1
|
Li Y, Wu L, Yong Y, Niu X, Gao Y, Zhou Q, Xie H, Liu X, Li Y, Yu Z, Abd El-Aty AM, Ju X. Enhancing gut barrier integrity: Upregulation of tight junction proteins by chitosan oligosaccharide through the ERK1/2 signaling pathway. Nutrition 2024; 124:112428. [PMID: 38663127 DOI: 10.1016/j.nut.2024.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVES This study aimed to explore the protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced inflammatory responses in IEC-6 cells and dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The cell inflammation model was constructed by LPS in vitro and enteritis model by DSS in vivo. RESULTS Following LPS exposure, IEC-6 cell proliferation significantly decreased, epithelial cell integrity was compromised, and TNF-α and IL-1β levels were increased. However, COS pretreatment reversed these changes. In vivo, DSS-treated mice exhibited evident pathological alterations, including heightened inflammatory levels and significantly decreased expression of tight junction proteins and critical proteins in the Mitogen activated proteins kinase signaling pathway. Nevertheless, COS administration notably reduced inflammatory levels and increased the expression of tight junction proteins and key proteins in the Mitogen activated proteins kinase signaling pathway. CONCLUSIONS Our findings suggest that COS safeguards gut barrier integrity by upregulating tight junction proteins through the ERK1/2 signaling pathway. Therefore, COS has emerged as a promising candidate for novel drug interventions against inflammatory bowel disease.
Collapse
Affiliation(s)
- Yin Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Lianyun Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Yuan Gao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Qiu Zhou
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Huili Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China.
| |
Collapse
|
2
|
Safari S, Barani M, Sadrmohammadi R. "Antimicrobial properties of tissue conditioner modified with chitosan and green-synthesized silver nanoparticles: a promising approach for preventing denture stomatitis". BMC Oral Health 2024; 24:146. [PMID: 38297300 PMCID: PMC10832096 DOI: 10.1186/s12903-024-03880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Chitosan is known to inhibit the growth of many bacteria and fungi. Tissue conditioners are commonly used to prevent bone destruction under dentures. However, over time, these materials can become a suitable substrate for microbial growth. One approach to improving dental materials is the use of nanoparticles. This study examined the antifungal properties of chitosan and green technique-synthesized silver nanoparticles in combination with tissue conditioners. METHODS Tissue conditioner materials were mixed with chitosan and silver nanoparticles at concentrations of 0.097%, 0.19%, and 0.37%, along with 1.25 ppm Nystatin, and their antimicrobial properties against Candida albicans were investigated. The growth rate was measured after 24 h of incubation at 37 °C. Non-parametric tests, such as the Kruskal-Wallis H test and Mann-Whitney U test with Bonferroni correction, were used for data analysis after verifying that the groups did not have a normal distribution. RESULTS Compared with the control and Nystatin groups, the Chitosan-silver groups showed a significant decrease in the number of CFUs of Candida albicans. CONCLUSIONS The combination of chitosan and silver nanoparticles with tissue conditioner materials is a promising alternative for preventing and treating denture stomatitis. These findings suggest that using very small amounts of nanoparticles in dental materials could effectively prevent microbial growth, which could improve the longevity and efficacy of dental prosthetics and materials.
Collapse
Affiliation(s)
- Sina Safari
- Student Research Committee and Department of Prosthodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Roya Sadrmohammadi
- Resident of Department of Prosthodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Amiryaghoubi N, Fathi M, Safary A, Javadzadeh Y, Omidi Y. In situ forming alginate/gelatin hydrogel scaffold through Schiff base reaction embedded with curcumin-loaded chitosan microspheres for bone tissue regeneration. Int J Biol Macromol 2024; 256:128335. [PMID: 38007028 DOI: 10.1016/j.ijbiomac.2023.128335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
In this study, we developed a biocompatible composite hydrogel that incorporates microspheres. This was achieved using a Schiff base reaction, which combines the amino and aldehyde groups present in gelatin (Gel) and oxidized alginate (OAlg). We suggest this hydrogel as a promising scaffold for bone tissue regeneration. To further boost its osteogenic capabilities and mechanical resilience, we synthesized curcumin (Cur)-loaded chitosan microspheres (CMs) and integrated them into the Gel-OAlg matrix. This formed a robust composite gel framework. We conducted comprehensive evaluations of various properties, including gelation time, morphology, compressive strength, rheological behavior, texture, swelling rate, in vitro degradation, and release patterns. A remarkable observation was that the inclusion of 30 mg/mL Cur-CMs significantly enhanced the hydrogel's mechanical and bioactive features. Over three weeks, the Gel-OAlg/Cur-CMs (30) composite showed a cumulative curcumin release of 35.57%. This was notably lower than that observed in standalone CMs and Gel-OAlg hydrogels. Additionally, the Gel-OAlg/Cur-CMs (30) hydrogel presented a reduced swelling rate and weight loss relative to hydrogels devoid of Cur-CMs. On the cellular front, the Gel-OAlg/Cur-CMs (30) hydrogel showcased superior biocompatibility. It also displayed increased calcium deposition, alkaline phosphatase (ALP) activity, and elevated osteogenic gene expression in human bone marrow mesenchymal stem cells (hBMSCs). These results solidify its potential as a scaffold for bone tissue regeneration.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
4
|
Rahmani F, Larbi Bouamrane O, Ben Bouabdallah A, Atanase LI, Hellal A, Apintiliesei AN. Biomimetic Hydroxyapatite Crystals Growth on Phosphorylated Chitosan Films by In Vitro Mineralization Used as Dental Substitute Materials. Polymers (Basel) 2023; 15:polym15112470. [PMID: 37299269 DOI: 10.3390/polym15112470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Chitosan (CS) films exhibit great potential as a substrate for the in vitro mineralization process. In this study, to mimic the formation of nanohydroxyapatite (HAP) as natural tissue, CS films coated with a porous calcium phosphate were investigated using scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). Calcium phosphate coating deposited on phosphorylated derivatives of CS was obtained by a process based on phosphorylation, Ca(OH)2 treatment and artificial saliva solution (ASS) immersion. The phosphorylated CS films (PCS) were obtained by partial hydrolysis of the PO4 functionalities. It was demonstrated that this precursor phase could induce the growth and the nucleation of the porous calcium phosphate coating when immersed in ASS. Moreover, oriented crystals and qualitative control of calcium phosphate phases on CS matrices are obtained in a biomimetic mode. Furthermore, in vitro antimicrobial activity of PCS was evaluated against three species of oral bacteria and fungi. It revealed an increase in antimicrobial activity with minimum inhibition concentration (MIC) values of 0.10% (Candida albicans), 0.05% (Staphylococcus aureus) and 0.025% (Escherichia coli) which proves their possible use as dental substitute materials.
