS), affecting mainly children and teenagers. Patients with ALS2 mutations demonstrate early onset cortical involvement in ALS. Currently, there are no effective treatment options. There is an immense need to reveal the underlying causes of the disease and to identify potential biomarkers. To shed light onto the metabolomic events that are perturbed with respect to ALS2 mutations, we investigated the metabolites present in the serum and plasma of a three-year-old female patient (AO) harboring pathogenic variants in ALS2, together with her relatives, healthy male and female controls, as well as another two-year-old patient DH, who had mutations at different locations and domains of ALS2. Serum and plasma samples were analyzed with a quantitative metabolomic approach to reveal the identity of metabolites present in serum and plasma. This study not only shed light onto the perturbed cellular pathways, but also began to reveal the presence of a distinct set of key metabolites that are selectively present or absent with respect to ALS2 mutations, laying the foundation for utilizing metabolites as potential biomarkers for a subset of ALS.
Collapse
|
28
|
Attia YA, Giorgio GM, Addeo NF, Asiry KA, Piccolo G, Nizza A, Di Meo C, Alanazi NA, Al-qurashi AD, El-Hack MEA, Khafaga AF, Bovera F. COVID-19 pandemic: impacts on bees, beekeeping, and potential role of bee products as antiviral agents and immune enhancers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9592-9605. [PMID: 34993785 PMCID: PMC8736297 DOI: 10.1007/s11356-021-17643-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
COVID-19 pandemic has passed to the front all the contradictions of the beekeeping sector: the valuable role of bee products as immune enhancers and antiviral agents and the impact that unsustainability of human activities has on bees' health and survival. The COVID-19 emergency led several countries to adopt severe restriction measures to contrast the infection. The lowering of industrial and commercial activities, transports, and the general lockdown had immediate consequences on the air quality, significantly improving environmental conditions. This had a positive impact on honeybees' life's quality. On the other hand, the bee and beehive transportation limitations threaten to hit food production by affecting the pollinator service, and this is particularly true in large, food-exporting countries like the USA and China where due to the few numbers of local bees, beekeepers import them by other countries and convey by truck hives for thousands of kilometers to pollinate crops. Furthermore, honeybee products, focusing on their natural pharmacological properties, can play an essential role as a potential natural contrast to the virus by enhancing the immunity defenses of both humans and animals, and their demand by consumers is expected to increase. Several researchers in the last months focused their attention on bee products to evaluate their effect in the cure of COVID-19 patients to ameliorate the symptoms or to contrast the coronavirus directly. This review reports these preliminary results.
Collapse
Affiliation(s)
- Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589 Saudi Arabia
- The Strategic Center To Kingdom Vision Realization, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589 Saudi Arabia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Gianpaolo M. Giorgio
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via Delpino, 1, 80137 Napoli, Italy
| | - Nicola F. Addeo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via Delpino, 1, 80137 Napoli, Italy
| | - Khalid A. Asiry
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589 Saudi Arabia
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via Delpino, 1, 80137 Napoli, Italy
| | - Antonino Nizza
- Department of Agronomy, University of Napoli Federico II, Via Università, 100, 80055 Portici, Napoli Italy
| | - Carmelo Di Meo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via Delpino, 1, 80137 Napoli, Italy
| | - Naimah A. Alanazi
- Department of Biology, Faculty of Sciences, University of Ha’il, PO Box 2440, Ha’il 81451, Saudi Arabia
| | - Adel D. Al-qurashi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589 Saudi Arabia
| | | | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758 Egypt
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via Delpino, 1, 80137 Napoli, Italy
| |
Collapse
|
29
|
