1
|
Shiraishi T, Matsuzaki C, Chiou TY, Kumeta H, Kawada M, Yamamoto K, Takahashi T, Yokota SI. Lipoteichoic acid composed of poly-glycerolphosphate containing l-lysine and involved in immunoglobulin A-inducing activity in Apilactobacillus genus. Int J Biol Macromol 2024; 271:132540. [PMID: 38782319 DOI: 10.1016/j.ijbiomac.2024.132540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Lipoteichoic acid (LTA) in the gram-positive bacterial cell wall acts as an immunomodulatory factor in host cells. The chemical structures vary among bacterial species and strains, and may be related to biological activities. In our previous work, much higher immunoglobulin A (IgA)-inducing activity was observed in cells of the Apilactobacillus genus (Apilactobacillus kosoi 10HT, Apilactobacillus apinorum JCM 30765T, and Apilactobacillus kunkeei JCM 16173T) than other lactic acid bacteria, and their LTA was responsible for the activity. In the present study, we elucidated the chemical structures of LTA from these Apilactobacillus strains to explore the structure-function relationship of the IgA-inducing activity. The 1H-nuclear magnetic resonance spectra suggested that their LTA structures were similar. All have a poly-glycerolphosphate main chain, which comprised 12 to 20 average number of the repeating units, with partial substitutions of glucose(α1-, glucosyl(α1-2)glucose(α1- (α-linked-kojibiose), and l-lysine at the C-2 hydroxy group of the glycerol residue. l-Lysine is a substituent never seen before in LTA, and is a probable characteristic of the Apilactobacillus genus. Removal of l-lysine residue from LTA by mild alkaline treatment decreased IgA induction in murine Peyer's patch experiments. The novel l-lysine residue in Apilactobacillus LTA plays a crucial role in the remarkably high IgA-inducing activity.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan.
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Tai-Ying Chiou
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Manami Kawada
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Wakayama, Wakayama 640-8510, Japan
| | - Tomoya Takahashi
- ARSOA Research & Development Center, Arsoa Keioh Group Corporation, Hokuto, Yamanashi 408-8522, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| |
Collapse
|
2
|
Xing L, Kong F, Wang C, Li L, Peng S, Wang D, Li C. The amelioration of a purified Pleurotus abieticola polysaccharide on atherosclerosis in ApoE -/- mice. Food Funct 2024; 15:79-95. [PMID: 38031758 DOI: 10.1039/d3fo02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In this study, a polysaccharide known as PAPS2 was eluted from Pleurotus abieticola fruiting bodies using 0.1 M NaCl solutions. PAPS2 has a Mw of 19.64 kDa and its backbone is mainly composed of →6)-α-D-Galp-(1→, →6)-β-D-Glcp-(1→ and →2,6)-α-D-Galp-(1→ residues, and its branches mainly end with β-D-Manp-(1→, which is attached at C2 of →2,6)-α-D-Galp-(1→. PAPS2 elicited several effects in high-fat diet (HFD)-fed ApoE-/- mice. It significantly reduced the body weight, liver index, and serum levels of total cholesterol (TC) and triglycerides (TGs), and it alleviated lipid accumulation in the aorta. Intestinal microflora analysis showed that PAPS2 suppressed the abundances of Adlercreutzia, Turicibacter, and Helicobacter and enriched that of Roseburia. It also influenced lipid metabolism, suggesting that it reduced the levels of TGs, lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and ceramide (Cer). Moreover, it suppressed oxidative response by increasing nuclear factor erythroid 2 (Nrf2)-related factor expression and activating the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to reduce the level of reactive oxygen species (ROS). Meanwhile, it showed anti-inflammatory effects partially related to the inhibition of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling induced by lipopolysaccharide (LPS) in RAW 264.7 cells, as well as in the aorta of HFD-fed ApoE-/- mice. This study provides experimental evidence of the auxiliary applicability of PAPS2 in atherosclerosis treatment.
Collapse
Affiliation(s)
- Lei Xing
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Chunxia Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Shichao Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Shiraishi T, Yokota SI. Preparation and Structural Analysis of Lipoteichoic Acid on Cell Membranes Derived from Lactic Acid Bacteria. Methods Mol Biol 2024; 2851:39-60. [PMID: 39210170 DOI: 10.1007/978-1-0716-4096-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gram-positive bacteria, including lactic acid bacteria (LAB), possess lipoteichoic acid (LTA) on the cell surface. LTA is an amphiphilic molecule typically composed of hydrophilic glycerolphosphate polymer and hydrophobic anchor glycolipid moieties. It is involved in physiological properties of the cell surface and also plays roles in interactions with the host. Appropriate preparation procedures, such as extraction and purification, are required to clarify the structure-activity relationship. Structural diversity of LTA has been reported at the bacterial species and strain levels, and structural differences might affect interactions with the host. This chapter introduces techniques for preparation and structural analysis of LTA derived from LAB. It consists of four sections, covering butanol extraction, hydrophobic interaction chromatography, immunoblotting, and structural analysis. Technical notes containing supplemental information about the individual steps are also provided.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Han J, Zhao X, Zhao X, Li P, Gu Q. Insight into the structure, biosynthesis, isolation method and biological function of teichoic acid in different gram-positive microorganisms: A review. Int J Biol Macromol 2023; 253:126825. [PMID: 37696369 DOI: 10.1016/j.ijbiomac.2023.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
5
|
Lacotte PA, Denis-Quanquin S, Chatonnat E, Le Bris J, Leparfait D, Lequeux T, Martin-Verstraete I, Candela T. The absence of surface D-alanylation, localized on lipoteichoic acid, impacts the Clostridioides difficile way of life and antibiotic resistance. Front Microbiol 2023; 14:1267662. [PMID: 37965542 PMCID: PMC10642750 DOI: 10.3389/fmicb.2023.1267662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The dlt operon encodes proteins responsible for the esterification of positively charged D-alanine on the wall teichoic acids and lipoteichoic acids of Gram-positive bacteria. This structural modification of the bacterial anionic surface in several species has been described to alter the physicochemical properties of the cell-wall. In addition, it has been linked to reduced sensibilities to cationic antimicrobial peptides and antibiotics. Methods We studied the D-alanylation of Clostridioides difficile polysaccharides with a complete deletion of the dltDABCoperon in the 630 strain. To look for D-alanylation location, surface polysaccharides were purified and analyzed by NMR. Properties of the dltDABCmutant and the parental strains, were determined for bacterial surface's hydrophobicity, motility, adhesion, antibiotic resistance. Results We first confirmed the role of the dltDABCoperon in D-alanylation. Then, we established the exclusive esterification of D-alanine on C. difficile lipoteichoic acid. Our data also suggest that D-alanylation modifies the cell-wall's properties, affecting the bacterial surface's hydrophobicity, motility, adhesion to biotic and abiotic surfaces,and biofilm formation. In addition, our mutant exhibitedincreased sensibilities to antibiotics linked to the membrane, especially bacitracin. A specific inhibitor DLT-1 of DltA reduces the D-alanylation rate in C. difficile but the inhibition was not sufficient to decrease the antibiotic resistance against bacitracin and vancomycin. Conclusion Our results suggest the D-alanylation of C. difficile as an interesting target to tackle C. difficile infections.