Collapse
Affiliation(s)
- Fathia Rahmani
- Department of Technology, Faculty of Science and Technology, University of Djillali Bounaama, Theniet El Had Street, Khemis-Miliana, Ain Defla 44225, Algeria
- Laboratory for the Processing and Shaping of Fibrous Polymers (LTMFP), M'Hamed Bougara University, Boumerdes 35000, Algeria
| | - Omar Larbi Bouamrane
- Institute of Science, University Center of Tipaza Morseli Abdallah, Oued Merzoug, Tipaza 42022, Algeria
- Laboratory of Natural Substances Valorization (LVSN), Faculty of Science and Technology, University of Djillali Bounaama, Theniet El Had Street, Khemis-Miliana, Ain Defla 44225, Algeria
| | - Amina Ben Bouabdallah
- Laboratory for the Processing and Shaping of Fibrous Polymers (LTMFP), M'Hamed Bougara University, Boumerdes 35000, Algeria
- Department of Process Engineering, Faculty of Technology, University of M'hamed Bougara, Boumerdes 35000, Algeria
- Food Technology Laboratory, University of M'hamed Bougara, Boumerdes 35000, Algeria
| | - Leonard I Atanase
- Faculty of Medical Dentistry, "Apollonia" University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Abdelkader Hellal
- Laboratory of Natural Substances Valorization (LVSN), Faculty of Science and Technology, University of Djillali Bounaama, Theniet El Had Street, Khemis-Miliana, Ain Defla 44225, Algeria
- Chemistry Department, Faculty of Sciences, University of Ferhat Abbas-Sétif-1, Sétif 19137, Algeria
| | | |
Collapse
|
5
|
Vargas-Alfredo N, Munar-Bestard M, Ramis JM, Monjo M. Synthesis and Modification of Gelatin Methacryloyl (GelMA) with Antibacterial Quaternary Groups and Its Potential for Periodontal Applications. Gels 2022; 8:630. [PMID: 36286131 PMCID: PMC9601335 DOI: 10.3390/gels8100630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 09/02/2023] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels have been widely used for different biomedical applications due to their tunable physical characteristics and appropriate biological properties. In addition, GelMA could be modified with the addition of functional groups providing inherent antibacterial capabilities. Here, GelMA-based hydrogels were developed through the combination of a GelMA unmodified and modified polymer with quaternary ammonium groups (GelMAQ). The GelMAQ was synthesized from GelMA with a low degree of substitution of methacrylamide groups (DSMA) and grafted with glycidyltrimethylammonium chloride in the free amine groups of the lysine moieties present in the original gelatin. GelMAs with high DSMA and GelMAQ were combined 50/50% or 25/75% (w/w), respectively, and compared to controls GelMA and GelMA with added chlorhexidine (CHX) at 0.2%. The different hydrogels were characterized using 1H-NMR spectroscopy and swelling behavior and tested in (1) Porphyromonas gingivalis to evaluate their antibacterial properties and (2) human gingival fibroblast to evaluate their cell biocompatibility and regenerative properties. GelMA/GelMAQ 25/75% showed good antibacterial properties but also excellent biocompatibility and regenerative properties toward human fibroblasts in the wound healing assay. Taken together, these results suggest that the modification of GelMA with quaternary groups could facilitate periodontal tissue regeneration, with good biocompatibility and added antibacterial properties.
Collapse
Affiliation(s)
- Nelson Vargas-Alfredo
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Marta Munar-Bestard
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Joana Maria Ramis
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, University Hospital Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Wen J, Niu X, Chen S, Chen Z, Wu S, Wang X, Yong Y, Liu X, Yu Z, Ma X, Abd El-Aty A, Ju X. Chitosan oligosaccharide improves the mucosal immunity of small intestine through activating SIgA production in mice: Proteomic analysis. Int Immunopharmacol 2022; 109:108826. [DOI: 10.1016/j.intimp.2022.108826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
|
7
|
Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri MYM, Asyraf MRM, Sapuan SM, Zainudin ES, Sharma S, Abral H, Asrofi M, Syafri E, Sari NH, Rafidah M, Zakaria SZS, Razman MR, Majid NA, Ramli Z, Azmi A, Bangar SP, Ibrahim R. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers (Basel) 2022; 14:874. [PMID: 35267697 PMCID: PMC8912483 DOI: 10.3390/polym14050874] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.
