1
|
Solovev AS, Tsarapaev PV, Krylov VB, Yashunsky DV, Kushlinskii NE, Nifantiev NE. A repertoire of anti-mannan Candida albicans antibodies in the blood sera of healthy donors. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
2
|
Yashunsky DV, Dorokhova VS, Komarova BS, Paulovičová E, Krylov VB, Nifantiev NE. Synthesis of biotinylated pentasaccharide structurally related to a fragment of glucomannan from Candida utilis. Russ Chem Bull 2022; 70:2208-2213. [PMID: 35068914 PMCID: PMC8761042 DOI: 10.1007/s11172-021-3334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022]
Abstract
The polysaccharide mannan is the main surface antigen of the cell wall of Candida fungi, playing an important role in the pathogenesis of diseases caused by these mycopathogens. Mannan has a complex, comb-like structure and includes a variety of structural units, with their combination varying depending on the Candida species and strain. Glucomannan, a polysaccharide from Candida utilis, contains terminal α-d-glucose residues attached to oligomannoside side chains. This paper describes the first synthesis of a pentasaccharide structurally related to C. utilis glucomannan fragment, which is an α-(1→2)-linked tetramannoside terminated at the non-reducing end by an α-d-glucopyranosyl residue. The pentasaccharide was obtained as a 3-aminopropyl glycoside, which made it possible to synthesize also its biotinylated derivative, suitable for various glycobiological studies. The most complicated step in the pentasaccharide synthesis was stereoselective 1,2-cis-glycosylation to attach the α-d-glucopyranosyl residue. This was accomplished using a glucosyl donor specially developed in our laboratory, the protecting groups of which provide the necessary α-stereoselectivity. The target biotinylated pentasaccharide thus obtained will be used in the future as a model antigen for the detection of immunodeterminant epitopes of Candida mannans.
Collapse
Affiliation(s)
- D. V. Yashunsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - V. S. Dorokhova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - B. S. Komarova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - E. Paulovičová
- Department of Immunochemistry of Glycoconjugates, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - V. B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - N. E. Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| |
Collapse
|
3
|
Krylov VB, Solovev AS, Puchkin IA, Yashunsky DV, Antonets AV, Kutsevalova OY, Nifantiev NE. Reinvestigation of Carbohydrate Specificity of EBCA-1 Monoclonal Antibody Used for the Detection of Candida Mannan. J Fungi (Basel) 2021; 7:jof7070504. [PMID: 34202579 PMCID: PMC8303853 DOI: 10.3390/jof7070504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
Monoclonal antibody EBCA-1 is used in the sandwich immune assay for the detection of circulating Candida mannan in blood sera samples for the diagnosis of invasive candidiasis. To reinvestigate carbohydrate specificity of EBCA-1, a panel of biotinylated oligosaccharides structurally related to distinct fragments of Candida mannan were loaded onto a streptavidin-coated plate to form a glycoarray. Its use demonstrated that EBCA-1 recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man and not homo-α-(1→2)-linked pentamannoside, as was reported previously.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Ilya A. Puchkin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Anna V. Antonets
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Medical Genetic Center, Rostov-on-Don State Medical University, Nakhichevansky, 29, 344022 Rostov-on-Don, Russia
| | - Olga Y. Kutsevalova
- National Medical Research Center of Oncology, Laboratory of Clinical Microbiology, 14 Liniya Str., 63, 344037 Rostov-on-Don, Russia;
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Correspondence: ; Tel.: +7-499-135-87-84
| |
Collapse
|
4
|
Khatuntseva EA, Nifantiev NE. Glycoconjugate Vaccines for Prevention of Haemophilus influenzae Type b Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:26-52. [PMID: 33776394 PMCID: PMC7980804 DOI: 10.1134/s1068162021010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022]
Abstract
This review summarizes the experience in laboratory- and industrial-scale syntheses of glycoconjugate vaccines used for prevention of infectious diseases caused by Haemophilus influenzae type b bacteria based on the linear capsular polysaccharide poly-3-β-D-ribosyl-(1→1)-D-ribitol-5-phosphate (PRP) or related synthetic oligosaccharide ligands. The methods for preparation of related oligosaccharide derivatives and results of the studies evaluating effect of their length on immunogenic properties of the conjugates with protein carriers are overviewed.