Collapse
Affiliation(s)
- Pierre-Alexandre Lacotte
- Micalis Institute, Université Paris-Saclay, INRAE AgroParisTech, Jouy-en-Josas, France
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | | | - Eva Chatonnat
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Julie Le Bris
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
| | - David Leparfait
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR6507, ENSICAEN, UNICAEN, CNRS, Caen, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR6507, ENSICAEN, UNICAEN, CNRS, Caen, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
6
|
Malet-Villemagne J, Yucheng L, Evanno L, Denis-Quanquin S, Hugonnet JE, Arthur M, Janoir C, Candela T. Polysaccharide II Surface Anchoring, the Achilles' Heel of Clostridioides difficile. Microbiol Spectr 2023; 11:e0422722. [PMID: 36815772 PMCID: PMC10100865 DOI: 10.1128/spectrum.04227-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family. This anchoring, important for growth, was reported as essential for some bacteria such as Bacillus subtilis, but the reason why CWGP anchoring is essential remains unknown. We studied LcpA and LcpB of Clostridioides difficile and showed that they have a redundant activity. To delete both lcp genes, we set up the first conditional-lethal mutant method in C. difficile and showed that polysaccharide II (PSII) anchoring at the bacterial surface is essential for C. difficile survival. In the conditional-lethal mutant, C. difficile morphology was impaired, suggesting that peptidoglycan synthesis was affected. Because Lcp proteins are transferring CWPGs from the C55-undecaprenyl phosphate (also needed in the peptidoglycan synthesis process), we assumed that there was competition between PSII and peptidoglycan synthesis pathways. We confirmed that UDP-MurNAc-pentapeptide precursor was accumulated, showing that peptidoglycan synthesis was blocked. Our results provide an explanation for the essentiality of PSII anchoring in C. difficile and suggest that the essentiality of the anchoring of CWPGs in other bacteria can also be explained by the blocking of peptidoglycan synthesis. To conclude, our results suggest that Lcps are potential new targets to combat C. difficile infection. IMPORTANCE Cell wall glycopolymers (CWGPs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. CWGP anchoring to peptidoglycan is important for growth and virulence. We set up the first conditional-lethal mutant method in Clostridioides difficile to study LcpA and LcpB involved in the anchoring of CWPGs to peptidoglycan. This study offers new tools to reveal the role of essential genes in C. difficile. LcpA and LcpB activity was shown to be essential, suggesting that they are potential new targets to combat C. difficile infection. In this study, we also showed that there is competition between the polysaccharide II synthesis pathway and peptidoglycan synthesis that probably exists in other Gram-positive bacteria. A better understanding of these mechanisms allows us to define the Lcp proteins as a therapeutic target for potential design of novel antibiotics against pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Liang Yucheng
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, Orsay, France
| | | | - Jean-Emmanuel Hugonnet
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Michel Arthur
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
7
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
8
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Serum IgM antibody response to Clostridioides difficile polysaccharide PS-II vaccination in pony foals. Anaerobe 2022; 77:102635. [PMID: 36064161 DOI: 10.1016/j.anaerobe.2022.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Clostridioides difficile (formerly Clostridium difficile) is associated with colitis in foals and mature horses. C. difficile exposes specific phosphorylated polysaccharides (PSs), named PS-I, PS-II and PS-III. These cell-surface PSs are potential vaccine targets, especially the hexasaccharide phosphate PS-II, that has been found in all C. difficile ribotypes examined. Since we previously identified anti-PS-II circulating antibodies in horses, we postulated that vaccinating foals with PS-II may prevent colonization by C. difficile. In this study, we aim to evaluate the IgM antibody responses in foals to PS-II. METHODS To evaluate the reactogenicity and immunogenicity of C. difficile PS-II in foals, three-to four-month-old foals were vaccinated intramuscularly three times at intervals of three weeks with 100 μg/dose (3 foals) or 500 μg/dose (3 foals) of purified PS-II antigen with aluminum hydroxide adjuvant, or with a placebo preparation (2 foals) containing adjuvant alone. RESULTS No injection site swelling, pain or fever was observed after vaccination. Two of the three foals receiving 100 μg/dose, and three out of three foals receiving 500 μg/dose of PS-II responded with increases in serum IgM antibodies. No control foals that received the placebo had IgM responses to PS-II. There was a trend towards a higher response rate in foals receiving 500 μg PS-II one week after second vaccination when compared to control foals and towards higher concentrations of serum IgM antibodies in foals receiving 500 μg PS-II. CONCLUSIONS No adverse reactions were observed following vaccination with PS-II in foals; Serum IgM immune responses were induced by vaccination. A polysaccharide-based vaccine for C. difficile in horses deserves further investigation.
Collapse
|
10
|
Anwar F, Vedantam G. Surface-displayed glycopolymers of Clostridioides difficile. Curr Opin Microbiol 2022; 66:86-91. [DOI: 10.1016/j.mib.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
11
|
Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021; 12:682111. [PMID: 34177868 PMCID: PMC8225356 DOI: 10.3389/fmicb.2021.682111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Collapse
Affiliation(s)
- Madita Brauer
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juliane Hoyer
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susanne Sievers
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Seeberger PH. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem Rev 2021; 121:3598-3626. [PMID: 33794090 PMCID: PMC8154330 DOI: 10.1021/acs.chemrev.0c01210] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.
Collapse
|
13
|
Kaus GM, Snyder LF, Müh U, Flores MJ, Popham DL, Ellermeier CD. Lysozyme Resistance in Clostridioides difficile Is Dependent on Two Peptidoglycan Deacetylases. J Bacteriol 2020; 202:e00421-20. [PMID: 32868404 PMCID: PMC7585060 DOI: 10.1128/jb.00421-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides (Clostridium) difficile is a major cause of hospital-acquired infections leading to antibiotic-associated diarrhea. C. difficile exhibits a very high level of resistance to lysozyme. Bacteria commonly resist lysozyme through modification of the cell wall. In C. difficile, σV is required for lysozyme resistance, and σV is activated in response to lysozyme. Once activated, σV, encoded by csfV, directs transcription of genes necessary for lysozyme resistance. Here, we analyze the contribution of individual genes in the σV regulon to lysozyme resistance. Using CRISPR-Cas9-mediated mutagenesis we constructed in-frame deletions of single genes in the csfV operon. We find that pdaV, which encodes a peptidoglycan deacetylase, is partially responsible for lysozyme resistance. We then performed CRISPR inhibition (CRISPRi) to identify a second peptidoglycan deacetylase, encoded by pgdA, that is important for lysozyme resistance. Deletion of either pgdA or pdaV resulted in modest decreases in lysozyme resistance. However, deletion of both pgdA and pdaV resulted in a 1,000-fold decrease in lysozyme resistance. Further, muropeptide analysis revealed that loss of either PgdA or PdaV had modest effects on peptidoglycan deacetylation but that loss of both PgdA and PdaV resulted in almost complete loss of peptidoglycan deacetylation. This suggests that PgdA and PdaV are redundant peptidoglycan deacetylases. We also used CRISPRi to compare other lysozyme resistance mechanisms and conclude that peptidoglycan deacetylation is the major mechanism of lysozyme resistance in C. difficileIMPORTANCEClostridioides difficile is the leading cause of hospital-acquired diarrhea. C. difficile is highly resistant to lysozyme. We previously showed that the csfV operon is required for lysozyme resistance. Here, we used CRISPR-Cas9 mediated mutagenesis and CRISPRi knockdown to show that peptidoglycan deacetylation is necessary for lysozyme resistance and is the major lysozyme resistance mechanism in C. difficile We show that two peptidoglycan deacetylases in C. difficile are partially redundant and are required for lysozyme resistance. PgdA provides an intrinsic level of deacetylation, and PdaV, encoded by a part of the csfV operon, provides lysozyme-induced peptidoglycan deacetylation.