Collapse
Affiliation(s)
- Rushdan Ahmad Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Humaira Alias Aisyah
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Abu Hassan Nordin
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Norzita Ngadi
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Mohamed Yusoff Mohd Zuhri
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - Salit Mohd Sapuan
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, India;
| | - Hairul Abral
- Department of Mechanical Engineering, Andalas University, Padang 25163, Sumatera Barat, Indonesia;
| | - Mochamad Asrofi
- Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia;
| | - Edi Syafri
- Department of Agricultural Technology, Agricultural Polytechnic, Payakumbuh 26271, West Sumatra, Indonesia;
| | - Nasmi Herlina Sari
- Mechanical Engineering Department, Faculty of Engineering, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia;
| | - Mazlan Rafidah
- Department of Civil Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Sharifah Zarina Syed Zakaria
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Nuriah Abd Majid
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Zuliskandar Ramli
- Institute of the Malay World and Civilisation (ATMA), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Ashraf Azmi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Rushdan Ibrahim
- Pulp and Paper Branch, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia;
| |
Collapse
|
8
|
Gao F, Mi Y, Wu X, Yao J, Qi Q, Chen W, Cao Z. Preparation of quaternized chitosan/Ag composite nanogels in inverse miniemulsions for durable and antimicrobial cotton fabrics. Carbohydr Polym 2022; 278:118935. [DOI: 10.1016/j.carbpol.2021.118935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
|
9
|
Jiang Y, Zhang Y, Zhang H, Zhu R, Hu Y. Synthesis of n‐alkylated quaternary ammonium chitosan and its long‐term antibacterial finish for rabbit hair fabric. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingxue Jiang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Yi Zhang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Hao Zhang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Ruoying Zhu
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Yanli Hu
- School of Textile Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
10
|
Pathak K, Misra SK, Sehgal A, Singh S, Bungau S, Najda A, Gruszecki R, Behl T. Biomedical Applications of Quaternized Chitosan. Polymers (Basel) 2021; 13:polym13152514. [PMID: 34372116 PMCID: PMC8347635 DOI: 10.3390/polym13152514] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
The natural polymer chitosan is the second most abundant biopolymer on earth after chitin and has been extensively explored for preparation of versatile drug delivery systems. The presence of two distinct reactive functional groups (an amino group at C2, and a primary and secondary hydroxyl group at C3 and C6) of chitosan are involved in the transformation of expedient derivatives such as acylated, alkylated, carboxylated, quaternized and esterified chitosan. Amongst these, quaternized chitosan is preferred in pharmaceutical industries owing to its prominent features including superior water solubility, augmented antimicrobial actions, modified wound healing, pH-sensitive targeting, biocompatibility, and biodegradability. It has been explored in a large realm of pharmaceuticals, cosmeceuticals, and the biomedical arena. Immense classy drug delivery systems containing quaternized chitosan have been intended for tissue engineering, wound healing, gene, and vaccine delivery. This review article outlines synthetic techniques, basic characteristics, inherent properties, biomedical applications, and ubiquitous challenges associated to quaternized chitosan.
Collapse
Affiliation(s)
- Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206130, India;
| | - Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Sahuji Maharaj University, Kanpur 208026, India;
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (A.N.); (T.B.)
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
- Correspondence: (A.N.); (T.B.)
| |
Collapse
|
11
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
12
|
Ketoconazole loaded quaternized chitosan nanoparticles-PVA film: preparation and evaluation. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03500-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Jiménez-Gómez CP, Cecilia JA. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020; 25:E3981. [PMID: 32882899 PMCID: PMC7504732 DOI: 10.3390/molecules25173981] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Although chitin is of the most available biopolymers on Earth its uses and applications are limited due to its low solubility. The deacetylation of chitin leads to chitosan. This biopolymer, composed of randomly distributed β-(1-4)-linked D-units, has better physicochemical properties due to the facts that it is possible to dissolve this biopolymer under acidic conditions, it can adopt several conformations or structures and it can be functionalized with a wide range of functional groups to modulate its superficial composition to a specific application. Chitosan is considered a highly biocompatible biopolymer due to its biodegradability, bioadhesivity and bioactivity in such a way this biopolymer displays a wide range of applications. Thus, chitosan is a promising biopolymer for numerous applications in the biomedical field (skin, bone, tissue engineering, artificial kidneys, nerves, livers, wound healing). This biopolymer is also employed to trap both organic compounds and dyes or for the selective separation of binary mixtures. In addition, chitosan can also be used as catalyst or can be used as starting molecule to obtain high added value products. Considering these premises, this review is focused on the structure and modification of chitosan as well as its uses and applications.
Collapse
Affiliation(s)
| | - Juan Antonio Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain;
| |
Collapse
|
14
|
Wang N, Ji Y, Zhu Y, Wu X, Mei L, Zhang H, Deng J, Wang S. Antibacterial effect of chitosan and its derivative on Enterococcus faecalis associated with endodontic infection. Exp Ther Med 2020; 19:3805-3813. [PMID: 32346445 PMCID: PMC7185077 DOI: 10.3892/etm.2020.8656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Chitosan and its derivatives have been increasingly used for bacteriostasis. To date, the effect of chitosan and N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) on Enterococcus faecalis (E. faecalis) associated with endodontic infection has remained to be determined. Chitosan and HTCC were serially diluted with double-distilled water (DDW) or PBS at concentrations of 20-2,500 µg/ml. Various strains of E. faecalis (American Type Tissue Collection no. 29212, as well as isolated strains P25RC and P52Sa) in plankton were adjusted to an optical density at 600 nm of 0.10 and treated with chitosan or HTCC. A colony-forming unit assay was used to determine the concentration of residual bacteria after treatment. Furthermore, E. faecalis biofilms were cultured on coverslips and treated with chitosan or HTCC. The coverslips were rinsed, stained using Live/dead® BacLight™ bacterial viability kit and observed under an inverted fluorescence microscope. In addition, biofilms on dentine blocks were prepared and observed under a scanning electron microscope. MC3T3-E1 pre-osteoblasts were seeded on 96-well plates and treated with chitosan or HTCC at various concentrations. The cytotoxicity of chitosan and HTCC on MC3T3-E1 pre-osteoblasts was detected using a Cell Counting Kit-8 assay after 24, 48 and 72 h of treatment. The results revealed that the final minimum bactericidal concentrations (MBC) of chitosan and HTCC dissolved in DDW were 70 and 140 µg/ml, respectively. Chitosan and HTCC in DDW exerted a significantly greater antibacterial effect as compared with that in PBS (P<0.05). At the MBC, chitosan and HTCC in DDW, but particularly chitosan, had a significant antibacterial effect on E. faecalis biofilm. Chitosan exhibited no cytotoxicity to MC3T3-E1 pre-osteoblasts at a concentration of <625 µg/ml, while HTCC inhibited the proliferation of the cells in the concentration range of 39-10,000 µg/ml. In conclusion, chitosan and HTCC exhibited prominent antibacterial properties on E. faecalis in the planktonic state and as a biofilm via charge interaction, indicating their potential for application in root canal disinfection and fillings.
