1
|
Miyagawa A, Yamamoto N, Ohno A, Yamamura H. Preparation of β-1,3-glucan mimics via modification of polymer backbone, and evaluation of cytokine production using the polymer library in immune activation. Int J Biol Macromol 2024; 264:130546. [PMID: 38442833 DOI: 10.1016/j.ijbiomac.2024.130546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
β-1,3-Glucans possess therapeutic potential owing to their ability to exhibit immunostimulating activity. β-1,3-Glucans, isolated from various organisms, differ in their chemical structures, molecular weight, and branching degree, potentially forming particulate, helix, or random coil conformations in water. Therefore, this study used synthesized β-1,3-glucan mimic polymers to investigate the difference in binding affinity for dectin-1 and induced cytokine productions based on polymer structures. The β-1,3-glucan mimic polymers were synthesized using β-1,3-glucan tetrasaccharyl monomer, with subsequent modifications to the polymer backbones through the introduction of hydrogen or a hydroxy group. Polymers with different structures in both ligands and polymer backbones were utilized to comprehensively investigate their binding affinity to dectin-1 and cytokine-inducing in macrophages. Hydroxylated polymers exhibited a high binding affinity for dectin-1, similar to that of schizophyllan, whereas the polymer composed of only saccharyl monomers did not bind to dectin-1. Further, when administered to macrophage RAW264 cells, polymers with branched and hydrophobic polymer backbones exhibited strong cytokine-inducing activities. Moreover, the results revealed that the essential factors for cytokine induction include the branches of β-1,3-glucans, high (tens of thousands) molecular weights, and hydrophobicity. The results suggests that artificial polymers comprising these factors exhibit immunostimulating activity and could be developed as therapeutic agents.
Collapse
Affiliation(s)
- Atsushi Miyagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| | - Nami Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Ayane Ohno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Hatsuo Yamamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
2
|
Ahiadorme D, Ande C, Fernandez-Botran R, Crich D. Synthesis and evaluation of 1,5-dithialaminaribiose and -triose tetravalent constructs. Carbohydr Res 2023; 525:108781. [PMID: 36898263 PMCID: PMC10069760 DOI: 10.1016/j.carres.2023.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
We report the synthesis of novel tetravalent glucoclusters containing 1,5-dithia mimetics of laminaribiose and triose. The new constructs were evaluated for their ability to inhibit anti-CR3 fluorescent staining of human neutrophils, for which they showed moderate affinity. Evaluation of the synthesized glycoclusters for their ability to inhibit anti-Dectin-1 fluorescent staining of mouse macrophages revealed little to no affinity for Dectin-1.
Collapse
Affiliation(s)
- Daniil Ahiadorme
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, United States; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States
| | - Rafael Fernandez-Botran
- Department of Pathology and Laboratory Medicine, University of Louisville, 511 South Floyd Street, Louisville, KY, 40292, United States
| | - David Crich
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, United States; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, United States.
| |
Collapse
|
3
|
Feng X, Li F, Ding M, Zhang R, Shi T, Lu Y, Jiang W. Molecular dynamic simulation: Study on the recognition mechanism of linear β-(1 → 3)-D-glucan by Dectin-1. Carbohydr Polym 2022; 286:119276. [DOI: 10.1016/j.carbpol.2022.119276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/26/2022]
|
4
|
Ross P, Farrell MP. The Road to Structurally Defined β-Glucans. CHEM REC 2021; 21:3178-3193. [PMID: 34010496 PMCID: PMC9109639 DOI: 10.1002/tcr.202100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Indexed: 01/28/2023]
Abstract
β-glucans are polymers of glucose that have been isolated from a variety of organisms. Isolated β-glucans have been used for medical purposes for centuries; however, efforts to define the biological activities of β-glucans experimentally were initiated in the 1940's. The diversity of structure associated with isolated β-glucans has impeded said investigations, and efforts to leverage the biological activity of β-glucans for clinical applications. In recognition of the need for defined β-glucans that retain the biological activity of isolated β-glucans, considerable investment has been made to facilitate the synthesis of structurally defined β-glucans. Here, we review the different approaches that have been applied to prepare β-glucans. In addition, we summarize the approaches that have been utilized to conjugate β-glucans to proteins.