Collapse
Affiliation(s)
- E A Khatuntseva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N E Nifantiev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Martin H, Somers T, Dwyer M, Robson R, Pfeffer FM, Bjornsson R, Krämer T, Kavanagh K, Velasco-Torrijos T. Scaffold diversity for enhanced activity of glycosylated inhibitors of fungal adhesion. RSC Med Chem 2020; 11:1386-1401. [PMID: 34095846 DOI: 10.1039/d0md00224k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is one of the most prevalent fungal pathogens involved in hospital acquired infections. It binds to glycans at the surface of epithelial cells and initiates infection. This process can be blocked by synthetic carbohydrates that mimic the structure of cell surface glycans. Herein we report the evaluation of a series of divalent glycosides featuring aromatic (benzene, squaramide) and bicyclic aliphatic (norbornene) scaffolds, with the latter being the first examples of their kind as small molecule anti-adhesion glycoconjugates. Galactosides 1 and 6, built on an aromatic core, were most efficient inhibitors of adhesion of C. albicans to buccal epithelial cells, displacing up to 36% and 48%, respectively, of yeast already attached to epithelial cells at 138 μM. Remarkably, cis-endo-norbornene 21 performed comparably to benzene-core derivatives. Conformational analysis reveals a preference for compounds 1 and 21 to adopt folded conformations. These results highlight the potential of norbornenes as a new class of aliphatic scaffolds for the synthesis of anti-adhesion compounds.
Collapse
Affiliation(s)
- Harlei Martin
- Department of Chemistry, Maynooth University Maynooth Co. Kildare Ireland
| | - Tara Somers
- Department of Biology, Maynooth University Maynooth Co. Kildare Ireland
| | - Mathew Dwyer
- Department of Biology, Maynooth University Maynooth Co. Kildare Ireland
| | - Ryan Robson
- School of Life and Environmental Sciences, Deakin University Geelong Victoria 3217 Australia
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University Geelong Victoria 3217 Australia
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Tobias Krämer
- Department of Chemistry, Maynooth University Maynooth Co. Kildare Ireland .,The Hamilton Institute, Maynooth University Maynooth Co. Kildare Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University Maynooth Co. Kildare Ireland.,The Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| | - Trinidad Velasco-Torrijos
- Department of Chemistry, Maynooth University Maynooth Co. Kildare Ireland .,The Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| |
Collapse
|
6
|
Chizhov AO, Argunov DA, Gening ML, Sukhova EV, Khatuntseva EA, Karelin AA, Komarova BS, Orekhova MV, Krylov VB, Yasunskii DV, Tsvetkov YE, Nifantiev NE. Gas-Phase Fragmentation Studies of Biotinylated, Hexaethylene Glycol–Spacered Oligosaccharides—Molecular Probes—Using Electrospray Mass Spectrometry on a Hybrid High-Resolution Mass Spectrometer. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934817130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ustyuzhanina NE, Kulakovskaya EV, Kulakovskaya TV, Menshov VM, Dmitrenok AS, Shashkov AS, Nifantiev NE. Mannan and phosphomannan from Kuraishia capsulata yeast. Carbohydr Polym 2017; 181:624-632. [PMID: 29254015 DOI: 10.1016/j.carbpol.2017.11.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Linear mannan and branched phosphomannan were identified as exopolysaccharides produced by Kuraishia capsulata yeast. Their structures were determined using nuclear magnetic resonance spectroscopy. The repeating unit of mannan was found to be a trisaccharide →6)-α-Manp-(1→2)-α-Manp-(1→2)-α-Manp-(1→, while the phosphomannan was shown to be built of β-Manp-(1→2)-α-Manp-(1 disaccharide blocks linked by phosphodiester bonds via C-1 and C-6 of the reducing unit. The production of both polysaccharides was shown to depend on the phosphate concentration in the culture medium. In the absence of phosphate, only mannan was obtained, while an excess of KH2PO4 led to the exclusive production of phosphomannan. Chemical depolymerisation of phosphomannan led to the formation of disaccharide β-Manp-(1→2)-(6-P)-Manp, representing the repeating unit of the hydrolysed polysaccharide. The treatment of the disaccharide with alkaline phosphatase resulted in the formation of disaccharide β-Manp-(1→2)-Manp. The latest products can be transformed into glycosyl donors applicable further in the synthesis of oligosaccharides related to Candida cell wall polysaccharides.