Collapse
Affiliation(s)
- Gabriela M Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lindsey F Snyder
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matthew J Flores
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Craig D Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Cox AD, St Michael F, Aubry A, Strong PCR, Hayes AC, Logan SM. Comparison of polysaccharide glycoconjugates as candidate vaccines to combat Clostridiodes (Clostridium) difficile. Glycoconj J 2020; 38:493-508. [PMID: 32789783 DOI: 10.1007/s10719-020-09937-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Two known Clostridiodes (Clostridium) difficile surface antigens, a lipoteichoic acid (LTA) and a polysaccharide (PS-II) were isolated and purified in order to prepare glycoconjugate vaccines to the carrier protein human serum albumin utilising a reductive amination strategy. Mice and rabbits were immunized with a prime and two boost strategy and the resulting sera were examined for their ability to recognise the purified homologous antigens and subsequently killed whole cells of C. difficile strains and other Clostridia species. Immunisation derived antisera from rabbits and mice, recognised all strains of C. difficile vegetative cells examined, with generally similar titers from animals that received the LTA or the PS-II conjugates. Sera raised to the LTA conjugates were able to recognise other Clostridia species C. butyricum, C. bifermentans and C. subterminale whereas sera raised to the PS-II conjugates were not. These LTA and PS-II sera recognised live cells in an immunofluorescence assay and were also able to recognise the spore form of the bacterium. This study has confirmed that the LTA and PS-II polysaccharides are both highly conserved surface polymers of C. difficile that are easily accessible to the immune system and as such may have potential as vaccine antigens or as targets for therapeutics to combat C. difficile infection.
Collapse
Affiliation(s)
- A D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| | - F St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - A Aubry
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - P C R Strong
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - A C Hayes
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - S M Logan
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
15
|
Cairns CM, van Faassen H, St. Michael F, Aubry A, Henry KA, Rossotti MA, Logan SM, Hussack G, Gisch N, Hogendorf WFJ, Pedersen CM, Cox AD. Development and Characterization of Mouse Monoclonal Antibodies Specific for Clostridiodes (Clostridium) difficile Lipoteichoic Acid. ACS Chem Biol 2020; 15:1050-1058. [PMID: 32191024 DOI: 10.1021/acschembio.0c00066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clostridiodes (Clostridium) difficile is an anaerobic Gram-positive, spore-forming nosocomial, gastrointestinal pathogen causing C. difficile-associated disease with symptoms ranging from mild cases of antibiotic-associated diarrhea to fatal pseudomembranous colitis. We developed murine monoclonal antibodies (mAbs) specific for a conserved cell surface antigen, lipoteichoic acid (LTA)of C. difficile. The mAbs were characterized in terms of their thermal stability, solubility, and their binding to LTA by surface plasmon resonance and competitive ELISA. Synthetic LTA molecules were prepared in order to better define the minimum epitope required to mimic the natural antigen, and three repeat units of the polymer were required for optimal recognition. One of the murine mAbs was chimerized with human constant region domains and was found to recognize the target antigen identically to the mouse version. These mAbs may be useful as therapeutics (standalone, in conjunction with known antitoxin approaches, or as delivery vehicles for antibody drug conjugates targeting the bacterium), as diagnostic agents, and in infection control applications.
Collapse
Affiliation(s)
- Chantelle M. Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Henk van Faassen
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St. Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Annie Aubry
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Kevin A. Henry
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Martin A. Rossotti
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Susan M. Logan
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Greg Hussack
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | | | | | - Andrew D. Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
16
|
Ma Z, Zhang GL, Gadi MR, Guo Y, Wang P, Li L. Clostridioides difficile cd2775 Encodes a Unique Mannosyl-1-Phosphotransferase for Polysaccharide II Biosynthesis. ACS Infect Dis 2020; 6:680-686. [PMID: 32073825 DOI: 10.1021/acsinfecdis.9b00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clostridioides difficile (C. difficile) is the leading cause of antibiotic-induced bacterial colitis and life-threatening diarrhea worldwide. The commonly existing anionic polysaccharide II (PSII) is responsible for protein anchoring involved in colonization, and the gene cd2775 located in its biosynthesis gene cluster is essential for bacterial growth. Herein, we demonstrated that cd2775 encodes a novel mannosyl-1-phosphotransferase (ManPT) responsible for the phosphorylation of PSII. Unlike typical mannosyltransferases, CD2775 transfers mannose-α1-phosphate instead of mannose from guanosine 5'-diphospho-d-mannose to disaccharide acceptors, forming a unique mannose-α1-phosphate-6-glucose linkage. The enzyme was overexpressed in E. coli and purified for biochemical characterization and substrate specificity study. It is found that CD2775 possesses a strict acceptor specificity toward Glc-β1,3-GalNAc-diphospho-lipids but extreme promiscuity toward various sugar donors. This is the first report of a ManPT in all living systems. Given its essentiality in C. difficile growth, CD2775 can be a promising target for therapeutics development.
Collapse
Affiliation(s)
- Zhongrui Ma
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, Georgia 30303, United States
| | - Gao-Lan Zhang
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, Georgia 30303, United States
| | - Yuxi Guo
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, Georgia 30303, United States
| | - Peng Wang
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, Georgia 30303, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, Georgia 30303, United States
| |
Collapse
|
17
|
Broecker F, Wegner E, Seco BMS, Kaplonek P, Bräutigam M, Ensser A, Pfister F, Daniel C, Martin CE, Mattner J, Seeberger PH. Synthetic Oligosaccharide-Based Vaccines Protect Mice from Clostridioides difficile Infections. ACS Chem Biol 2019; 14:2720-2728. [PMID: 31692324 PMCID: PMC6929054 DOI: 10.1021/acschembio.9b00642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Infections with Clostridioides difficile (formerly Clostridium difficile) have increased
in incidence, morbidity,
and mortality over the past decade. Preventing infections is becoming
increasingly important, as frontline antibiotics become less effective
and frequently induce recurrence by disrupting intestinal microbiota.