Collapse
Affiliation(s)
- Patrick Ross
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Mark P Farrell
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
5
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Fernandes-Negreiros MM, Batista LANC, Silva Viana RL, Araujo Sabry D, Paiva AAO, Paiva WS, Machado RIA, de Sousa Junior FL, de Lima Pontes D, Vitoriano JDO, Alves Junior C, Lanzi Sassaki G, Rocha HAO. Gallic Acid-Laminarin Conjugate Is a Better Antioxidant than Sulfated or Carboxylated Laminarin. Antioxidants (Basel) 2020; 9:antiox9121192. [PMID: 33260982 PMCID: PMC7759860 DOI: 10.3390/antiox9121192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
A 12.4 kDa laminarin (LM) composed of β(1→3)-glucan with β(1→6)-branches was extracted from brown seaweed Lobophora variegata and modified via carboxylation using dielectric barrier discharge (LMC), conjugation with gallic acid (LMG), and sulfation (LMS). Analyses of the chemical composition of LMC, LMG, and LMS yielded 11.7% carboxyl groups, 1.5% gallic acid, and 1.4% sulfate content, respectively. Antioxidant activities of native and modified laminarins were assessed using six different in vitro methods. Sulfation stopped the antioxidant activities of LM. On the other hand, carboxylation improved cooper chelation (1.2 times). LMG was found to be a more efficient antioxidant agent than LM in terms of copper chelation (1.3 times), reducing power (1.3 times), and total antioxidant capacity (80 times). Gallic acid conjugation was further confirmed using Fourier transform infrared spectroscopy (FT-IR) and one- and two-dimensional NMR spectroscopy analyses. LMG also did not induce cell death or affect the cell cycle of Madin–Darby canine kidney (MDCK) cells. On the contrary, LMG protected MDCK cells from H2O2-induced oxidative damage. Taken together, these results show that LMG has the potent antioxidant capacity, and, therefore, potential applications in pharmacological and functional food products.
Collapse
Affiliation(s)
- Marília Medeiros Fernandes-Negreiros
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Lucas Alighieri Neves Costa Batista
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Rony Lucas Silva Viana
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Diego Araujo Sabry
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | | | - Weslley Souza Paiva
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Raynara Iusk Araujo Machado
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Francimar Lopes de Sousa Junior
- Laboratório de Química de Coordenação e Polímeros-LQCPol, Instituto de Química, Universidade Federal do Rio Grande do Norte—UFRN, Natal-RN 59.078-970, Brazil; (F.L.d.S.J.); (D.d.L.P.)
| | - Daniel de Lima Pontes
- Laboratório de Química de Coordenação e Polímeros-LQCPol, Instituto de Química, Universidade Federal do Rio Grande do Norte—UFRN, Natal-RN 59.078-970, Brazil; (F.L.d.S.J.); (D.d.L.P.)
| | - Jussier de Oliveira Vitoriano
- Centro Integrado de Inovação Tecnológica do Semiárido (CiTED), Universidade Federal Rural do Semi-Árido, Mossoró 59.625-900, Brazil; (J.d.O.V.); (C.A.J.)
| | - Clodomiro Alves Junior
- Centro Integrado de Inovação Tecnológica do Semiárido (CiTED), Universidade Federal Rural do Semi-Árido, Mossoró 59.625-900, Brazil; (J.d.O.V.); (C.A.J.)
| | | | - Hugo Alexandre Oliveira Rocha
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
- Correspondence: ; Tel.: +55-84-99999-9561
| |
Collapse
|
7
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
8
|
Wen P, Větvička V, Crich D. Synthesis and Evaluation of Oligomeric Thioether-Linked Carbacyclic β-(1→3)-Glucan Mimetics. J Org Chem 2019; 84:5554-5563. [PMID: 30933504 DOI: 10.1021/acs.joc.9b00504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extrapolating from lessons learnt with previous low-molecular-weight β-(1→3)-glucan mimetics, we designed a series of minimal 2,4-dideoxy-thioether-linked carbacyclic β-(1→3)-glucan mimetics and synthesized di-, tri-, and tetramers in an enantiomerically pure form by an iterative sequence based on a simple building block readily available from commercial ( S)-(-)-3-cyclohexenecarboxylic acid. These substances were screened for their ability to inhibit anti-CR3-fluorescein isothiocyanate (FITC) staining of human neutrophils and anti-Dectin-1-FITC staining of mouse macrophages as well as for their ability to stimulate phagocytosis and pinocytosis. In each assay, the synthetic compounds displayed comparable activity to the corresponding native β-(1→3)-glucans, laminaritriose, and tetraose, suggesting that the exploitation of hydrophobic patches in the lectin-binding domains of CR3 and Dectin-1 is a promising strategy for the development of small-molecule analogues of β-(1→3)-glucans.