Collapse
Affiliation(s)
- Nadezhda E Ustyuzhanina
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Ekaterina V Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
| | - Tatiana V Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
| | - Vladimir M Menshov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Andrey S Dmitrenok
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Alexander S Shashkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Krylov VB, Paulovičová L, Paulovičová E, Tsvetkov YE, Nifantiev NE. Recent advances in the synthesis of fungal antigenic oligosaccharides. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe driving force for the constant improvement and development of new synthetic methodologies in carbohydrate chemistry is a growing demand for biologically important oligosaccharide ligands and neoglycoconjugates thereof for numerous biochemical investigations such as cell-to-pathogen interactions, immune response, cell adhesion, etc. Here we report our syntheses of the spacer-armed antigenic oligosaccharides related to three groups of the polysaccharides of the fungal cell-wall including α- and β-mannan, α- and β-glucan and galactomannan chains, which include new rationally designed synthetic blocks, efficient solutions for the stereoselective construction of glycoside bonds, and novel strategy for preparation of furanoside-containing oligosaccharides based on recently discovered pyranoside-into-furanoside (PIF) rearrangement.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia,
| |
Collapse
|
9
|
Tsvetkov DE, Sukhova EV, Karelin AA, Tsvetkov YE, Nifantiev NE. Estimation of the degree of conjugation of oligosaccharide haptens to bovine serum albumin in the course of the squarate procedure using gel permeation HPLC. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kurbatova EA, Akhmatova EA, Akhmatova NK, Egorova NB, Yastrebova NE, Sukhova EV, Tsvetkov YE, Yashunsky DV, Nifantiev NE. SYNTHETIC CONJUGATED ANALOGUES OF CAPSULE POLYSACCHARIDES OF PNEUMOCOCCUS - AN INSTRUMENT FOR DETECTION OF POST-VACCINATION ANTIBODIES. ACTA ACUST UNITED AC 2016. [DOI: 10.36233/0372-9311-2016-6-54-60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim. Evaluation of the ability of capsule polysaccharides (CP) of Streptococcus pneumoniae serotype 3 and 14 and their synthetic structure analogues, conjugated with bovine serum albumin (BSA), to detect antibodies in post-vaccination sera of mice. Materials and methods. Oligosaccharides corresponding to one, one and a half and two repeating links of serotype 3 and 14 S. pneumoniae CP were synthesized, their conjugates with BSA were produced by squarate method as well. Ligand content per BSA molecule was controlled by MALDI-TOF spectrometry. Immune sera were obtained after 2 intraperi-toneal administrations to mice of glucoconjugates adsorbed on aluminum hydroxide or 13-valent pneumococcal conjugated vaccine. Determination of levels of post-vaccination class G antibodies and their sub-isotypes was carried out in EIA. Results. Immunization of mice with neoglucoconjugates resulted in formation of predominantly IgGl recognizing serotype 3 and 14 S. pneumoniae CP. IgGl in mice immunized with a 13-valent conjugated vaccine recognized serotype 3 S. pneumoniae CP, but detected serotype 14 S. pneumoniae CP weakly. All the conjugated synthetic oligosaccharides were characterized by a high ability to bind antibodies in blood of mice immunized with the polysaccharide conjugated vaccine. BSA-tetrasaccharide of serotype 3 S. pneumoniae and BSA-tetrasaccharide of serotype 14 S. pneumoniae were characterized by the highest ability to detect IgG 1 against CP. Conclusion. Synthetic oligosaccharides, conjugated with BSA protein-carrier, may be used to develop diagnostic test-systems for determination of antibodies in post-vaccination sera.