The clinically most advanced vaccine approaches prevent symptoms once C. difficile infection is established by inducing immunity
to secreted clostridial cytotoxins. However, they do not inhibit bacterial
colonization and thereby favor asymptomatic carriage. Synthetic oligosaccharides
resembling the C. difficile surface glycans PS-I,
PS-II, and PS-III are immunogenic and serve as basis for colonization-preventing
vaccines. Here, we demonstrate that glycoconjugate vaccine candidates
based on synthetic oligosaccharides protected mice from infections
with two different C. difficile strains. Four synthetic
antigens, ranging in size from disaccharides to hexasaccharides, were
conjugated to CRM197, which is a carrier protein used in
commercial vaccines. The vaccine candidates induced glycan-specific
antibodies in mice and substantially limited C. difficile colonization and colitis after experimental infection. The glycoconjugates
ameliorated intestinal pathology more substantially than a toxin-targeting
vaccine. Colonization of the gut by C. difficile was
selectively inhibited while intestinal microbiota remained preserved.
Passive transfer experiments with anti-PS-I serum revealed that protection
is mediated by specific antiglycan antibodies; however, cell-mediated
immunity likely also contributed to protection in vivo. Thus, glycoconjugate vaccines against C. difficile are a complementary approach to toxin-targeting strategies and are
advancing through preclinical work.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Erik Wegner
- Mikrobiologisches Institut−Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bruna M. S. Seco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Paulina Kaplonek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Maria Bräutigam
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Armin Ensser
- Virologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frederick Pfister
- Department of Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher E. Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut−Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
18
|
The Ser/Thr Kinase PrkC Participates in Cell Wall Homeostasis and Antimicrobial Resistance in Clostridium difficile. Infect Immun 2019; 87:IAI.00005-19. [PMID: 31085703 DOI: 10.1128/iai.00005-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile is the leading cause of antibiotic-associated diarrhea in adults. During infection, C. difficile must detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC of C. difficile is an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion of prkC affects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkC mutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkC mutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkC mutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority of C. difficile proteins associated with the cell wall were less abundant in the ΔprkC mutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkC mutant had a colonization delay that did not significantly affect overall virulence.
Collapse
|
19
|
Adamo R. Vaccinology Gets Help from Chemistry. Cell Chem Biol 2019; 23:1047-1048. [PMID: 27662251 DOI: 10.1016/j.chembiol.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recent report on the immunological activity of protein conjugates of synthetic lipoteicoic fragments from Clostridium difficile underpins the use of these molecules for the development of a vaccine. In a recent issue of Cell Chemical Biology, Broecker et al. (2016) illustrate the utility of glycoarray-based selection of bacterial carbohydrates with the potential to become vaccine candidates.
Collapse
|
20
|
Dubois T, Tremblay YDN, Hamiot A, Martin-Verstraete I, Deschamps J, Monot M, Briandet R, Dupuy B. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. NPJ Biofilms Microbiomes 2019; 5:14. [PMID: 31098293 PMCID: PMC6509328 DOI: 10.1038/s41522-019-0087-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a major cause of nosocomial infections. Bacterial persistence in the gut is responsible for infection relapse; sporulation and other unidentified mechanisms contribute to this process. Intestinal bile salts cholate and deoxycholate stimulate spore germination, while deoxycholate kills vegetative cells. Here, we report that sub-lethal concentrations of deoxycholate stimulate biofilm formation, which protects C. difficile from antimicrobial compounds. The biofilm matrix is composed of extracellular DNA and proteinaceous factors that promote biofilm stability. Transcriptomic analysis indicates that deoxycholate induces metabolic pathways and cell envelope reorganization, and represses toxin and spore production. In support of the transcriptomic analysis, we show that global metabolic regulators and an uncharacterized lipoprotein contribute to deoxycholate-induced biofilm formation. Finally, Clostridium scindens enhances biofilm formation of C. difficile by converting cholate into deoxycholate. Together, our results suggest that deoxycholate is an intestinal signal that induces C. difficile persistence and may increase the risk of relapse.
Collapse
Affiliation(s)
- Thomas Dubois
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Present Address: INRA, UMR UMET, Villeneuve d’Ascq, France
| | - Yannick D. N. Tremblay
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Audrey Hamiot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Present Address: INRA, UMR UMET, Villeneuve d’Ascq, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Deschamps
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Romain Briandet
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
21
|
Larrouy-Maumus G. Lipids as Biomarkers of Cancer and Bacterial Infections. Curr Med Chem 2019; 26:1924-1932. [PMID: 30182838 DOI: 10.2174/0929867325666180904120029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
Lipids are ubiquitous molecules, known to play important roles in various cellular processes. Alterations to the lipidome can therefore be used as a read-out of the signs of disease, highlighting the importance to consider lipids as biomarkers in addition of nucleic acid and proteins. Lipids are among the primary structural and functional constituents of biological tissues, especially cell membranes. Along with membrane formation, lipids play also a crucial role in cell signalling, inflammation and energy storage. It was shown recently that lipid metabolism disorders play an important role in carcinogenesis and development. As well, the role of lipids in disease is particularly relevant for bacterial infections, during which several lipid bacterial virulence factors are recognized by the human innate immune response, such as lipopolysaccharide in Gram-negative bacteria, lipoteichoic acid in Gram-positive bacteria, and lipoglycans in mycobacteria. Compared to nucleic acids and proteins, a complete analysis of the lipidome, which is the comprehensive characterization of different lipid families, is usually very challenging due to the heterogeneity of lipid classes and their intrinsic physicoproperties caused by variations in the constituents of each class. Understanding the chemical diversity of lipids is therefore crucial to understanding their biological relevance and, as a consequence, their use as potential biomarkers for non-infectious and infectious diseases. This mini-review exposes the current knowledge and limitations of the use of lipids as biomarkers of the top global killers which are cancer and bacterial infections.
Collapse
Affiliation(s)
- Gerald Larrouy-Maumus
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
23
|
Poquet I, Saujet L, Canette A, Monot M, Mihajlovic J, Ghigo JM, Soutourina O, Briandet R, Martin-Verstraete I, Dupuy B. Clostridium difficile Biofilm: Remodeling Metabolism and Cell Surface to Build a Sparse and Heterogeneously Aggregated Architecture. Front Microbiol 2018; 9:2084. [PMID: 30258415 PMCID: PMC6143707 DOI: 10.3389/fmicb.2018.02084] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is an opportunistic entero-pathogen causing post-antibiotic and nosocomial diarrhea upon microbiota dysbiosis. Although biofilms could contribute to colonization, little is known about their development and physiology. Strain 630Δerm is able to form, in continuous-flow micro-fermentors, macro-colonies and submersed biofilms loosely adhesive to glass. According to gene expression data, in biofilm/planktonic cells, central metabolism is active and fuels fatty acid biosynthesis rather than fermentations. Consistently, succinate is consumed and butyrate production is reduced. Toxin A expression, which is coordinated to metabolism, is down-regulated, while surface proteins, like adhesins and the primary Type IV pili subunits, are over-expressed. C-di-GMP level is probably tightly controlled through the expression of both diguanylate cyclase-encoding genes, like dccA, and phosphodiesterase-encoding genes. The coordinated expression of genes controlled by c-di-GMP and encoding the putative surface adhesin CD2831 and the major Type IV pilin PilA1, suggests that c-di-GMP could be high in biofilm cells. A Bacillus subtilis SinR-like regulator, CD2214, and/or CD2215, another regulator co-encoded in the same operon as CD2214, control many genes differentially expressed in biofilm, and in particular dccA, CD2831 and pilA1 in a positive way. After growth in micro-titer plates and disruption, the biofilm is composed of robust aggregated structures where cells are embedded into a polymorphic material. The intact biofilm observed in situ displays a sparse, heterogeneous and high 3D architecture made of rods and micro-aggregates. The biofilm is denser in a mutant of both CD2214 and CD2215 genes, but it is not affected by the inactivation of neither CD2831 nor pilA1. dccA, when over-expressed, not only increases the biofilm but also triggers its architecture to become homogeneous and highly aggregated, in a way independent of CD2831 and barely dependent of pilA1. Cell micro-aggregation is shown to play a major role in biofilm formation and architecture. This thorough analysis of gene expression reprogramming and architecture remodeling in biofilm lays the foundation for a deeper understanding of this lifestyle and could lead to novel strategies to limit C. difficile spread.