Koot E, Arnst E, Taane M, Goldsmith K, Thrimawithana A, Reihana K, González-Martínez SC, Goldsmith V, Houliston G, Chagné D. Genome-wide patterns of genetic diversity, population structure and demographic history in mānuka (Leptospermum scoparium) growing on indigenous Māori land. HORTICULTURE RESEARCH 2022; 9:uhab012. [PMID: 35039864 PMCID: PMC8771449 DOI: 10.1093/hr/uhab012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 06/14/2023]
Abstract
Leptospermum scoparium J. R. Forst et G. Forst, known as mānuka by Māori, the indigenous people of Aotearoa (New Zealand), is a culturally and economically significant shrub species, native to New Zealand and Australia. Chemical, morphological and phylogenetic studies have indicated geographical variation of mānuka across its range in New Zealand, and genetic differentiation between New Zealand and Australia. We used pooled whole genome re-sequencing of 76 L. scoparium and outgroup populations from New Zealand and Australia to compile a dataset totalling ~2.5 million SNPs. We explored the genetic structure and relatedness of L. scoparium across New Zealand, and between populations in New Zealand and Australia, as well as the complex demographic history of this species. Our population genomic investigation suggests there are five geographically distinct mānuka gene pools within New Zealand, with evidence of gene flow occurring between these pools. Demographic modelling suggests three of these gene pools have undergone expansion events, whilst the evolutionary histories of the remaining two have been subjected to contractions. Furthermore, mānuka populations in New Zealand are genetically distinct from populations in Australia, with coalescent modelling suggesting these two clades diverged ~9-12 million years ago. We discuss the evolutionary history of this species and the benefits of using pool-seq for such studies. Our research will support the management and conservation of mānuka by landowners, particularly Māori, and the development of a provenance story for the branding of mānuka based products.
Collapse
Affiliation(s)
- Emily Koot
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Batchelar Rd, Palmerston North 4410, New Zealand
| | - Elise Arnst
- Manaaki Whenua Landcare Research, 54 Gerald St, Lincoln 7608, New Zealand
| | - Melissa Taane
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Batchelar Rd, Palmerston North 4410, New Zealand
| | | | | | - Kiri Reihana
- Manaaki Whenua Landcare Research, 54 Gerald St, Lincoln 7608, New Zealand
| | | | | | - Gary Houliston
- Manaaki Whenua Landcare Research, 54 Gerald St, Lincoln 7608, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Batchelar Rd, Palmerston North 4410, New Zealand
| |
Collapse
|
30
|
Clearwater MJ, Noe ST, Manley-Harris M, Truman GL, Gardyne S, Murray J, Obeng-Darko SA, Richardson SJ. Nectary photosynthesis contributes to the production of mānuka (Leptospermum scoparium) floral nectar. THE NEW PHYTOLOGIST 2021; 232:1703-1717. [PMID: 34287899 DOI: 10.1111/nph.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Current models of floral nectar production do not include a contribution from photosynthesis by green nectary tissue, even though many species have green nectaries. Mānuka (Leptospermum scoparium) floral nectaries are green, and in addition to sugars, their nectar contains dihydroxyacetone (DHA), the precursor of the antimicrobial agent in the honey. We investigated causes of variation in mānuka floral nectar production, particularly the effect of light incident on the nectary. Flower gas exchange, chlorophyll fluorescence, and the effects on nectar of age, temperature, light, sucrose, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), pyridoxal phosphate, and 13 CO2 , were measured for attached and excised flowers. Flower age affected all nectar traits, whilst temperature affected total nectar sugar only. Increased light reduced floral CO2 efflux, increased nectar sugar production, and affected the ratio of DHA to other nectar sugars. DCMU, an inhibitor of photosystem II, reduced nectar sugar production. Pyridoxal phosphate, an inhibitor of the chloroplast envelope triose phosphate transporter, reduced nectar DHA content. Incubation of excised flowers with 13 CO2 in the light resulted in enrichment of nectar sugars, including DHA. Photosynthesis within green nectaries contributes to nectar sugars and influences nectar composition. Mānuka nectar DHA arises from pools of triose phosphate that are modulated by nectary photosynthesis.