Collapse
Affiliation(s)
- Peng Wen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Václav Větvička
- Department of Pathology , University of Louisville , 323 East Chestnut Street , Louisville , Kentucky 40202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
9
|
Liao X, Větvička V, Crich D. Synthesis and Evaluation of 1,5-Dithia-d-laminaribiose, Triose, and Tetraose as Truncated β-(1→3)-Glucan Mimetics. J Org Chem 2018; 83:14894-14904. [PMID: 30456952 DOI: 10.1021/acs.joc.8b01645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The preparation and characterization of a series of di-, tri-, and tetrasaccharide analogues of β-(1→3)-glucans is described in which each pyranoside ring is replaced by a 5-thiopyranosyl ring and each glycosidic oxygen by a thioether. These oligomeric 1,5-dithio-d-glucopyranose derivatives were shown to inhibit the staining of human neutrophils and of mouse macrophages by fluorescent anti-CR3 and anti-Dectin-1 antibodies, respectively. The compounds were also demonstrated to stimulate phagocytosis and pinocytosis indicative of binding to the carbohydrate binding domains of complement receptor 3 (CR3) and Dectin-1. Activity in all three assays was optimum at the level of the trisaccharide mimic, suggesting that, while the replacement of ethereal oxygens by thioethers results in a greater affinity for the aromatic lined hydrophobic binding pockets, the presence of multiple longer C-S bonds eventually results in a mismatch and a loss of affinity.
Collapse
Affiliation(s)
- Xiaoxiao Liao
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Václav Větvička
- Department of Pathology , University of Louisville , 323 East Chestnut Street , Louisville , Kentucky 40202 , United States
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
10
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
11
|
Tsvetkov YE, Khatuntseva EA, Yashunsky DV, Nifantiev NE. Synthetic β-(1→3)-d-glucooligosaccharides: model compounds for the mechanistic study of β-(1→3)-d-glucan bioactivities and design of antifungal vaccines. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-0969-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Miyagawa A, Matsuda T, Yamamura H. Synthesis of Branched Tetrasaccharide Derivatives of Schizophyllan-like β-Glucan. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1044754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Legentil L, Paris F, Ballet C, Trouvelot S, Daire X, Vetvicka V, Ferrières V. Molecular Interactions of β-(1→3)-Glucans with Their Receptors. Molecules 2015; 20:9745-66. [PMID: 26023937 PMCID: PMC6272582 DOI: 10.3390/molecules20069745] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 12/01/2022] Open
Abstract
β-(1→3)-Glucans can be found as structural polysaccharides in cereals, in algae or as exo-polysaccharides secreted on the surfaces of mushrooms or fungi. Research has now established that β-(1→3)-glucans can trigger different immune responses and act as efficient immunostimulating agents. They constitute prevalent sources of carbons for microorganisms after subsequent recognition by digesting enzymes. Nevertheless, mechanisms associated with both roles are not yet clearly understood. This review focuses on the variety of elucidated molecular interactions that involve these natural or synthetic polysaccharides and their receptors, i.e., Dectin-1, CR3, glycolipids, langerin and carbohydrate-binding modules.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Agaricales/genetics
- Agaricales/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Edible Grain/genetics
- Edible Grain/metabolism
- Gene Expression Regulation
- Glucan 1,3-beta-Glucosidase/genetics
- Glucan 1,3-beta-Glucosidase/immunology
- Glycolipids/immunology
- Glycolipids/metabolism
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Macrophage-1 Antigen/genetics
- Macrophage-1 Antigen/immunology
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Signal Transduction
- Stramenopiles/genetics
- Stramenopiles/metabolism
- beta-Glucans/metabolism
Collapse
Affiliation(s)
- Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| | - Franck Paris
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| | - Caroline Ballet
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| | - Sophie Trouvelot
- INRA, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300, 21065 Dijon Cedex, France.
| | - Xavier Daire
- INRA, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300, 21065 Dijon Cedex, France.