Collapse
Affiliation(s)
- Isabelle Poquet
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France
| | - Laure Saujet
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Alexis Canette
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | | | - Jean-Marc Ghigo
- Unité de Génétique des Biofilms, Institut Pasteur, Paris, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Romain Briandet
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| |
Collapse
|
24
|
Cwp19 Is a Novel Lytic Transglycosylase Involved in Stationary-Phase Autolysis Resulting in Toxin Release in Clostridium difficile. mBio 2018; 9:mBio.00648-18. [PMID: 29895635 PMCID: PMC6016235 DOI: 10.1128/mbio.00648-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is the major etiologic agent of antibiotic-associated intestinal disease. Pathogenesis of C. difficile is mainly attributed to the production and secretion of toxins A and B. Unlike most clostridial toxins, toxins A and B have no signal peptide, and they are therefore secreted by unusual mechanisms involving the holin-like TcdE protein and/or autolysis. In this study, we characterized the cell surface protein Cwp19, a newly identified peptidoglycan-degrading enzyme containing a novel catalytic domain. We purified a recombinant His6-tagged Cwp19 protein and showed that it has lytic transglycosylase activity. Moreover, we observed that Cwp19 is involved in cell autolysis and that a C. difficilecwp19 mutant exhibited delayed autolysis in stationary phase compared to the wild type when bacteria were grown in brain heart infusion (BHI) medium. Wild-type cell autolysis is correlated to strong alterations of cell wall thickness and integrity and to release of cytoplasmic material. Furthermore, we demonstrated that toxins were released into the extracellular medium as a result of Cwp19-induced autolysis when cells were grown in BHI medium. In contrast, Cwp19 did not induce autolysis or toxin release when cells were grown in tryptone-yeast extract (TY) medium. These data provide evidence for the first time that TcdE and bacteriolysis are coexisting mechanisms for toxin release, with their relative contributions in vitro depending on growth conditions. Thus, Cwp19 is an important surface protein involved in autolysis of vegetative cells of C. difficile that mediates the release of the toxins from the cell cytosol in response to specific environment conditions.IMPORTANCEClostridium difficile-associated disease is mainly known as a health care-associated infection. It represents the most problematic hospital-acquired infection in North America and Europe and exerts significant economic pressure on health care systems. Virulent strains of C. difficile generally produce two toxins that have been identified as the major virulence factors. The mechanism for release of these toxins from bacterial cells is not yet fully understood but is thought to be partly mediated by bacteriolysis. Here we identify a novel peptidoglycan hydrolase in C. difficile, Cwp19, exhibiting lytic transglycosylase activity. We show that Cwp19 contributes to C. difficile cell autolysis in the stationary phase and, consequently, to toxin release, most probably as a response to environmental conditions such as nutritional signals. These data highlight that Cwp19 constitutes a promising target for the development of new preventive and curative strategies.
Collapse
|
25
|
Péchiné S, Bruxelle JF, Janoir C, Collignon A. Targeting Clostridium difficile Surface Components to Develop Immunotherapeutic Strategies Against Clostridium difficile Infection. Front Microbiol 2018; 9:1009. [PMID: 29875742 PMCID: PMC5974105 DOI: 10.3389/fmicb.2018.01009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
New therapies are needed to prevent and treat Clostridium difficile infection and to limit the rise in antibiotic resistance. Besides toxins, several surface components have been characterized as colonization factors and have been shown as immunogenic. This review will focus on passive and active immunization strategies targeting C. difficile surface components to combat C. difficile. Concerning passive immunization, the first strategies used antisera raised against the entire bacterium to prevent infection in the hamster model. Then, surface components such as the flagellin and the S-layer proteins were used for immunization and the passive transfer of antibodies was protective in animal models. Passive immunotherapy with polyvalent immunoglobulins was used in humans and bovine immunoglobulin concentrates were evaluated in clinical trials. Concerning active immunization, vaccine assays targeting surface components were tested mainly in animal models, mouse models of colonization and hamster models of infection. Bacterial extracts, spore proteins and surface components of vegetative cells such as cell wall proteins, flagellar proteins, and polysaccharides were used as vaccine targets. Vaccine assays were performed by parenteral and mucosal routes of immunization. Both gave promising results and pave the way to development of new vaccines.
Collapse
Affiliation(s)
- Séverine Péchiné
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean F Bruxelle
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Claire Janoir
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Anne Collignon
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
26
|
Hennessey JP, Costantino P, Talaga P, Beurret M, Ravenscroft N, Alderson MR, Zablackis E, Prasad AK, Frasch C. Lessons Learned and Future Challenges in the Design and Manufacture of Glycoconjugate Vaccines. CARBOHYDRATE-BASED VACCINES: FROM CONCEPT TO CLINIC 2018. [DOI: 10.1021/bk-2018-1290.ch013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
| | | | - Philippe Talaga
- Department of Analytical Research and Development, Sanofi Pasteur, Marcy l’Etoile 69280, France
| | - Michel Beurret
- Janssen Vaccines & Prevention B.V., Leiden, 2301 CA, The Netherlands
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Earl Zablackis
- Analytical Process Technology, Sanofi Pasteur, Swiftwater, Pennsylvania 18370, United States
| | - A. Krishna Prasad
- Pfizer Vaccines Research and Development, Pearl River, New York 10965, United States
| | - Carl Frasch
- Consultant, Martinsburg, West Virginia 25402, United States
| |
Collapse
|
27
|
Broecker F, Seeberger PH. Identification and Design of Synthetic B Cell Epitopes for Carbohydrate-Based Vaccines. Methods Enzymol 2017; 597:311-334. [PMID: 28935109 DOI: 10.1016/bs.mie.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic oligosaccharide-based vaccines are promising alternatives to conventional antibacterial carbohydrate vaccines prepared with isolated polysaccharides. Unlike polysaccharides, synthetic glycans are well defined, contaminant-free, and accessible even for pathogens that cannot be fermented or show limited carbohydrate biosynthesis in vitro. However, identifying synthetic glycan B cell epitopes that induce protective immunity has traditionally been a time-consuming trial-and-error process, as predicting the immunogenicity of an oligosaccharide by means of structure alone is not straightforward. We here describe how synthetic oligosaccharide epitopes for candidate vaccines can be rationally identified prior to preclinical immunogenicity studies. Epitopes are selected on the basis of their recognition by antibodies associated with protection from disease in humans or small animals. In addition, we show how murine antibody responses to a large oligosaccharide can inform the identification of a minimal B cell epitope that may help designing easy to synthesize vaccine candidates. The procedures, exemplified with a surface carbohydrate of Clostridium difficile, may serve as a guideline for selecting protective oligosaccharide epitopes for vaccines against infectious and malignant diseases.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Vinogradov E, Aubry A, Logan SM. Structural characterization of wall and lipidated polysaccharides from Clostridium perfringens ATCC 13124. Carbohydr Res 2017. [PMID: 28628892 DOI: 10.1016/j.carres.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell surface polysaccharides produced by C. perfringens ATCC 13124 were analyzed using NMR, chemical and immunological methods. Two distinct polymers were identified. The more abundant PS1 had a structure based on a polymer of β-mannosamine with a number of modifications, including varying levels of substitution at O-6 with PEtN, N-acetylation, and different linkages between monosaccharides. The shortest variant of PS1 represented a lipoteichoic acid. It contained only 1-4-linkages between ManNAc residues, minor branching α-Ribf, and glucosyl-glycerol at the reducing end, which was acylated with linear saturated fatty acids C16, C18, and C20 (dominant). Other non-lipidated variants of PS1 contained less PEtN, no α-Ribf, up to 50% 1-3-linkages, and up to 25% ManN with the free amino group. The minor polysaccharide PS2 had a linear regular structure with a -4-α-Rha-3-β-Gal-4-β-GalNAc3PCho- repeating unit, where PCho indicates phosphocholine.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- National Research Council of Canada, Vaccine Program, Human Health Therapeutics, Ottawa Canada, K1A OR6.