Collapse
Affiliation(s)
- Michael J Clearwater
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Stevie T Noe
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Merilyn Manley-Harris
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Georgia-Leigh Truman
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Stephen Gardyne
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Jessica Murray
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Sylvester A Obeng-Darko
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
- School of Biological Science, University of Western Australia, Perth, WA, 6009, Australia
| | - Sarah J Richardson
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| |
Collapse
|
31
|
Xia Y, Lu T, Wang L, Mo J, Jin Y, Zhang L, Du S. Intrinsic Raman signal amplification for rapid identification and detection of methylglyoxal in manuka honey. Anal Chim Acta 2021; 1181:338902. [PMID: 34556229 DOI: 10.1016/j.aca.2021.338902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/16/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022]
Abstract
Methylglyoxal (MGO) is the primary material basis for the non-peroxide antibacterial activity (NPA) of manuka honey from New Zealand. Therefore, it is necessary to identify the quality or discriminate the grade of honey because no all manuka honeys on the market display the NPA. The current routine method employed for the detection of MGO involves high-performance liquid chromatography (HPLC) test. However, it requires long time (∼8 h) for sample derivatization. Herein, we report an intrinsic Raman signal amplification strategy for the rapid identification and detection of MGO by using silver-coated gold nanoparticles (Au@Ag NPs) along with a high selective surface-enhanced Raman scattering (SERS) probe 8-thioguanosine (8-TG). 8-TG is synthesized via the derivatization of 8-bromoguanosine (8-BG) with thiourea, and its Raman peak assignments were confirmed by computer simulation. The detection is performed through the Raman intensity ratio (I631/I700) variation of N2-(1-carboxyethyl)-thioguanosine (CETG) formed by the reaction between 8-TG and MGO on surface of Au@Ag NPs, where one CETG Raman intensity at 631 cm-1 increases while the other one at 700 cm-1 decreases oppositely. The opposite change not only yields an intrinsic Raman signal amplification, but also provides built-in correction. As a result, the proposed SERS method exhibits high sensitivity and accuracy. In addition, the whole analytical test is achieved within ∼20 min. The method can be used for the fast detection of MGO in manuka honey and discrimination of the honey grade.
Collapse
Affiliation(s)
- Yuhong Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Tian Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liping Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jinling Mo
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Shuhu Du
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
32
|
El-Senduny FF, Hegazi NM, Abd Elghani GE, Farag MA. Manuka honey, a unique mono-floral honey. A comprehensive review of its bioactives, metabolism, action mechanisms, and therapeutic merits. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Japanese Honeybees ( Apis cerana japonica Radoszkowski, 1877) May Be Resilient to Land Use Change. INSECTS 2021; 12:insects12080685. [PMID: 34442251 PMCID: PMC8396638 DOI: 10.3390/insects12080685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pollinators are threatened globally by growing urban sprawl and agriculture. The Western Honeybee (Apis mellifera) readily adapts to whatever food is available, so people have made it the most widely distributed pollinator across the world. Previous research has suggested that the Western Honeybee may be less resilient to land use change outside of its natural range. This study examines a different honeybee species—the Japanese Honeybee (Apis cerana japonica). Unlike the Western Honeybee, this species is found almost exclusively in its natural range in Japan. Consequently, it may be better adapted to its local food sources and therefore more resilient. Working in southern Japan, in the Nagasaki and Saga prefectures, we looked at the nectar and pollen that the Japanese Honeybee feeds on. Their food intake was then examined in relation to local land use composition. We found minimal impact of increasing urban sprawl on the forage of the Japanese Honeybee. This goes against previous studies on the Western Honeybee elsewhere in the world. Though in need of a direct comparison with Western Honeybee, these preliminary results could be due to differences in urban green infrastructure in Japan, or due to an adaptation by the Japanese honeybee to its surroundings. Abstract Pollinators are being threatened globally by urbanisation and agricultural intensification, driven by a growing human population. Understanding these impacts on landscapes and pollinators is critical to ensuring a robust pollination system. Remote sensing data on land use attributes have previously linked honeybee nutrition to land use in the Western Honeybee (Apis mellifera L.). Here, we instead focus on the less commonly studied Apis cerana japonica—the Japanese Honeybee. Our study presents preliminary data comparing forage (honey and pollen) with land use across a rural-urban gradient from 22 sites in Kyushu, southern Japan. Honey samples were collected from hives between June 2018 and August 2019. Pollen were collected and biotyped from hives in urban and rural locations (n = 4). Previous studies of honey show substantial variation in monosaccharide content. Our analysis of A. cerana japonica honey found very little variation in glucose and fructose (which accounted for 97% of monosaccharides), despite substantial differences in surrounding forage composition. As expected, we observed temporal variation in pollen foraged by A. cerana japonica, likely dependent on flowering phenology. These preliminary results suggest that the forage and nutrition of A. cerana japonica may not be negatively affected by urban land use. This highlights the need for further comparative studies between A. cerana japonica and A. mellifera as it could suggest a resilience in pollinators foraging in their native range.