Collapse
Affiliation(s)
- Nan Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanjing Ji
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanli Zhu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinyi Wu
- Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li Mei
- Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongzhe Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shuai Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
15
|
Effendi M, Fitriani D, Nurmawlidina M. The effect difference of chitosan nanoparticles, chitosan microparticles, and casein phosphopeptide–amorphous calcium phosphate in reducing enamel demineralization. SCIENTIFIC DENTAL JOURNAL 2020. [DOI: 10.4103/sdj.sdj_41_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Shi L, Fang B, Yong Y, Li X, Gong D, Li J, Yu T, Gooneratne R, Gao Z, Li S, Ju X. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway. Carbohydr Polym 2019; 219:269-279. [PMID: 31151525 DOI: 10.1016/j.carbpol.2019.05.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/16/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
The protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharides (LPS) -induced inflammatory responses in IPEC-J2 and in mice with DSS dextran sulfate sodium (DSS) -induced colitis is reported. Upon exposure to LPS, the proliferation rate of IPEC-J2 cells markedly decreased, and epithelial cell integrity was compromised. However, COS pretreatment significantly reduced these changes. Low-concentration (200 μg/mL) COS up-regulated Toll-like receptor 4 (TLR4) and nuclear p65 expression, but inhibited LPS-induced expression of nuclear p65, IL-6, and IL-8. Addition of the TLR4 inhibitor reduced nuclear p65, IL-6, and IL-8 expression in IPEC-J2 cells exposed to COS or LPS alone, and a slight up-regulation in nuclear p65 was observed in COS and LPS co-treated cells. Medium-dose COS (600 mg/kg/d) protected against DSS-induced colitis, in which TLR4 and nuclear p65 expression levels were decreased. We postulate that the prevention of both LPS- and DSS -induced inflammatory responses in IPEC-J2 cells and mice by COS are related to the inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Shi
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China
| | - Biao Fang
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xuewen Li
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Dongliang Gong
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Junyu Li
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Tianyue Yu
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhenhua Gao
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Sidong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China.
| |
Collapse
|
17
|
Ebrahimi N, Soleimani AA, Rashidiani J, Malekafzali B, Abedini F, Hosseinkhani H. Chitosan/Fluoride Nanoparticles for Preventing Dental Caries. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2542579x01666190212150457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: Dental caries is still a major public health problem. The use of fluoride is
one of the most effective ways to prevent tooth decay.
</P><P>
Objective: The purpose of this research was to investigate the effectiveness of fluoride entrapped in
chitosan nanoparticles in vivo.
</P><P>
Methods: Sodium fluoride was loaded in chitosan via ionic gelation of tripolyphosphate nanoparticles.
Characterization of nanoparticles was investigated by using the zeta potential, size of particles,
loading capacities, encapsulation efficiency, and Fourier Transforms Infrared Spectroscopy. Chitosan/
fluoride nanoparticles were fabricated by a method of fluoride/chitosan cross-linking with
tripolyphosphate.
</P><P>
Results: The size of nanoparticles was 219 nm. According to the zeta potential results, by adding
sodium fluoride to chitosan/tripolyphosphate nanoparticles reducing the number of positive charges
of chitosan, the result was diminished zeta potential from +30.8 mV to +14.9 mV. The optimum
drug loading and percentage of entrapment efficiency were 70% and 30% respectively. Fourier
transform infrared spectroscopy confirmed linked among tripolyphosphate, chitosan and fluoride
nanoparticles. In vitro characterization of nanoparticles demonstrated higher fluoride uptake ability
and smooth releasing profile.
</P><P>
Conclusion: It is suggested that fluoride/chitosan nanoparticles synthesized in our study may be a
promising means of delivering fluoride for the early prevention of tooth decay.</P>
Collapse
Affiliation(s)
- Niousha Ebrahimi
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Soleimani
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rashidiani
- Nanobiotechnology Research Centre, Baqhiatollah University of Medical Science, Molla Sadra, Tehran, 1435916471, Iran
| | | | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Hesarak, Karaj, Alborz, Iran
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, United States
| |
Collapse
|
18
|
Zhou J, Xu Q, Fan C, Ren H, Xu S, Hu F, Wang L, Yang K, Ji Q. Characteristics of chitosan-modified glass ionomer cement and their effects on the adhesion and proliferation of human gingival fibroblasts: an in vitro study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:39. [PMID: 30840153 DOI: 10.1007/s10856-019-6240-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
This study explores the possibility of adhering gingival tissue to a root surface that was restored with chitosan (CS)-modified glass ionomer cement (GIC) in the case of gingival recessions associated with root caries, which provides a theoretical basis for clinical application at the cellular level. The specimens were mixed after integrating 1, 2, and 4 wt% CS into the GIC fluid. The characteristics and cytocompatibility were then examined. As more CS was incorporated into the GIC fluid, the mechanical properties and cytocompatibility of chitosan-modified glass ionomer cement (CS-GIC) first improved but then reduced. Under scanning electron microscopy, microcracks were observed on the surface of all materials, but the fewest microcracks were observed on the surface of 2 wt% CS-GIC. The compressive strength of 2 wt% CS-GIC was significantly higher than that of the other groups at 5 days (P < 0.05) and the addition of chitosan didn't change the basic fracture mode of materials. Additionally, the integration 2 wt% CS into GIC can obviously reduce acidity of the original GIC (P < 0.01) when using extracts with concentrations of 100 and 50%. The Cell Counting Kit-8 assay and adhesion and proliferation of human gingival fibroblasts (HGFs) on the surface of the materials indicated that 2 wt% CS-GIC presented better cytocompatibility and was more suitable for the growth of HGFs. In summary, 2 wt% CS-GIC could be considered as a potential root filling material to allow the adhesion and growth of gingival tissue.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Quanchen Xu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Chun Fan
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Hao Ren
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Shuo Xu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Fang Hu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Lei Wang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Kai Yang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China
| | - Qiuxia Ji
- Department of Periodontology, The Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong, China.