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA.
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| |
Collapse
|
14
|
Marchetti R, Molinaro A, Silipo A. NMR as a Tool to Unveil the Molecular Basis of Glycan-mediated Host–Pathogen Interactions. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nature of the relationship between microbes and hosts spans the broad spectrum from beneficial (symbiosis) to pathogenic (disease); one of the key factors determining the establishment of any type of host–microbe interaction is the pattern of glycoconjugates exposed on cell surfaces, many known as virulence factors since they are pivotal for adhesion to host tissue, immunoevasion and immunosuppression, causing disease in the host. The recognition of these pathogen glycostructures by specific host receptors is an important means of immune defense. In this context, NMR represents a valuable tool to investigate the conformational properties of both host/pathogen signaling molecules and to disclose their interaction at a molecular level. This chapter provides an overview of several protein–carbohydrate interaction systems studied by NMR, and their implications in human and plant diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo Via Cintia 4 I-80126 Napoli Italy
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo Via Cintia 4 I-80126 Napoli Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo Via Cintia 4 I-80126 Napoli Italy
| |
Collapse
|
15
|
Elsaidi HRH, Paszkiewicz E, Bundle DR. Synthesis of a 1,3 β-glucan hexasaccharide designed to target vaccines to the dendritic cell receptor, Dectin-1. Carbohydr Res 2015; 408:96-106. [PMID: 25868116 DOI: 10.1016/j.carres.2015.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/21/2022]
Abstract
Transformation of 3-O-benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose into 2,4,6-tri-O-benzoyl-3-O-benzyl glucopyranosyl imidate proceeded efficiently via crystalline benzyl and per-benzoylated derivatives. This imidate glycosylated di-O-isopropylidene-α-D-glucofuranose in high yield and glycosylation of the disaccharide after removal of the 3'-O-benzyl ether afforded the β1,3 linked trisaccharide in excellent yield. Di- and trisaccharides imidates were readily prepared from the furanose terminated glycosylation products but both were unreactive in glycosylation reaction with the debenzylated di- and trisaccharide alcohols. The 3'-O-benzyl perbenzoylated disaccharide pyranose derivative could be selectively debenzoylated and converted to the corresponding perbenzoylated 4,6:4',6'-di-O-benzylidene derivative. Lewis acid catalyzed glycosidation gave the selectively protected disaccharide ethylthioglycoside in good overall yield. Glycosidation of this thioglycoside donor with 5-methoxycarbonylpentanol gave the disaccharide tether glycoside and after catalytic removal of benzyl ether the resulting disaccharide alcohol was glycosylated by the thioglycoside in a 2+2 reaction to yield a tetrasaccharide. Repetition of selective deprotection of the terminal 3-O-benzyl ether followed by glycosylation by the disaccharide thioglycoside gave a protected hexasaccharide. Hydrogenolysis of this hexasaccharide followed by transesterification and second hydrogenolysis to remove a residual benzyl group gave the target hexasaccharide glycoside 1 as a Dectin-1 ligand functionalized to permit covalent attachment to glycoconjugate vaccines and thereby facilitate improved antigen processing by dendritic cells.
Collapse
Affiliation(s)
- Hassan R H Elsaidi
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Eugenia Paszkiewicz
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - David R Bundle
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
16
|
Descroix K, Jamois F, Yvin JC, Vetvicka V, Ferrières V. β-(1→3)-Glucan-mannitol conjugates: scope and amazing results. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:12. [PMID: 25332988 DOI: 10.3978/j.issn.2305-5839.2014.01.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 11/14/2022]
Abstract
It is well known that β-(1→3)-Glucans present high applicative potential in human health as immunostimulating agents. Numerous studies have highlighted this, but mainly used native polysaccharides extracted from various natural sources. These compounds are therefore inevitably polydisperse but also present structures that are not homogeneous, in an analytical point of view. This is the reason why we have achieved the chemical synthesis of small glucan-mannitol derivatives especially found in brown seaweeds. The targets differ from each other by the nature of the conjunction between the laminaribiose and the mannose or mannitol, i.e., (1→6) or (1→3). We established that (I) these molecules were efficiently obtained from glucose, laminaribiose and/or mannose derivatives; (II) the synthetic plan has to be adapted to the first connection between a glucosyl entity and the mannosyl residue; and (III) resulting pure compounds may be used as the standard for analytical purposes.