Collapse
|
11
|
Blockwise synthesis of a pentasaccharide structurally related to the mannan fragment from the Candida albicans cell wall corresponding to the antigenic factor 6. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1251-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
|
13
|
Karelin AA, Tsvetkov YE, Paulovičová E, Paulovičová L, Nifantiev NE. A Blockwise Approach to the Synthesis of (1→2)-Linked Oligosaccharides Corresponding to Fragments of the Acid-Stable β-Mannan from theCandida albicansCell Wall. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Mallick A, Mallikharjunarao Y, Rajasekaran P, Roy R, Vankar YD. AuIII-Halide/Phenylacetylene-Catalysed Glycosylations Using 1-O-Acetylfuranoses and Pyranose 1,2-Orthoesters as Glycosyl Donors. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Paulovičová L, Paulovičová E, Bystrický S. Immunological basis of anti-Candida vaccines focused on synthetically prepared cell wall mannan-derived manno-oligomers. Microbiol Immunol 2015; 58:545-51. [PMID: 25154867 DOI: 10.1111/1348-0421.12195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/06/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
The increasing incidence of diseases caused by Candida species and complications in individuals with impaired immunity require new strategies for candidiasis treatment and prevention. The available therapies are often of limited effectiveness in immunocompromised patients, resulting in treatment failures, chronic infections and high mortality rates. Research directed at identifying the composition of an effective vaccine is required. Mannan forms the outermost layer of the Candida cell wall and has an essential role in modulation of anti-Candida host immune responses. Therefore, Candida cell wall mannan and synthetically prepared manno-oligomer-based glycoconjugates are the foci of attention in vaccine candidate development. Almost all of the existing human vaccines mediate protection through neutralizing antibodies. Th1-based and/or Th17-based cellular immune responses, rather than antibody-mediated immunity, mediate protection against candidiasis. Findings of published studies indicate that analysis of cellular immune responses as well as antibody responses is necessary when assessing the immunomodulatory properties of manno-oligomer-based glycoconjugates that are potential anti-Candida vaccine candidates.
Collapse
Affiliation(s)
- Lucia Paulovičová
- Institute of Chemistry, Department of Immunochemistry of Glycoconjugates, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
17
|
Varbanets LD. Glycopolymers of microorganisms: Achievements and future research (review). APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Paulovičová E, Paulovičová L, Pilišiová R, Bystrický S, Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. Synthetically prepared glycooligosaccharides mimicking Candida albicans cell wall glycan antigens--novel tools to study host-pathogen interactions. FEMS Yeast Res 2013; 13:659-73. [PMID: 23859640 DOI: 10.1111/1567-1364.12065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 11/29/2022] Open
Abstract
The immunobiological efficacy of synthetically prepared mannooligosaccharides and a glucooligosaccharide mimicking the structure of Candida albicans cell wall glycans was assessed in vivo and in vitro to exploit immune responses. The exposure of mice splenocytes to BSA-based conjugates of synthetic oligomannosides and oligoglucoside revealed intense influence on T-cell subset polarization. The conjugates biased the immune responses towards Th1 and Th17 with respect to the prevalence of interferon-gamma (IFN-γ) and interleukin (IL)-17 (IL-17) over IL-4 and IL-10 levels. The inflammatory activity of the conjugates has been evaluated based on the induction of pro-inflammatory cytokines. Postvaccination, antimannooligosaccharide and antiglucooligosaccharide antisera were subjected to an evaluation of the structure-immunomodulation activity relationship. Clinical isolates of C. albicans CCY 29-3-32 and C. albicans CCY 29-3-164 were applied to study interactions between Candida cells and anti-oligosaccharide antibodies. In situ recognition of parietal oligomannosyl and oligoglucosyl sequences in C. albicans cell wall by the antisera raised against BSA-based conjugates of synthetic oligomannosides and oligoglucoside revealed the effective recognition of specific distribution of natural oligosaccharide sequences in the cell wall of C. albicans serotype A. With respect to these results, it can be concluded that new, synthetically prepared oligosaccharides mimicking Candida cell wall structures represent prospective immunobiologically effective components for further immunopharmacologically relevant Candida vaccine design.