| |
Collapse
|
19
|
Şenel M, Ebru Koç F. Controlled release of methylene blue from layer-by-layer assembled chitosan/polyacrylic acid. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1563082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mehmet Şenel
- SANKARA Brain & Biotechnology Research Center, Enter-tech Technocity, Istanbul, Turkey
| | - Fatma Ebru Koç
- Department of Chemical Engineering Faculty of Engineering, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Işılay Özdoğan A, Akca G, Şenel S. Development and in vitro evaluation of chitosan based system for local delivery of atorvastatin for treatment of periodontitis. Eur J Pharm Sci 2018; 124:208-216. [PMID: 30171985 DOI: 10.1016/j.ejps.2018.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 01/13/2023]
Abstract
In recent years, statin group drugs have been widely investigated in treatment of periodontal diseases due to their anti-inflammatory effect. The efficacy of statins can be enhanced by local administration into the periodontal pocket by appropriate delivery systems. The aim of our study was to develop a bioadhesive delivery system for local delivery of atorvastatin in treatment of periodontal disease. For this purpose, gel formulations were prepared using different types of chitosan (base and water soluble) and viscosity, bioadhesivity and syringeability of the gels as well as in vitro drug release properties were investigated vitro. Furthermore, anti-inflammatory effect of the formulations was studied in vitro using tumor necrosis factor (TNF)-alfa induced human gingival fibroblast (hGF) cells. Release of proinflammatory (IL-1β, IL-6, IL-8) and anti-inflammatory (TGF-β1, TGF-β2, TGF-β3, IL-10) cytokines were measured after incubating the hGF cells with the formulations. The viscosity of the formulations was found to be suitable for a local application into periodontal pocket. In presence of drug, bioadhesive property of the formulations was found to increase, and bioadhesion force was within the range, which would retain the delivery system at the application site, subsequently maintain drug levels at desired amount for longer period of time. The release of atorvastatin from the gels was found to be slower than that of the solution. The cytokine levels were found to decrease following application of the formulations, and anti-inflammatory effect was observed to enhance in presence of chitosan. No significant differences were found between base and water-soluble chitosan.
Collapse
Affiliation(s)
- A Işılay Özdoğan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey; Turkish Patent and Trademark Office, Ankara 06560, Turkey
| | - Gülçin Akca
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara 06510, Turkey
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
21
|
Rahmani F, Moghadamnia AA, Kazemi S, Shirzad A, Motallebnejad M. Effect of 0.5% Chitosan mouthwash on recurrent aphthous stomatitis: a randomized double-blind crossover clinical trial. Electron Physician 2018; 10:6912-6919. [PMID: 30034658 PMCID: PMC6049970 DOI: 10.19082/6912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Recurrent aphthous stomatitis (RAS) is one of the most common painful oral lesions of which there is no certain treatment. Objective The aim of this study was to determine the effect of Chitosan mouthwash 0.5% on RAS. Methods This randomized double-blind crossover clinical trial was conducted at a dental school in Babol, Iran, from 2015 to 2016. Twenty patients with a history of minor aphthous stomatitis were entered into this study. All patients were initially monitored in the first episode without treatment, and then were randomly treated in three other episodes with Chitosan, Triamcinolone or Biogel mouthwashes. The ulcer size and pain intensity by using visual analogous score (VAS) were recorded in each episode. Data were analyzed by ANOVA and Tukey test. We used SPSS version 20 to analyze data. Results The mean ulcer size on the fifth day (p=0.026, p=0.042, respectively) and VAS on the third and fifth days (p=0.011, p=0.013, respectively) were significantly less in Triamcinolone and Chitosan groups than Biogel and the no treatment episode. There were no significant differences between Chitosan and Triamcinolone groups in the average ulcer size and pain intensity in all the examination days. Conclusions Chitosan mouthwash is effective on pain relief and reducing ulcer size of minor aphthous stomatitis and this effect is almost the same as Triamcinolone mouthwash. Clinical trial registration The study was registered and approved by Iranian Registry of Clinical Trials (http://www.irct.ir) with IRCT ID: IRCT2015030718753N2. Funding The study was funded by Deputy of Research and Technology of Babol University of Medical Sciences (ref. no.: 9133625).
Collapse
Affiliation(s)
- Fatemeh Rahmani
- DDS of Oral and Maxillofacial Medicine, Avicenna Medical Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Akbar Moghadamnia
- Ph.D. of Pharmacology& Toxicology, Professor, Faculty of Medicine, Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Ph.D. of Pharmaceutics Sciences, Faculty of Medicine, Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Atena Shirzad
- DDS of Oral and Maxillofacial Medicine, Assistant Professor, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Mina Motallebnejad
- DDS of Oral and Maxillofacial Medicine, Professor, Faculty of Dentistry, Oral Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
22
|
Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers (Basel) 2018; 10:polym10020213. [PMID: 30966249 PMCID: PMC6414895 DOI: 10.3390/polym10020213] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.
Collapse
|
23
|
Pavez L, Tobar N, Chacón C, Arancibia R, Martínez C, Tapia C, Pastor A, González M, Martínez J, Smith PC. Chitosan-triclosan particles modulate inflammatory signaling in gingival fibroblasts. J Periodontal Res 2017; 53:232-239. [DOI: 10.1111/jre.12510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 11/30/2022]
Affiliation(s)
- L. Pavez
- Laboratory of Molecular Biology, Institute of Nutrition and Technology; University of Chile; Santiago RM Chile
| | - N. Tobar
- Laboratory of Cell Biology, Institute of Nutrition and Food Technology; University of Chile; Santiago RM Chile
| | - C. Chacón
- Laboratory of Molecular Biology, Institute of Nutrition and Technology; University of Chile; Santiago RM Chile
| | - R. Arancibia
- Dentistry, Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago RM Chile
| | - C. Martínez
- Dentistry, Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago RM Chile
| | - C. Tapia
- Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago RM Chile
| | - A. Pastor
- Department of Sciences, Chemistry Section; Pontificia Universidad Católica del Peru; Lima Peru
| | - M. González
- Laboratory of Molecular Biology, Institute of Nutrition and Technology; University of Chile; Santiago RM Chile
- Bioinformatics and Gene Expression, Institute of Nutrition and Food Technology; University of Chile and Center for Genome Regulation, University of Chile; Santiago RM Chile
| | - J. Martínez
- Laboratory of Cell Biology, Institute of Nutrition and Food Technology; University of Chile; Santiago RM Chile
| | - P. C. Smith
- Dentistry, Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago RM Chile
| |
Collapse
|
24
|
Sahariah P, Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017; 18:3846-3868. [DOI: 10.1021/acs.biomac.7b01058] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Priyanka Sahariah
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Már Másson
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
25
|
Zhou T, Liu X, Sui B, Liu C, Mo X, Sun J. Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. ACTA ACUST UNITED AC 2017; 12:055004. [PMID: 28902637 DOI: 10.1088/1748-605x/aa7b55] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of a guided tissue or bone regeneration (GTR/GBR) membrane with excellent performance has been a major challenge in the biomedical field. The present study was designed to prepare a biomimetic electrospun fish collagen/bioactive glass/chitosan (Col/BG/CS) composite nanofiber membrane and determine its structure, mechanical property, antibacterial activity, and biological effects on human periodontal ligament cells (HPDLCs). The effects of this composite membrane on inducing periodontal tissue regeneration were evaluated using a dog class II furcation defect model. It was found that the composite membrane had a biomimetic structure with good hydrophilicity (the contact angle was 12.83 ± 3°) and a tensile strength of 13.1 ± 0.43 Mpa. Compared to the pure fish collagen membrane, the composite membrane showed some degree of antibacterial activity on Streptococcus mutans. The composite membrane not only enhanced the cell viability and osteogenic gene expression of the HPDLCs, but also promoted the expression of RUNX-2 and OPN protein. Further animal experiments confirmed that the composite membrane was able to promote bone regeneration in the furcation defect of dogs. In conclusion, a biomimetic fish Col/BG/CS composite membrane has been developed in the present study, which can induce tissue regeneration with a certain degree antibacterial activity, providing a basis for potential application as a GTR/GBR membrane.