Collapse
|
34
|
Cataloguing the small RNA content of honey using next generation sequencing. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100014. [PMID: 35415639 PMCID: PMC8991712 DOI: 10.1016/j.fochms.2021.100014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
Plant miRNAs are present in Australian polyfloral and Leptospermum scoparium honey. Sequencing shows that honey contains a diverse range of small, non-coding RNAs. Honey RNA comes from different phylogenies including invertebrates and prokaryotes. Unique small RNA profiles can provide insight into honey production conditions.
Honey adulteration is a problem that effects the global honey industry and specifically, has been discovered in the Australian market. Common methods of adulteration include dilution with sugar syrup substitutes and the mislabelling of the floral and geographic origin(s) of honey. Current authentication tools rely on the molecular variability between different honeys, identifying unique chemical profiles and/or DNA signatures characteristic of a particular honey. Honey is known to contain plant miRNAs derived from its floral source. To explore the composition and variability of honey RNA molecules, this is the first study to catalogue the small RNA content of Australian polyfloral table honey and New Zealand Leptospermum scoparium honey using next generation sequencing. The data shows that in addition to miRNAs, honey contains a variety of small non-coding RNAs including tRNA-derived fragments. Moreover, the honey small RNAs are derived from a range of phylogenetic sources, including from plant, invertebrate, and prokaryotic species. The data indicates that different honeys contain unique small RNA profiles, which suggests a novel avenue in developing molecular-based honey authentication tools.
Collapse
|
35
|
Chemical Elements and the Quality of Mānuka ( Leptospermum scoparium) Honey. Foods 2021; 10:foods10071670. [PMID: 34359540 PMCID: PMC8303644 DOI: 10.3390/foods10071670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Soil properties in the foraging range of honeybees influence honey composition. We aimed to determine relationships between the antimicrobial properties of New Zealand mānuka (Leptospermum scoparium) honey and elemental concentrations in the honey, plants, and soils. We analyzed soils, plants, and fresh mānuka honey samples from the Wairarapa region of New Zealand for the chemical elements and the antimicrobial activity of the honey as indicated by methylglyoxal (MGO) and dihydroxyacetone (DHA). There were significant negative correlations between honey MGO and the concentrations of Mn, Cu, Mg, S, Na, Ba, K, Zn, and Al. These elements may provide a low-cost means of assessing mānuka honey quality. For individual elements, except for K, there were no correlations between the honeys, plants, and soils. Soil nitrate concentrations were negatively correlated with concentrations of MGO and DHA in the honey, which implies that soil fertility may be a determiner of mānuka honey quality.