Collapse
Affiliation(s)
- Ema Paulovičová
- Department Immunochemistry of Glycoconjugates, Center of Excellence GLYCOMED, Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Humoral and cell-mediated immunity following vaccination with synthetic Candida cell wall mannan derived heptamannoside-protein conjugate: immunomodulatory properties of heptamannoside-BSA conjugate. Int Immunopharmacol 2012; 14:179-87. [PMID: 22835427 DOI: 10.1016/j.intimp.2012.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
Abstract
Chemically defined glycoprotein conjugate composed of synthetically prepared mannan-derived heptamannoside with terminal β-1,2-linked mannose residue attached to the α-1,3-linked mannose residues and BSA as carrier protein (M7-BSA conjugate) was analysed for the capacity to induce protective humoral immunity and appropriate alteration cellular immunity. To identify protective antigenic structure of Candida cell wall mannan M7-BSA conjugate was used for BALB/c mice immunization. The obtained results were compared with placebo group and with heat-inactivated C. albicans whole cells immunization. The administration route of M7-BSA conjugate secondary booster injection significantly affected the intensity of humoral immune response and the specificity of produced antibodies. All prepared sera were able to elevate candidacidal activity of polymorphonuclear leukocytes (PMN) in cooperation with complement. Moreover, polyclonal sera obtained after secondary subcutaneous (s.c.) booster injection of M7-BSA conjugate were able to induce candidacidal activity of PMN also in complement independent manner. M7-BSA conjugate immunization induced increases of phagocytic activity and respiratory burst of granulocytes, caused a raise of the proportion of CD3(+) T lymphocytes and increased the CD4(+)/CD8(+) T lymphocyte ratio. We observed also an increasing proportion of CD4(+)CD25(+) T cells compared to immunization with heat inactivated whole C. albicans cells, which in turn promoted an increase of the CD8(+)CD25(+) cell proportion. Immunization with M7-BSA conjugate induced Th1, Th2 and Th17 immune responses as indicated by the elevation of relevant cytokines levels. These data provide some insights on the immunomodulatory properties of oligomannosides and contribute to the development of synthetic oligosaccharide vaccines against fungal diseases.
Collapse
|
20
|
General procedure for the synthesis of neoglycoproteins and immobilization on epoxide-modified glass slides. Methods Mol Biol 2012; 808:155-65. [PMID: 22057524 DOI: 10.1007/978-1-61779-373-8_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neoglycoproteins, such as BSA-glycosides, contain carbohydrates covalently attached to a protein carrier via nonnaturally occurring linkages. These conjugates have been used for decades to study carbohydrate-protein interactions and are frequently used as immunogens to raise antibodies to carbohydrate antigens. In fact, neoglycoproteins have been used extensively as vaccine antigens and several have obtained FDA approval. More recently, neoglycoproteins have been used in the construction of glycan arrays to produce "neoglycoprotein microarrays." In this chapter, two methods for preparing neoglycoproteins are described along with methods to immobilize these conjugates on epoxide-coated glass microscope slides to produce arrays.
Collapse
|
21
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
22
|
Model alpha-mannoside conjugates: immunogenicity and induction of candidacidal activity. ACTA ACUST UNITED AC 2009; 58:307-13. [PMID: 20113351 DOI: 10.1111/j.1574-695x.2009.00642.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of Candida cell wall mannan-derived alpha-oligomannoside structural components on the modulation of the immune system and their role in protective immunity are studied here. Semi-synthetic alpha-mannoside-bovine serum albumin conjugates were used for immunization of rabbits. Dimeric alpha-mannoside, representing Candida antigenic factor 1, was used as a model of linear alpha-mannoside, and pentameric alpha-mannoside was used as a model of branched oligomannoside side chain structure. The induction of humoral immune response and the functionality of the serum tested by induction of peripheral blood leukocyte (PBL) candidacidal activity are documented. Anti-Candida albicans serotype B immunoglobulins (IgG and IgM) levels were higher than anti-serotype A following immunization with both conjugates. Dimer-conjugate postimmunization sera evidently enhanced C. albicans killing activity of PBLs in candidacidal assay. The study shows the importance of alpha-mannoside structures in perspective anti-Candida vaccine with a broad spectrum of effectiveness.
Collapse
|
23
|
Karelin AA, Tsvetkov YE, Paulovicová L, Bystrický S, Paulovicová E, Nifantiev NE. Synthesis of 3,6-branched oligomannoside fragments of the mannan from Candida albicans cell wall corresponding to the antigenic factor 4. Carbohydr Res 2009; 345:1283-90. [PMID: 20096401 DOI: 10.1016/j.carres.2009.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/25/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
3-Aminopropyl glycosides of 3,6-branched penta- and hexamannoside fragments of the cell wall mannan from Candida albicans, corresponding to the antigenic factor 4, have been synthesized. Subsequent coupling of both oligosaccharides with BSA using the squarate procedure provided corresponding neoglycoconjugates.
Collapse
Affiliation(s)
- Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|