Collapse
Affiliation(s)
- Tian Zhou
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Xia T. Multifunctional nanotherapeutics for treatment of ocular disease. ANNALS OF EYE SCIENCE 2017; 2:22. [PMID: 30123872 PMCID: PMC6097193 DOI: 10.21037/aes.2017.03.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
28
|
Design, synthesis and antimicrobial activity of 6-N-substituted chitosan derivatives. Bioorg Med Chem Lett 2016; 26:4548-4551. [DOI: 10.1016/j.bmcl.2015.08.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/21/2022]
|
29
|
Huang JF, Zhong J, Chen GP, Lin ZT, Deng Y, Liu YL, Cao PY, Wang B, Wei Y, Wu T, Yuan J, Jiang GB. A Hydrogel-Based Hybrid Theranostic Contact Lens for Fungal Keratitis. ACS NANO 2016; 10:6464-6473. [PMID: 27244244 DOI: 10.1021/acsnano.6b00601] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fungal keratitis, a severe ocular disease, is one of the leading causes of ocular morbidity and blindness, yet it is often neglected, especially in developing countries. Therapeutic efficacy of traditional treatment such as eye drops is very limited due to poor bioavailability, whereas intraocular injection might cause serious side effects. Herein, we designed and fabricated a hybrid hydrogel-based contact lens which comprises quaternized chitosan (HTCC), silver nanoparticles, and graphene oxide (GO) with a combination of antibacterial and antifungal functions. The hydrogel is cross-linked through electrostatic interactions between GO and HTCC, resulting in strong mechanical properties. Voriconazole (Vor), an antifungal drug, can be loaded onto GO which retains the drug and promotes its sustained release from the hydrogel-based contact lenses. The contact lenses also exhibited good antimicrobial functions in view of glycidyltrimethylammonium chloride and silver nanoparticles. The results from in vitro and in vivo experiments demonstrate that contact lenses loaded with Vor have excellent efficacy in antifungal activity in vitro and could significantly enhance the therapeutic effects on a fungus-infected mouse model. The results indicate that this hydrogel contact lenses-based drug delivery system might be a promising therapeutic approach for a rapid and effective treatment of fungal keratitis.
Collapse
Affiliation(s)
- Jian-Fei Huang
- Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University , Guangzhou 510642, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University , Guangzhou 510064, China
| | - Guo-Pu Chen
- Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University , Guangzhou 510642, China
| | - Zuan-Tao Lin
- Department of Biomedical Engineering, University of Houston , Houston, Texas 77204, United States
| | - Yuqing Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University , Guangzhou 510064, China
| | - Yong-Lin Liu
- Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University , Guangzhou 510642, China
| | - Piao-Yang Cao
- Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University , Guangzhou 510642, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University , Guangzhou 510064, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University , Guangzhou 510064, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston , Houston, Texas 77204, United States
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University , Guangzhou 510064, China
| | - Gang-Biao Jiang
- Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
30
|
Croce M, Conti S, Maake C, Patzke GR. Synthesis and screening of N-acyl thiolated chitosans for antibacterial applications. Carbohydr Polym 2016; 151:1184-1192. [PMID: 27474669 DOI: 10.1016/j.carbpol.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
Abstract
Low-molecular weight chitosan-thioglycolic acid has shown significant antibacterial properties against different microorganisms. In order to explore the potential and structure-activity relationships of newly synthesized alkyl thiomers, chitosan has been functionalized with a series of thio-acids with increasing alkyl chain length. All thiomers were characterized with special emphasis on the determination of their degree of deacetylation and substitution, as well as on their molecular weight and amount of thiol groups. The pre-screened chitosan-thiomers were further investigated with plate counting on Pseudomonas aeruginosa, Streptococcus sobrinus and Streptococcus mutans. Furthermore, LIVE/DEAD assays supported the efficiency of chitosan-thiomers against the above microorganisms. All fully characterized chitosan-thiomers showed comparable or enhanced antimicrobial activity compared to pristine chitosan. Our comprehensive approach paves the way to detailed explorations of much sought-after structure activity relationships in the complex chitosan parameter room, starting from correlations between alkyl chain length and antimicrobial activity.