Collapse
|
36
|
Vică ML, Glevitzky M, Tit DM, Behl T, Heghedűş-Mîndru RC, Zaha DC, Ursu F, Popa M, Glevitzky I, Bungău S. The antimicrobial activity of honey and propolis extracts from the central region of Romania. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Al Refaey HR, Newairy ASA, Wahby MM, Albanese C, Elkewedi M, Choudhry MU, Sultan AS. Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2. Biol Res 2021; 54:16. [PMID: 34049576 PMCID: PMC8161992 DOI: 10.1186/s40659-021-00339-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated. The current study focused mainly on investigating the molecular mechanism and synergistic effect of anticancer properties of MH on Doxorubicin (DOX)-mediated apoptotic cell death, using two different p53 statuses (HepG2 and Hep3B) and one non-tumorigenic immortalized liver cell line. Results MH treatment showed a proliferative inhibitory effect on tested cells in a dose-dependent manner with IC50 concentration of (6.92 ± 0.005%) and (18.62 ± 0.07%) for HepG2 and Hep3B cells, respectively, and induced dramatic morphological changes of Hep-G2 cells, which considered as characteristics feature of apoptosis induction after 48 h of treatment. Our results showed that MH or combined treatments induced higher cytotoxicity in p53-wild type, HepG2, than in p53-null, Hep3B, cells. Cytotoxicity was not observed in normal liver cells. Furthermore, the synergistic effect of MH and Dox on apoptosis was evidenced by increased annexin-V-positive cells and Sub-G1 cells in both tested cell lines with a significant increase in the percentage of Hep-G2 cells at late apoptosis as confirmed by the flow cytometric analysis. Consistently, the proteolytic activities of caspase-3 and the degradation of poly (ADP-ribose) polymerase were also higher in the combined treatment which in turn accompanied by significant inhibitory effects of pERK1/2, mTOR, S6K, oncogenic β-catenin, and cyclin D1 after 48 h. In contrast, the MH or combined treatment-induced apoptosis was accompanied by significantly upregulated expression of proapoptotic Bax protein and downregulated expression of anti-apoptotic Bcl-2 protein after 48 h. Conclusions Our data showed a synergistic inhibitory effect of MH on DOX-mediated apoptotic cell death in HCC cells. To our knowledge, the present study provides the first report on the anticancer activity of MH and its combined treatment with DOX on HCC cell lines, introducing MH as a promising natural and nontoxic anticancer compound.
Collapse
Affiliation(s)
- Heba R Al Refaey
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Al-Sayeda A Newairy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mayssaa M Wahby
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Chris Albanese
- Oncology and Radiology Departments, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mohamed Elkewedi
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Muhammad Umer Choudhry
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Ahmed S Sultan
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt. .,Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
38
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
39
|
Zhang YZ, Si JJ, Li SS, Zhang GZ, Wang S, Zheng HQ, Hu FL. Chemical Analyses and Antimicrobial Activity of Nine Kinds of Unifloral Chinese Honeys Compared to Manuka Honey (12+ and 20+). Molecules 2021; 26:molecules26092778. [PMID: 34066799 PMCID: PMC8125924 DOI: 10.3390/molecules26092778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Honey has good antimicrobial properties and can be used for medical treatment. The antimicrobial properties of unifloral honey varieties are different. In this study, we evaluated the antimicrobial and antioxidant activities of nine kinds of Chinese monofloral honeys. In addition, headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) technology was used to detect their volatile components. The relevant results are as follows: 1. The agar diffusion test showed that the diameter of inhibition zone against Staphylococcus aureus of Fennel honey (21.50 ± 0.41 mm), Agastache honey (20.74 ± 0.37 mm), and Pomegranate honey (18.16 ± 0.11 mm) was larger than that of Manuka 12+ honey (14.27 ± 0.10 mm) and Manuka 20+ honey (16.52 ± 0.12 mm). The antimicrobial activity of Chinese honey depends on hydrogen peroxide. 2. The total antioxidant capacity of Fennel honey, Agastache honey, and Pomegranate honey was higher than that of other Chinese honeys. There was a significant positive correlation between the total antioxidant capacity and the total phenol content of Chinese honey (r = 0.958). The correlation coefficient between the chroma value of Chinese honey and the total antioxidant and the diameter of inhibition zone was 0.940 and 0.746, respectively. The analyzed dark honeys had better antimicrobial and antioxidant activities. 3. There were significant differences in volatile components among Fennel honey, Agastache honey, Pomegranate honey, and Manuka honey. Hexanal-D and Heptanol were the characteristic components of Fennel honey and Pomegranate honey, respectively. Ethyl 2-methylbutyrate and 3-methylpentanoic acids were the unique compounds of Agastache honey. The flavor fingerprints of the honey samples from different plants can be successfully built using HS-GC-IMS and principal component analysis (PCA) based on their volatile compounds. Fennel honey, Agastache honey, and Pomegranate honey are Chinese honey varieties with excellent antimicrobial properties, and have the potential to be developed into medical grade honey.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fu-Liang Hu
- Correspondence: ; Tel./Fax: +86-27-8898-2952
| |
Collapse
|
40
|
Bischofberger AM, Pfrunder Cardozo KR, Baumgartner M, Hall AR. Evolution of honey resistance in experimental populations of bacteria depends on the type of honey and has no major side effects for antibiotic susceptibility. Evol Appl 2021; 14:1314-1327. [PMID: 34025770 PMCID: PMC8127710 DOI: 10.1111/eva.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023] Open