| | - Annie Aubry
- National Research Council of Canada, Vaccine Program, Human Health Therapeutics, Ottawa Canada, K1A OR6
| | - Susan M Logan
- National Research Council of Canada, Vaccine Program, Human Health Therapeutics, Ottawa Canada, K1A OR6
| |
Collapse
|
29
|
Yu K, Bi N, Xiong C, Cai S, Long Z, Guo Z, Gu G. Synthesis of Defined and Functionalized Glycans of Lipoteichoic Acid: A Cell Surface Polysaccharide from Clostridium difficile. Org Lett 2017; 19:3123-3126. [PMID: 28548838 DOI: 10.1021/acs.orglett.7b01242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two structurally defined, functionalized glycans of lipoteichoic acid (LTA, also known as PS-III) from C. difficile, which have one or two repeating units of LTA linked to the core trisaccharide, were efficiently synthesized via a convergent [2 + 3] or [2 + 2 + 3] strategy. The α-linkage of both N-acetylglucosamine residues in the repeating unit were constructed with glycosyl imidates of azidosugars as donors, while the phosphodiester bridges between the oligosaccharides were fashioned using H-phosphonate chemistry. Both synthetic targets contained a 3-aminopropyl group at the core trisaccharide reducing end, facilitating their conjugation to other biomolecules to afford conjugates useful for various biological studies and applications.
Collapse
Affiliation(s)
- Kang Yu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University , 27 Shanda Nan Lu, Jinan 250100, China
| | - Ningning Bi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University , 27 Shanda Nan Lu, Jinan 250100, China
| | - Chenghe Xiong
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University , 27 Shanda Nan Lu, Jinan 250100, China
| | - Shuihong Cai
- Qidong Dongyue Pharmaceutical Company, 268 Shanghai Road, Qidong, Jiangsu 226200, China
| | - Zhongzhu Long
- Qidong Dongyue Pharmaceutical Company, 268 Shanghai Road, Qidong, Jiangsu 226200, China
| | - Zhongwu Guo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University , 27 Shanda Nan Lu, Jinan 250100, China.,Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University , 27 Shanda Nan Lu, Jinan 250100, China
| |
Collapse
|
30
|
Dannheim H, Will SE, Schomburg D, Neumann-Schaal M. Clostridioides difficile 630Δ erm in silico and in vivo - quantitative growth and extensive polysaccharide secretion. FEBS Open Bio 2017; 7:602-615. [PMID: 28396843 PMCID: PMC5377389 DOI: 10.1002/2211-5463.12208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-associated infections with Clostridioides difficile are a severe and often lethal risk for hospitalized patients, and can also affect populations without these classical risk factors. For a rational design of therapeutical concepts, a better knowledge of the metabolism of the pathogen is crucial. Metabolic modeling can provide a simulation of quantitative growth and usage of metabolic pathways, leading to a deeper understanding of the organism. Here, we present an elaborate genome-scale metabolic model of C. difficile 630Δerm. The model iHD992 includes experimentally determined product and substrate uptake rates and is able to simulate the energy metabolism and quantitative growth of C. difficile. Dynamic flux balance analysis was used for time-resolved simulations of the quantitative growth in two different media. The model predicts oxidative Stickland reactions and glucose degradation as main sources of energy, while the resulting reduction potential is mostly used for acetogenesis via the Wood-Ljungdahl pathway. Initial modeling experiments did not reproduce the observed growth behavior before the production of large quantities of a previously unknown polysaccharide was detected. Combined genome analysis and laboratory experiments indicated that the polysaccharide is an acetylated glucose polymer. Time-resolved simulations showed that polysaccharide secretion was coupled to growth even during unstable glucose uptake in minimal medium. This is accomplished by metabolic shifts between active glycolysis and gluconeogenesis which were also observed in laboratory experiments.
Collapse
Affiliation(s)
- Henning Dannheim
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Sabine E Will
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Dietmar Schomburg
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
31
|
Vinogradov E, St Michael F, Homma K, Sharma A, Cox AD. Structure of the LPS O-chain from Fusobacterium nucleatum strain 10953, containing sialic acid. Carbohydr Res 2017; 440-441:38-42. [PMID: 28199859 DOI: 10.1016/j.carres.2017.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/09/2023]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about virulence factors of this organism and thus we have initiated studies to examine the bacterial surface glycochemistry. Consistent with a recent paper suggesting that F. nucleatum strain 10593 can synthesize sialic acid, a staining technique identified sialic acid on the bacterial surface. We isolated lipopolysaccharide from this F. nucleatum strain and performed structural analysis on the O-antigen. Our studies identified a trisaccharide repeating unit of the O-antigen with the following structure: -[→4)-α-Neup5Ac-(2 → 4)-β-d-Galp-(1 → 3)-α-d-FucpNAc4NAc-(1-]- where Ac indicates 4-N-acetylation of ∼30% FucNAc4N residues. The presence of sialic acid as a constituent of the O-antigen is consistent with recent data identifying de novo sialic acid synthesis in this strain.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Kiyonobu Homma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14214, USA
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14214, USA
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
32
|
van der Es D, Hogendorf WFJ, Overkleeft HS, van der Marel GA, Codée JDC. Teichoic acids: synthesis and applications. Chem Soc Rev 2017; 46:1464-1482. [DOI: 10.1039/c6cs00270f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review describes synthetic strategies to assemble well-defined teichoic acids and their use in unraveling their biological mode of action.