Collapse
Affiliation(s)
- Matteo Croce
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simona Conti
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
31
|
Jazayeri HE, Fahmy MD, Razavi M, Stein BE, Nowman A, Masri RM, Tayebi L. Dental Applications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 2016; 25:510-7. [DOI: 10.1111/jopr.12465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hossein E. Jazayeri
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
- Marquette University School of Dentistry; Milwaukee WI
| | - Mina D. Fahmy
- Marquette University School of Dentistry; Milwaukee WI
| | - Mehdi Razavi
- BCAST, Institute of Materials and Manufacturing; Brunel University London; Uxbridge London UK
- Brunel Institute for Bioengineering; Brunel University London; Uxbridge London UK
| | - Brett E. Stein
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
| | - Aatif Nowman
- Marquette University School of Dentistry; Milwaukee WI
| | - Radi M. Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry; University of Maryland School of Dentistry; Baltimore MD
| | - Lobat Tayebi
- Marquette University School of Dentistry; Milwaukee WI
- Department of Engineering Science; University of Oxford; Oxford UK
| |
Collapse
|
32
|
Mohamed RR, Elella MHA, Sabaa MW. Synthesis, characterization and applications of N- quaternized chitosan/poly(vinyl alcohol) hydrogels. Int J Biol Macromol 2015; 80:149-61. [DOI: 10.1016/j.ijbiomac.2015.06.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 11/28/2022]
|
33
|
Wang Q, Li H, Xiao Y, Li S, Li B, Zhao X, Ye L, Guo B, Chen X, Ding Y, Bao C. Locally controlled delivery of TNFα antibody from a novel glucose-sensitive scaffold enhances alveolar bone healing in diabetic conditions. J Control Release 2015; 206:232-42. [DOI: 10.1016/j.jconrel.2015.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/02/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023]
|
34
|
Kamiński K, Kujdowicz M, Kajta M, Nowakowska M, Szczubiałka K. Enhanced delivery of daidzein into fibroblasts and neuronal cells with cationic derivatives of gamma-cyclodextrin for the control of cellular glycosaminoglycans. Eur J Pharm Biopharm 2015; 91:111-9. [PMID: 25681746 DOI: 10.1016/j.ejpb.2015.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Two cationic derivatives of γ-cyclodextrin (GCD) were synthesized by functionalization with glycidyltrimethylammonium chloride (GTMAC) and ethylenediamine (EDA). Both these derivatives (GCD-GTMAC and GCD-EDA) have been shown to interact strongly with anionic biopolymers, unfractionated heparin (UFH) and mucin, the latter showing their mucoadhesive properties. They form inclusion complexes with daidzein (DAI), an isoflavone displaying a multitude of physiological effects, much more efficiently than the unmodified GCD. It was also shown that the complexes of these GCD derivatives with DAI and Nile Red penetrate human fibroblasts and murine hippocampal neuronal cells indicating that cationic GCD derivatives can be considered as potential delivery systems for isoflavones and other poorly water soluble compounds. Moreover, it was found that DAI delivered in cationic GCD complexes decreased the level of the cellular glycosaminoglycans (GAGs) in normal fibroblasts suggesting their possible application in the control of GAGs in mucopolysaccharidoses, lysosomal storage diseases caused by pathological accumulation of GAGs in the cells.
Collapse
Affiliation(s)
- Kamil Kamiński
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | |
Collapse
|
35
|
Pedro HSDS, Francinalva DDM, Martina GDOP, Julio CQ, Rayanne IMDS, Patricia MB, Daniela PDM, Pollianna MA, Ana CDDM. Antimicrobial potential of chitosan. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2014.7235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Chauhan K, Priya V, Singh P, Chauhan GS, Kumari S, Singhal RK. A green and highly efficient sulfur functionalization of starch. RSC Adv 2015. [DOI: 10.1039/c5ra07332d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An innovative green approach to achieve thiol functionalization of starch with a degree of substitution ≥ 2.
Collapse
Affiliation(s)
| | - Vishal Priya
- Department of Chemistry
- Shoolini University
- Solan 173229
- India
| | - Prem Singh
- Department of Chemistry
- Shoolini University
- Solan 173229
- India
| | | | - Sapana Kumari
- Department of Chemistry
- Himachal Pradesh University
- Shimla 171005
- India
| | | |
Collapse
|
37
|
A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr Polym 2014; 113:240-8. [DOI: 10.1016/j.carbpol.2014.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022]
|
38
|
Costa E, Silva S, Costa M, Pereira M, Campos D, Odila J, Madureira A, Cardelle-Cobas A, Tavaria F, Rodrigues A, Pintado M. Chitosan mouthwash: Toxicity and in vivo validation. Carbohydr Polym 2014; 111:385-92. [DOI: 10.1016/j.carbpol.2014.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/29/2022]
|
39
|
|
40
|
Costa EM, Silva S, Madureira AR, Cardelle-Cobas A, Tavaria FK, Pintado MM. A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro. Carbohydr Polym 2013; 101:1081-6. [PMID: 24299877 DOI: 10.1016/j.carbpol.2013.09.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/18/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Modern dentistry emphasizes the importance of dental plaque control to improve oral health. To that end the development of oral care formulations has been geared toward the incorporation of antiplaque agents that may play a crucial role in oral health maintenance. In later years the research into antiplaque agents has led to the discovery of compounds with significant capability to affect biofilm formation. Among these compounds was chitosan, a polysaccharide which showed great ability to interfere with Streptococcus mutans biofilm formation. As such the aim of this work was to incorporate chitosan into a mouthwash matrix and assess its effect upon biofilm formation of oral microorganisms. This assessment was performed via study of the impact the mouthwash upon microbial adherence, biofilm formation and mature biofilms. Additionally, the action of the chitosan mouthwash was compared with two commercially available mouthwashes. The results here obtained show that only the chitosan containing mouthwash was capable of interfering with all microorganisms' adherence, biofilm formation and mature biofilms while at the same time showing vastly superior activity than both commercial mouthwashes assayed. As such a chitosan mouthwash shows great potential as a natural and efficient alternative to traditional mouthwashes.
Collapse
Affiliation(s)
- E M Costa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
41
|
Champer J, Patel J, Fernando N, Salehi E, Wong V, Kim J. Chitosan against cutaneous pathogens. AMB Express 2013; 3:37. [PMID: 23829873 PMCID: PMC3720194 DOI: 10.1186/2191-0855-3-37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 11/10/2022] Open
Abstract
Propionibacterium acnes and Staphylococcus aureus are cutaneous pathogens that have become increasingly resistant to antibiotics. We sought to determine if chitosan, a polymer of deacetylated chitin, could be used as a potential treatment against these bacteria. We found that higher molecular weight chitosan had superior antimicrobial properties compared to lower molecular weights, and that this activity occurred in a pH dependent manner. Electron and fluorescence microscopy revealed that chitosan forms aggregates and binds to the surface of bacteria, causing shrinkage of the bacterial membrane from the cell wall. Of special relevance, clinical isolates of P. acnes were vulnerable to chitosan, which could be combined with benzoyl peroxide for additive antibacterial effect. Chitosan also demonstrated significantly less cytotoxicity to monocytes than benzoyl peroxide. Overall, chitosan demonstrates many promising qualities for treatment of cutaneous pathogens.