Abstract
With rising antibiotic resistance, alternative treatments for communicable diseases are increasingly relevant. One possible alternative for some types of infections is honey, used in wound care since before 2000 BCE and more recently in licensed, medical-grade products. However, it is unclear whether medical application of honey results in the evolution of bacterial honey resistance and whether this has collateral effects on other bacterial traits such as antibiotic resistance. Here, we used single-step screening assays and serial transfer at increasing concentrations to isolate honey-resistant mutants of Escherichia coli. We only detected bacteria with consistently increased resistance to the honey they evolved in for two of the four tested honey products, and the observed increases were small (maximum twofold increase in IC90). Genomic sequencing and experiments with single-gene knockouts showed a key mechanism by which bacteria increased their honey resistance was by mutating genes involved in detoxifying methylglyoxal, which contributes to the antibacterial activity of Leptospermum honeys. Crucially, we found no evidence that honey adaptation conferred cross-resistance or collateral sensitivity against nine antibiotics from six different classes. These results reveal constraints on bacterial adaptation to different types of honey, improving our ability to predict downstream consequences of wider honey application in medicine.
Collapse
Affiliation(s)
| | | | | | - Alex R. Hall
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
41
|
Albietz JM, Lenton LM. Standardised antibacterial Manuka honey in the management of persistent post‐operative corneal oedema: a case series. Clin Exp Optom 2021; 98:464-72. [PMID: 26390910 DOI: 10.1111/cxo.12295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 02/20/2015] [Accepted: 03/06/2015] [Indexed: 01/22/2023] Open
Affiliation(s)
- Julie M Albietz
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lee M Lenton
- Vision Eye Institute, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Brudzynski K, Sjaarda CP. Colloidal structure of honey and its influence on antibacterial activity. Compr Rev Food Sci Food Saf 2021; 20:2063-2080. [PMID: 33569893 DOI: 10.1111/1541-4337.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023]
Abstract
Honey colloidal structure emerges as a new trend in research on honey functions since it became recognized as a major factor altering bioactivity of honey compounds. In honey complex matrix, macromolecules self-associate to colloidal particles at the critical concentration, driven by honey viscosity. Sequestration of macromolecules into colloids changes their activities and affects honey antibacterial function. This review fills the 80-year-old gap in research on honey colloidal structure. It summarizes past and current status of the research on honey colloids and describes physicochemical properties and the mechanisms of colloid formation and their dissociation upon honey dilution. The experimental observations are explained in the context of theoretical background of colloidal science. The functional changes and bioactivity of honey macromolecules bound to colloidal particles are illustrated here by the production of H2 O2 by glucose oxidase and the effect they have on antibacterial activity of honey. The changes in the production of H2 O2 and antibacterial activity of honey were coordinated with the changes in the aggregation-dissociation states of honey colloidal particles upon dilution. In all cases, these changes were nonlinear, assuming an inverted U-shaped dose-response curve. At the curve maximum, the production of H2 O2 and antibacterial activity reached the peak. The curve maximum signaled the minimum honey concentration required for the phase separation. With phase transition from two-phase colloidal condense state to dilute state dispersion, the change to opposite effects of dilution on these honey's activities occurred. Thus, the colloidal structure strongly influences bioactivity of honey compounds and affects its antibacterial activity.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Bimedical Inc., St. Catharines, Ontario, Canada.,Department of Biological Sciences, Brock University and Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, Ontario, Canada
| | - Calvin P Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Kingston, Ontario, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Obossou EK, Shikamoto Y, Hoshino Y, Kohno H, Ishibasi Y, Kozasa T, Taguchi M, Sakakibara I, Tonooka K, Shinozuka T, Mori K. Effect of manuka honey on human immunodeficiency virus type 1 reverse transcriptase activity. Nat Prod Res 2021; 36:1552-1557. [PMID: 33550857 DOI: 10.1080/14786419.2021.1880403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Manuka honey (MkH), derived from New Zealand manuka tree (Leptospermum scoparium), is considered a therapeutic agent owing to its antibacterial, antioxidant, antifungal, antiviral, anti-inflammatory, and wound healing activities. In this study, the inhibitory effect of five honey types, including MkH, on HIV-1 RT activity was evaluated, using an RT assay colorimetric kit, according to the manufacturer's instructions with slight modifications. MkH exerted the strongest inhibitory effect in a dose-dependent manner, with a half maximal inhibitory concentration (IC50) of approximately 14.8 mg/mL. Moreover, among the MkH constituents, methylglyoxal (MGO) and 2-methoxybenzoic acid (2-MBA) were determined to possess anti-HIV-1 RT activity. MGO and 2-MBA in MkH were identified by High Performance Liquid Chromatography (HPLC) and Liquid Chromatograph - Mass Spectrometry (LC-MS/MS). The findings suggest that the inhibitory effect of MkH on the HIV-1 RT activity is mediated by multiple constituents with different physical and chemical properties.