Collapse
Affiliation(s)
- Daan van der Es
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | | | | | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|
33
|
Chu M, Mallozzi MJG, Roxas BP, Bertolo L, Monteiro MA, Agellon A, Viswanathan VK, Vedantam G. A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence. PLoS Pathog 2016; 12:e1005946. [PMID: 27741317 PMCID: PMC5065235 DOI: 10.1371/journal.ppat.1005946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA- and lcpB- mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB- mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA- and lcpB- strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence. Clostridium difficile infection is a leading healthcare-onset bacterial disease, and its management and prevention imposes significant clinical and financial burdens worldwide. While toxins TcdA and TcdB are the primary virulence factors, there is increasing interest in, and appreciation of, non-toxin virulence factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) are important virulence determinants in many pathogens, but their role(s) in C. difficile pathogenesis is unclear. We propose a model for C. difficile CWG biosynthesis, and demonstrate that alterations in cell wall assembly profoundly impact bacterial morphology and virulence.
Collapse
Affiliation(s)
- Michele Chu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Michael J. G. Mallozzi
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Bryan P. Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Lisa Bertolo
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Mario A. Monteiro
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Bio5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Bio5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
- Southern Arizona VA Healthcare System, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
34
|
Broecker F, Martin CE, Wegner E, Mattner J, Baek JY, Pereira CL, Anish C, Seeberger PH. Synthetic Lipoteichoic Acid Glycans Are Potential Vaccine Candidates to Protect from Clostridium difficile Infections. Cell Chem Biol 2016; 23:1014-1022. [PMID: 27524293 DOI: 10.1016/j.chembiol.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Infections with Clostridium difficile increasingly cause morbidity and mortality worldwide. Bacterial surface glycans including lipoteichoic acid (LTA) were identified as auspicious vaccine antigens to prevent colonization. Here, we report on the potential of synthetic LTA glycans as vaccine candidates. We identified LTA-specific antibodies in the blood of C. difficile patients. Therefore, we evaluated the immunogenicity of a semi-synthetic LTA-CRM197 glycoconjugate. The conjugate elicited LTA-specific antibodies in mice that recognized natural LTA epitopes on the surface of C. difficile bacteria and inhibited intestinal colonization of C. difficile in mice in vivo. Our findings underscore the promise of synthetic LTA glycans as C. difficile vaccine candidates.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christopher E Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Erik Wegner
- Mikrobiologisches Institut ? Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut ? Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ju Yuel Baek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
35
|
Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res 2016; 39:1519-1529. [PMID: 27498542 DOI: 10.1007/s12272-016-0804-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 12/29/2022]
Abstract
Lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, is associated with various inflammatory diseases ranging from minor skin diseases to severe sepsis. It is known that LTA is recognized by Toll-like receptor 2 (TLR2), leading to the initiation of innate immune responses and further development of adaptive immunity. However, excessive immune responses may result in the inflammatory sequelae that are involved in severe diseases such as sepsis. Although numerous studies have tried to identify the molecular basis for the pathophysiology of Gram-positive bacterial infection, the exact role of LTA during the infection has not been clearly elucidated. This review provides an overview of LTA structure and host recognition by TLR2 that leads to the activation of innate immune responses. Emphasis is placed on differential immunostimulating activities of LTAs of various Gram-positive bacteria at the molecular level.
Collapse
|
36
|
Abstract
Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa; School of Environmental Sciences, University of Guelph, Guelph; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Kirk JA, Banerji O, Fagan RP. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb Biotechnol 2016; 10:76-90. [PMID: 27311697 PMCID: PMC5270738 DOI: 10.1111/1751-7915.12372] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a challenging threat to human health. Infections occur after disruption of the normal microbiota, most commonly through the use of antibiotics. Current treatment for CDI largely relies on the broad‐spectrum antibiotics vancomycin and metronidazole that further disrupt the microbiota resulting in frequent recurrence, highlighting the need for C. difficile‐specific antimicrobials. The cell surface of C. difficile represents a promising target for the development of new drugs. C. difficile possesses a highly deacetylated peptidoglycan cell wall containing unique secondary cell wall polymers. Bound to the cell wall is an essential S‐layer, formed of SlpA and decorated with an additional 28 related proteins. In addition to the S‐layer, many other cell surface proteins have been identified, including several with roles in host colonization. This review aims to summarize our current understanding of these different C. difficile cell surface components and their viability as therapeutic targets.
Collapse
Affiliation(s)
- Joseph A Kirk
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Oishik Banerji
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert P Fagan
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
38
|
Shiraishi T, Yokota S, Fukiya S, Yokota A. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:147-161. [PMID: 27867802 PMCID: PMC5107633 DOI: 10.12938/bmfh.2016-006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/12/2016] [Indexed: 02/02/2023]
Abstract
Bacterial cell surface molecules are at the forefront of host-bacterium interactions. Teichoic acids are observed only in Gram-positive bacteria, and they are
one of the main cell surface components. Teichoic acids play important physiological roles and contribute to the bacterial interaction with their host. In
particular, lipoteichoic acid (LTA) anchored to the cell membrane has attracted attention as a host immunomodulator. Chemical and biological characteristics of
LTA from various bacteria have been described. However, most of the information concerns pathogenic bacteria, and information on beneficial bacteria, including
probiotic lactic acid bacteria, is insufficient. LTA is structurally diverse. Strain-level structural diversity of LTA is suggested to underpin its
immunomodulatory activities. Thus, the structural information on LTA in probiotics, in particular strain-associated diversity, is important for understanding
its beneficial roles associated with the modulation of immune response. Continued accumulation of structural information is necessary to elucidate the detailed
physiological roles and significance of LTA. In this review article, we summarize the current state of knowledge on LTA structure, in particular the structure
of LTA from lactic acid bacteria. We also describe the significance of structural diversity and biological roles of LTA.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami 1 Nishi 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Shinichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami 1 Nishi 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
39
|
Abstract
Clostridium difficile vaccines composed of surface polysaccharides (PSs) have the potential to simultaneously control infection and colonization levels in humans. Hot water-phenol treatment of C. difficile biomass can extricate water-soluble PS-I and PS-II; and water- and phenol-soluble PS-III. C. difficile vaccines based on PS-II have attracted the most attention due its facile purification and ubiquitous expression by C. difficile ribotypes. Anti PS-II antibodies recognize both C. difficile vegetative cell and sporulating preparations and confer protection against C. difficile infection in a mouse model. The design of such an efficacious C. difficile PS-II conjugate vaccine is described here.
Collapse
Affiliation(s)
- Mario A Monteiro
- University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
40
|
Quantitative Lipoproteomics in Clostridium difficile Reveals a Role for Lipoproteins in Sporulation. ACTA ACUST UNITED AC 2015; 22:1562-1573. [DOI: 10.1016/j.chembiol.2015.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
|
41
|
The functional dlt operon of Clostridium butyricum controls the d-alanylation of cell wall components and influences cell septation and vancomycin-induced lysis. Anaerobe 2015; 35:105-14. [DOI: 10.1016/j.anaerobe.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 02/05/2023]
|
42
|
Nakonieczna A, Cooper CJ, Gryko R. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria. J Appl Microbiol 2015; 119:620-31. [PMID: 26109320 DOI: 10.1111/jam.12881] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/21/2023]
Abstract
Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.