Collapse
Affiliation(s)
- Jackson Champer
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Immunology, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Julie Patel
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nathalie Fernando
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Elaheh Salehi
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Victoria Wong
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jenny Kim
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Dermatology, Greater Los Angeles Healthcare System Veterans Affairs, Los Angeles, CA 90073, USA
| |
Collapse
|
42
|
Lu HW, Nie QL, Liu GQ, He H. Synthesis of Biodegradable Chitosan-Poly(D,L-Lactide) Hybrid Amphiphiles via Ring Opening Graft Polymerization for Efficient Gene Carrier. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2013. [DOI: 10.1080/10601325.2013.792640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4409-15. [PMID: 23910360 DOI: 10.1016/j.msec.2013.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 06/09/2013] [Accepted: 06/23/2013] [Indexed: 11/20/2022]
Abstract
Chitosan was functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid by the coupling of the hydroxyl functional groups of chitosan with carboxylic acid group of the dye by DCC coupling method. The silver nanoparticles were prepared by sol-gel method of nanoparticle synthesis. Silver nanoparticle-encapsulated functionalized chitosan was prepared by the phase transfer method. The products were characterized by FTIR, UV-Vis, fluorescence and NMR spectroscopic methods and by SEM and TEM analysis. The photochemical properties of silver nanoparticle-encapsulated chitosan functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid was studied in detail. The light-fastening properties of the chromophoric system was enhanced when attached to chitosan, and it can be further improved by the encapsulation of silver nanoparticles. The antibacterial analysis of silver nanoparticle-encapsulated functionalized chitosan was carried out against Staphylococcus aureus and Escherichia coli and against fungal species such as Aspergillus flavus and Aspergillus terreus. This study showed that silver nanoparticles-encapsulated functionalized chitosan can be used for antibacterial and antifungal applications.
Collapse
|
44
|
Physicochemical and antibacterial properties of surfactant mixtures with quaternized chitosan microgels. Carbohydr Polym 2013; 93:709-17. [DOI: 10.1016/j.carbpol.2012.12.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/24/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022]
|
45
|
Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan. Carbohydr Polym 2013; 92:824-9. [DOI: 10.1016/j.carbpol.2012.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 11/20/2022]
|
46
|
Dong W, Han B, Shao K, Yang Z, Peng Y, Yang Y, Liu W. Effects of molecular weights on the absorption, distribution and urinary excretion of intraperitoneally administrated carboxymethyl chitosan in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2945-2952. [PMID: 22890521 DOI: 10.1007/s10856-012-4747-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/03/2012] [Indexed: 06/01/2023]
Abstract
Carboxymethyl chitosan (CM-chitosan) is one of water-soluble derivatives of chitosan. Numerous studies have been focused on its applications as pharmaceutical excipient, bioactive reagent and nontoxic drug carrier. Like other polysaccharides, CM-chitosan is inhomogenous in molecular weight. Originations and preparation procedures considerably influence its molecular weight and molecular weight distributions. Understanding the molecular weight related biological behaviour of this inhomogenous glycopolymer in vivo were crucial for the quality control and clinical applications of chitosan and chitosan based medical devices. In this study, we investigated the effects of molecular weights on the absorption, distribution, degradation and urinary excretion of the fluorescein isothiocyanate-labeled CM-chitosan in rats. The results indicated that molecular weight significantly influenced the uptake of CM-chitosan from the lumen of abdomen and blood vessels to peripheral tissues, the distribution of this chemical and urinary excretion after intraperitoneal administration. These findings provided an important reference for the clinical applications of this versatile derivative of chitosan as postsurgical and other biomedical materials and important clues for the exploitation of CM-chitosan based drug targeting and delivery systems.
Collapse
Affiliation(s)
- Wen Dong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wen Y, Tan Z, Sun F, Sheng L, Zhang X, Yao F. Synthesis and characterization of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core–shell nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:2026-2036. [DOI: 10.1016/j.msec.2012.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 04/26/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|
48
|
Costa E, Silva S, Pina C, Tavaria F, Pintado M. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe 2012; 18:305-9. [DOI: 10.1016/j.anaerobe.2012.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/21/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
49
|
Xu C, Lei C, Meng L, Wang C, Song Y. Chitosan as a barrier membrane material in periodontal tissue regeneration. J Biomed Mater Res B Appl Biomater 2012; 100:1435-43. [PMID: 22287502 DOI: 10.1002/jbm.b.32662] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/30/2011] [Accepted: 12/10/2011] [Indexed: 11/07/2022]
Abstract
Periodontal regeneration is defined as regeneration of the tooth-supporting tissues including cementum, periodontal ligament, and alveolar bone. Guided tissue regeneration (GTR) has been demonstrated to be an effective technique to achieve periodontal regeneration. In the GTR procedures, various kinds of membranes play important roles. Chitosan, a deacetylated derivative of chitin, is biocompatible, biodegradable, and antimicrobial. It acts as hydrating agent and possesses tissue healing and osteoinducing effect. Chitosan can be easily processed into membranes, gels, nanofibers, beads, nanoparticles, scaffolds, and sponges forms and can be used in drug delivery systems. Here, we review the bioproperties of chitosan and report the progress of application of chitosan as membranes in GTR and guided bone regeneration (GBR), which indicates that chitosan could be a good substrate candidate as the materials for the GTR/GBR membranes.
Collapse
Affiliation(s)
- Chun Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Zhang LL, Li P, Li YM, Wang AQ. Preparation and characterization of magnetic alginate-chitosan hydrogel beads loaded matrine. Drug Dev Ind Pharm 2011; 38:872-82. [PMID: 22092063 DOI: 10.3109/03639045.2011.630397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study was to use alginate-chitosan (Alg-CS) hydrogel beads for developing an oral water-soluble drug delivery system, occupying pH-sensitive property and superparamagnetic. Matrine as a model drug was loaded in Alg-CS hydrogel beads to study the release character of the delivery system. The amount of matrine released from the beads was relatively low in pH 2.5 over 8 h (34.90%), but nearly all of the initial drug content was released in simulated intestinal fluid (SIF, pH 6.8) within 8 h. The results demonstrated that Alg-CS hydrogel beads possess unique pH-dependent swelling behaviors. In addition, the magnetic beads were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffractometry and vibrating-sample magnetometry. Magnetometer measurements data suggested that Alg-CS beads also had superparamagnetic property as well as fast magnetic response. It can be expected that the beads can deliver and release encapsulated anticancer agent at the tumor by the weak magnetic field, and hence could be potential candidates as an orally administered drug delivery system.
Collapse
|