Collapse
Affiliation(s)
| | - Yasuo Shikamoto
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yuki Hoshino
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Hayato Kohno
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yukiko Ishibasi
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Tohru Kozasa
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Maho Taguchi
- Laboratory of Regulatory Sciences, Yokohama University of Pharmacy, Yokohama, Japan
| | - Iwao Sakakibara
- Department of Chinese Herbal Medicine, Yokohama University of Pharmacy, Yokohama, Japan
| | - Keiko Tonooka
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Tatsuo Shinozuka
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Kazuya Mori
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| |
Collapse
|
44
|
Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9:1530-1546. [DOI: 10.1039/d0bm01747g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hydrogel dressings with various functions for diabetic wound treatment.
Collapse
Affiliation(s)
- Heni Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
45
|
Fuentes Molina O, Alizadeh K, Bucarey SA, Castaneza Zúñiga E, Vásquez-Quitral P. Analysis of organic molecules, physicochemical parameters, and pollen as indicators for authenticity, botanical origin, type and quality of honey samples examined. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1850775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- O. Fuentes Molina
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad De Chile, La Pintana, Santiago, Chile
| | - K. Alizadeh
- Department of Palynology and Climate Dynamics, University of Göttingen, Göttingen, Germany
- Quality Service International (QSI) GmbH, Bremen, Germany
| | - Sergio A. Bucarey
- Laboratorio de Biotecnología Veterinaria (BIOVETEC), Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad De Chile, La Pintana, Santiago, Chile
| | - E. Castaneza Zúñiga
- Instituto Profesional DUOC-UC, Sede Puente Alto, Puente Alto, Santiago, Chile
| | - P. Vásquez-Quitral
- Instituto De Ciencias Químicas Aplicadas, Facultad De Ingeniería, Universidad Autónoma De Chile, San Miguel, Santiago, Chile
| |
Collapse
|
46
|
Mirzaei A, Karamolah KS, Mahnaie MP, Mousavi F, Moghadam PM, Mahmoudi H. Antibacterial Activity of Honey against Methicillin-Resistant and Sensitive Staphylococcus Aureus Isolated from Patients with Diabetic Foot Ulcer. Open Microbiol J 2020. [DOI: 10.2174/1874434602014010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Staphylococcus aureus is the most important causative agent of wound infections, including diabetic foot ulcers. Honey is a very useful nutrient with antimicrobial properties and other biological properties such as antitumor, anti-inflammatory, antioxidant and antiviral properties. The aim was to examine the antibacterial activity of honey against methicillin-resistant and sensitive S. aureus (MRSA and MSSA) isolated from patients with diabetic foot ulcers.
Methods:
This cross-sectional study was performed from January 2019 to December 2019. Twenty S. aureus isolates were collected from patients with diabetic foot ulcers. Different concentrations (100%, 70%, 50%, 25% vol/vol) of honey were studied. Dilutions of honey solutions were examined to determine the minimum inhibitory concentration (MIC) against S. aureus. MICs were determined by spectrophotometric assay at 620 nm.