Collapse
Affiliation(s)
- Karine Descroix
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Frank Jamois
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Jean-Claude Yvin
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Vaclav Vetvicka
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| | - Vincent Ferrières
- 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France ; 2 Université européenne de Bretagne, France ; 3 Laboratoire Goëmar, ZAC La Madeleine, 35400 Saint Malo, France ; 4 University of Louisville, Department of Pathology, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Sylla B, Legentil L, Saraswat-Ohri S, Vashishta A, Daniellou R, Wang HW, Vetvicka V, Ferrières V. Oligo-β-(1 → 3)-glucans: impact of thio-bridges on immunostimulating activities and the development of cancer stem cells. J Med Chem 2014; 57:8280-92. [PMID: 25268857 DOI: 10.1021/jm500506b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent developments of innovative anticancer therapies are based on compounds likely to stimulate the immune defense of the patients. β-(1 → 3)-Glucans are natural polysaccharides well-known for their immunostimulating properties. We report here on the synthesis of small oligo-β-(1 → 3)-glucans characterized by thioglycosidic linkages. The presence of sulfur atom(s) was not only crucial to prolong in vivo immunoactive activities in time, compared to native polysaccharides, but sulfur atoms also had a direct impact on the development of colorectal cancer stem cells. As a result, a short, pure, and structurally well-defined trisaccharidic thioglucan demonstrated similar activities compared to those of natural laminarin.
Collapse
Affiliation(s)
- Balla Sylla
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ferry A, Malik G, Guinchard X, Vĕtvička V, Crich D. Synthesis and Evaluation of Di- and Trimeric Hydroxylamine-Based β-(1→3)-Glucan Mimetics. J Am Chem Soc 2014; 136:14852-7. [DOI: 10.1021/ja507084t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Angélique Ferry
- Centre
de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Gaëlle Malik
- Centre
de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Centre
de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Václav Vĕtvička
- Department
of Pathology, University of Louisville, 323 East Chestnut Street, Louisville, Kentucky 40202, United States
| | - David Crich
- Department
of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| |
Collapse
|
19
|
Mochizuki S, Morishita H, Adachi Y, Yamaguchi Y, Sakurai K. Binding assay between murine Dectin-1 and β-glucan/DNA complex with quartz-crystal microbalance. Carbohydr Res 2014; 391:1-8. [DOI: 10.1016/j.carres.2014.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/21/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
|
20
|
Alkyl galactofuranosides strongly interact with Leishmania donovani membrane and provide antileishmanial activity. Antimicrob Agents Chemother 2014; 58:2156-66. [PMID: 24468785 DOI: 10.1128/aac.01350-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated the in vitro effects of four alkyl-galactofuranoside derivatives, i.e., octyl-β-D-galactofuranoside (compound 1), 6-amino-β-D-galactofuranoside (compound 2), 6-N-acetamido-β-D-galactofuranoside (compound 3), and 6-azido-β-D-galactofuranoside (compound 4), on Leishmania donovani. Their mechanism of action was explored using electron paramagnetic resonance spectroscopy (EPR) and nuclear magnetic resonance (NMR), and ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Compound 1 showed the most promising effects by inhibiting promastigote growth at a 50% inhibitory concentration (IC50) of 8.96±2.5 μM. All compounds exhibit low toxicity toward human macrophages. Compound 1 had a higher selectivity index than the molecule used for comparison, i.e., miltefosine (159.7 versus 37.9, respectively). EPR showed that compound 1 significantly reduced membrane fluidity compared to control promastigotes and to compound 3. The furanose ring was shown to support this effect, since the isomer galactopyranose had no effect on parasite membrane fluidity or growth. NMR showed a direct interaction of all compounds (greatest with compound 1, followed by compounds 2, 3, and 4, in descending order) with the promastigote membrane and with octyl-galactopyranose and octanol, providing evidence that the n-octyl chain was primarily involved in anchoring with the parasite membrane, followed by the putative crucial role of the furanose ring in the antileishmanial activity. A morphological analysis of compound 1-treated promastigotes by TEM revealed profound alterations in the parasite membrane and organelles, but this was not the case with compound 3. Quantification of annexin V binding by flow cytometry confirmed that compound 1 induced apoptosis in >90% of promastigotes. The effect of compound 1 was also assessed on intramacrophagic amastigotes and showed a reduction in amastigote growth associated with an increase of reactive oxygen species (ROS) production, thus validating its promising effect.