Collapse
Affiliation(s)
- A Nakonieczna
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| | - C J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - R Gryko
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| |
Collapse
|
43
|
Willing SE, Candela T, Shaw HA, Seager Z, Mesnage S, Fagan RP, Fairweather NF. Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII. Mol Microbiol 2015; 96:596-608. [PMID: 25649385 PMCID: PMC4973711 DOI: 10.1111/mmi.12958] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2015] [Indexed: 01/05/2023]
Abstract
Gram‐positive surface proteins can be covalently or non‐covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non‐identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock‐down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram‐positive bacteria.
Collapse
Affiliation(s)
- Stephanie E Willing
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Anish C, Schumann B, Pereira CL, Seeberger PH. Chemical biology approaches to designing defined carbohydrate vaccines. ACTA ACUST UNITED AC 2015; 21:38-50. [PMID: 24439205 DOI: 10.1016/j.chembiol.2014.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 01/08/2023]
Abstract
Carbohydrate antigens have shown promise as important targets for developing effective vaccines and pathogen detection strategies. Modifying purified microbial glycans through synthetic routes or completely synthesizing antigenic motifs are attractive options to advance carbohydrate vaccine development. However, limited knowledge on structure-property correlates hampers the discovery of immunoprotective carbohydrate epitopes. Recent advancements in tools for glycan modification, high-throughput screening of biological samples, and 3D structural analysis may facilitate antigen discovery process. This review focuses on advances that accelerate carbohydrate-based vaccine development and various technologies that are driving these efforts. Herein we provide a critical overview of approaches and resources available for rational design of better carbohydrate antigens. Structurally defined and fully synthetic oligosaccharides, designed based on molecular understanding of antigen-antibody interactions, offer a promising alternative for developing future carbohydrate vaccines.
Collapse
Affiliation(s)
- Chakkumkal Anish
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Benjamin Schumann
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Claney Lebev Pereira
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Peter H Seeberger
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
45
|
Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against Clostridium difficile infections: State of the art. Anaerobe 2014; 30:210-9. [DOI: 10.1016/j.anaerobe.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
|
46
|
Percy MG, Gründling A. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annu Rev Microbiol 2014; 68:81-100. [DOI: 10.1146/annurev-micro-091213-112949] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew G. Percy
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ UK; ,
| |
Collapse
|
47
|
Hogendorf WFJ, Gisch N, Schwudke D, Heine H, Bols M, Pedersen CM. Total Synthesis of Five Lipoteichoic acids of
Clostridium difficile. Chemistry 2014; 20:13511-6. [DOI: 10.1002/chem.201404336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Wouter F. J. Hogendorf
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø (Denmark)
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz‐Center for Medicine and Biosciences, Parkallee 1–40, 23845 Borstel (Germany)
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz‐Center for Medicine and Biosciences, Parkallee 1–40, 23845 Borstel (Germany)
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz‐Center for Medicine and Biosciences, Parkallee 1–40, 23845 Borstel (Germany)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø (Denmark)
| | - Christian Marcus Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø (Denmark)
| |
Collapse
|
48
|
Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins (Basel) 2014; 6:1385-96. [PMID: 24759173 PMCID: PMC4014741 DOI: 10.3390/toxins6041385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/06/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
Clostridium difficile is a Gram-positive bacterium and is the most commonly diagnosed cause of hospital-associated and antimicrobial-associated diarrhea. Despite the emergence of epidemic C. difficile strains having led to an increase in the incidence of the disease, a vaccine against this pathogen is not currently available. C. difficile strains produce two main toxins (TcdA and TcdB) and express three highly complex cell-surface polysaccharides (PSI, PSII and PSIII). PSII is the more abundantly expressed by most C. difficile ribotypes offering the opportunity of the development of a carbohydrate-based vaccine. In this paper, we evaluate the efficacy, in naive mice model, of PSII glycoconjugates where recombinant toxins A and B fragments (TcdA_B2 and TcdB_GT respectively) have been used as carriers. Both glycoconjugates elicited IgG titers anti-PSII although only the TcdB_GT conjugate induced a response comparable to that obtained with CRM197. Moreover, TcdA_B2 and TcdB_GT conjugated to PSII retained the ability to elicit IgG with neutralizing activity against the respective toxins. These results are a crucial proof of concept for the development of glycoconjugate vaccines against C. difficile infection (CDI) that combine different C. difficile antigens to potentially prevent bacterial colonization of the gut and neutralize toxin activity.
Collapse
|
49
|
Leuzzi R, Adamo R, Scarselli M. Vaccines against Clostridium difficile. Hum Vaccin Immunother 2014; 10:1466-77. [PMID: 24637887 DOI: 10.4161/hv.28428] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens.
Collapse
|
50
|
Tamai E, Yoshida H, Sekiya H, Nariya H, Miyata S, Okabe A, Kuwahara T, Maki J, Kamitori S. X-ray structure of a novel endolysin encoded by episomal phage phiSM101 ofClostridium perfringens. Mol Microbiol 2014; 92:326-37. [DOI: 10.1111/mmi.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Eiji Tamai
- Life Science Research Center; Kagawa University; 1750-1, Ikenobe, Miki-cho Kita-gun Kagawa 761-0793 Japan
- Department of Infectious Disease; College of Pharmaceutical Science; Matsuyama University; 4-2 Bunkyo-cho Matsuyama Ehime 790-8578 Japan
| | - Hiromi Yoshida
- Life Science Research Center; Kagawa University; 1750-1, Ikenobe, Miki-cho Kita-gun Kagawa 761-0793 Japan
| | - Hiroshi Sekiya
- Department of Infectious Disease; College of Pharmaceutical Science; Matsuyama University; 4-2 Bunkyo-cho Matsuyama Ehime 790-8578 Japan
| | - Hirofumi Nariya
- Department of Microbiology; Faculty of Medicine; Kagawa University; 1750-1, Ikenobe, Miki-cho Kita-gun Kagawa 761-0793 Japan
| | - Shigeru Miyata
- Life Science Research Center; Kagawa University; 1750-1, Ikenobe, Miki-cho Kita-gun Kagawa 761-0793 Japan
- College of Bioscience and Biotechnology; Chubu University; 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Akinobu Okabe
- Department of Human Nutrition; Faculty of Contemporary Life Science; Chugokugakuen University; Niwase 83 Kita-ku Okayama 761-0197 Japan
| | - Tomomi Kuwahara
- Department of Microbiology; Faculty of Medicine; Kagawa University; 1750-1, Ikenobe, Miki-cho Kita-gun Kagawa 761-0793 Japan
| | - Jun Maki
- Department of Infectious Disease; College of Pharmaceutical Science; Matsuyama University; 4-2 Bunkyo-cho Matsuyama Ehime 790-8578 Japan
| | - Shigehiro Kamitori
- Life Science Research Center; Kagawa University; 1750-1, Ikenobe, Miki-cho Kita-gun Kagawa 761-0793 Japan
| |
Collapse
|