Results:
All strains showed sensitivity to honey with MIC equal to 25% (vol/vol). The MIC (%) values of honey for all studied S. aureus (MRSA and MSSA) isolates ranged between 18-100% (v/v).
Conclusion:
Honey with confirmed, antibacterial activity has the potential to be an efficient treatment complementary for diabetic foot ulcers infected or at risk of infection with S. aureus.
Collapse
|
47
|
Detrimental effect on the gut microbiota of 1,2-dicarbonyl compounds after in vitro gastro-intestinal and fermentative digestion. Food Chem 2020; 341:128237. [PMID: 33091666 DOI: 10.1016/j.foodchem.2020.128237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
This study investigated the stability of dicarbonyl compounds (DCs), 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO) during simulated gastrointestinal digestion processes and the impact these compounds have on the gut microbiota. DCs pass almost unaltered through the in-vitro gastrointestinal digestion phases (concentration loss: 11% for 3-DG, 24% for GO and MGO) and have an effect on the fermentative digestion process, reducing the total gut bacterial population up to 6 Log10 units. Previous studies have shown no antimicrobial activity for 3-DG, however, for the first time it has been shown that when incubated with faecal bacteria 3-DG strongly depressed this microbial community. The influence of dicarbonyl compounds on the anaerobic fermentation processes was confirmed by the reduced production of short-chain fatty acids. Considering the modern Western diet, characterised by high consumption of ultra-processed foods rich in dicarbonyl compounds, this could lead to a reduction of bacteria important for the microbiome.
Collapse
|
48
|
Tang JS, Compton BJ, Marshall A, Anderson R, Li Y, van der Woude H, Hermans IF, Painter GF, Gasser O. Mānuka honey-derived methylglyoxal enhances microbial sensing by mucosal-associated invariant T cells. Food Funct 2020; 11:5782-5787. [PMID: 32618294 DOI: 10.1039/d0fo01153c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO) is the main antimicrobial determinant associated with using Mānuka Honey as a topical dressing. While direct mechanisms of Mānuka honey MGO's antimicrobial activity have been demonstrated, such as disruption of bacterial fimbria and flagella, no interaction of Mānuka honey-derived MGO with antimicrobial effector cells of the immune system, such as mucosal-associated invariant T cells (MAIT cells), has yet been reported. MAIT cells are an abundant subset of human T cells, critical for regulating a diverse range of immune functions, including antimicrobial defense mechanisms but also mucosal barrier integrity. MAIT cells become activated by recognition of an important microbial metabolite, 5-amino-6-d-ribitylaminouracil (5-A-RU), which is produced by a wide range of microbial pathogens and commensals. Recognition is afforded when 5-A-RU condenses with mammalian-cell derived MGO to form the potent MAIT cell activator, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU). Formation of 5-OP-RU and its subsequent presentation to MAIT cells by major histocompatibility (MHC)-related molecule 1 (MR1) facilitates host-pathogen and host-commensal interactions. While MGO is a metabolite naturally present in mammalian cells, it is unclear whether exogenous dietary MGO sources, such as those obtained from Mānuka honey intake, can contribute to 5-OP-RU formation and enhance MAIT cell activation. In this work, we report that endogenous MGO is the rate-limiting substrate for converting microbial 5-A-RU to 5-OP-RU and that Mānuka honey-derived MGO significantly enhances MAIT cell activation in vitro. Our findings posit a novel mechanism by which intake of a food item, such as Mānuka honey, can potentially support immune homeostasis by enhancing MAIT cell-specific microbial sensing.
Collapse
Affiliation(s)
- Jeffry S Tang
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. mSystems 2020; 5:5/3/e00106-20. [PMID: 32606022 PMCID: PMC7329319 DOI: 10.1128/msystems.00106-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.
Collapse
|
50
|
Brighina S, Restuccia C, Arena E, Palmeri R, Fallico B. Antibacterial activity of 1,2-dicarbonyl compounds and the influence of the in vitro assay system. Food Chem 2020; 311:125905. [DOI: 10.1016/j.foodchem.2019.125905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|