Collapse
|
21
|
NMR study of short β(1-3)-glucans provides insights into the structure and interaction with Dectin-1. Glycoconj J 2013; 31:199-207. [PMID: 24293021 DOI: 10.1007/s10719-013-9510-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
β(1-3)-Glucans, abundant in fungi, have the potential to activate the innate immune response against various pathogens. Although part of the action is exerted through the C-type lectin-like receptor Dectin-1, details of the interaction mechanism with respect to glucan chain-length remain unclear. In this study, we investigated a set of short β(1-3)-glucans with varying degree of polymerization (DP); 3, 6, 7, 16, and laminarin (average DP; 25), analyzing the relationship between the structure and interaction with the C-type lectin-like domain (CTLD) of Dectin-1. The interaction of short β(1-3)-glucans (DP6, DP16, and laminarin) with the CTLD of Dectin-1 was systematically analyzed by (1)H-NMR titration as well as by saturation transfer difference (STD)-NMR. The domain interacted weakly with DP6, moderately with DP16 and strongly with laminarin, the latter plausibly forming oligomeric protein-laminarin complexes. To obtain structural insights of short β(1-3)-glucans, the exchange rates of hydroxy protons were analyzed by deuterium induced (13)C-NMR isotope shifts. The hydroxy proton at C4 of laminarin has slower exchange with the solvent than those of DP7 and DP16, suggesting that laminarin has a secondary structure. Diffusion ordered spectroscopy revealed that none of the short β(1-3)-glucans including laminarin forms a double or triple helix in water. Insights into the interaction of the short β(1-3)-glucans with Dectin-1 CTLD provide a basis to understand the molecular mechanisms of β-glucan recognition and cellular activation by Dectin-1.
Collapse
|
22
|
Gerbst AG, Grachev AA, Yashunsky DV, Tsvetkov YE, Shashkov AS, Nifantiev NE. Theoretical and Experimental Conformational Studies of Oligoglucosides Structurally Related to Fragments of Fungal Cell Wall β-(1→3)-D-Glucan. J Carbohydr Chem 2013. [DOI: 10.1080/07328303.2013.793347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Tanaka H, Kawai T, Adachi Y, Hanashima S, Yamaguchi Y, Ohno N, Takahashi T. Synthesis of β(1,3) oligoglucans exhibiting a Dectin-1 binding affinity and their biological evaluation. Bioorg Med Chem 2012; 20:3898-914. [PMID: 22578491 DOI: 10.1016/j.bmc.2012.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 02/07/2023]
Abstract
In this report, we describe the synthesis and biological evaluation of β(1,3) oligosaccharides that contain an aminoalkyl group and their biological evaluation. A 2,3 diol glycoside with a 4,6 benzylidene protecting group was used as an effective glycosyl acceptor for the synthesis of some β(1,3) linked glycosides. The use of a combination of a linear tetrasaccharide and a branched pentasaccharide as glycosyl donors led to the preparation of β(1,3) linear octa- to hexadecasaccharides and branched nona- to heptadecasaccharides in good total yields. Measurements of the competitive effects of the oligosaccharides on the binding of a soluble form of Dectin-1 to a solid-supported Schizophyllan (SPG) revealed that the branched heptadecasaccharide and the linear hexadecasaccharides also have binding activity for Dectin-1. In addition, the two oligosaccharides, both of which contain a β(1,3) hexadecasaccharide backbone, exhibited agonist activity in a luciferase-assisted NF-κB assay. STD-NMR analyses of complexes of Dectin-1 and the linear hexadecasaccharides clearly indicate Dectin-1 specifically recognizes the sugar part of the oligosaccharides and not the aminoalkyl chain.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-35 Ookayama, Meguro, Tokyo 152-8552, Japan.
| | | | | | | | | | | | | |
Collapse
|