1
|
Valkenburg AD, Ncube MZ, Teke GM, van Rensburg E, Pott RWM. A review on the upstream production and downstream purification of mannosylerythritol lipids. Biotechnol Bioeng 2024; 121:853-876. [PMID: 38108218 DOI: 10.1002/bit.28625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are natural compounds with remarkable surface-active properties that may offer an eco-friendly alternative to conventional surfactants. Among them, mannosylerythritol lipids (MELs) stand out as an intriguing example of a glycolipid biosurfactant. MELs have been used in a variety of sectors for various applications, and are currently commercially produced. Industrially, they are used in the pharmaceutical, cosmetic, food, and agricultural industries, based on their ability to reduce surface tension and enhance emulsification. However, despite their utility, their production is comparatively limited industrially. From a bioprocessing standpoint, two areas of interest to improve the production process are upstream production and downstream (separation and purification) product recovery. The former has seen a significant amount of research, with researchers investigating several production factors: the microbial species or strain employed, the producing media composition, and the production strategy implemented. Improvement and optimization of these are key to scale-up the production of MELs. On the other hand, the latter has seen comparatively limited work presented in the literature. For the most part traditional separation techniques have been employed. This systematic review presents the production and purification methodologies used by researchers by comprehensively analyzing the current state-of-the-art with regards the production, separation, and purification of MELs. By doing so, the review presents different possible approaches, and highlights some potential areas for future work by identifying opportunities for the commercialization of MELs.
Collapse
Affiliation(s)
- André D Valkenburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Mellisa Z Ncube
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - George M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Eugéne van Rensburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Robert W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Miao Y, To MH, Siddiqui MA, Wang H, Lodens S, Chopra SS, Kaur G, Roelants SLKW, Lin CSK. Sustainable biosurfactant production from secondary feedstock-recent advances, process optimization and perspectives. Front Chem 2024; 12:1327113. [PMID: 38312346 PMCID: PMC10834756 DOI: 10.3389/fchem.2024.1327113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.
Collapse
Affiliation(s)
- Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
- Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, China
| | - Huaimin Wang
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, United States
| | - Sofie Lodens
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Sophie L K W Roelants
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| |
Collapse
|
3
|
Balogh-Weiser D, Molnár A, Tóth GD, Koplányi G, Szemes J, Decsi B, Katona G, Salamah M, Ender F, Kovács A, Berkó S, Budai-Szűcs M, Balogh GT. Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique. Pharmaceutics 2023; 15:pharmaceutics15041174. [PMID: 37111659 PMCID: PMC10143802 DOI: 10.3390/pharmaceutics15041174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The application of enzyme-based therapies has received significant attention in modern drug development. Lipases are one of the most versatile enzymes that can be used as therapeutic agents in basic skin care and medical treatment related to excessive sebum production, acne, and inflammation. The traditional formulations available for skin treatment, such as creams, ointments or gels, are widely applied; however, their use is not always accompanied by good drug penetration properties, stability, or patient adherence. Nanoformulated drugs offer the possibility of combining enzymatic and small molecule formulations, making them a new and exciting alternative in this field. In this study polymeric nanofibrous matrices made of polyvinylpyrrolidone and polylactic acid were developed, entrapping lipases from Candida rugosa and Rizomucor miehei and antibiotic compound nadifloxacin. The effect of the type of polymers and lipases were investigated, and the nanofiber formation process was optimized to provide a promising alternative in topical treatment. Our experiments have shown that entrapment by electrospinning induced two orders of magnitude increase in the specific enzyme activity of lipases. Permeability investigations indicated that all lipase-loaded nanofibrous masks were capable of delivering nadifloxacin to the human epidermis, confirming the viability of electrospinning as a formulation method for topical skin medications.
Collapse
Affiliation(s)
- Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Alexandra Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gergő D Tóth
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Koplányi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Szemes
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Balázs Decsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Istitute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ferenc Ender
- Department of Electron Devices, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- SpinSplit LLC, Vend u. 17, H-1025 Budapest, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - György T Balogh
- Istitute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
4
|
Handa S, Aggarwal Y, Puri S, Chatterjee M. Pharmaceutical prospects of biosurfactants produced from fungal species. J Basic Microbiol 2022; 62:1307-1318. [PMID: 36257786 DOI: 10.1002/jobm.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022]
Abstract
The development of novel types of biogenic surface-active compounds is of greater interest for combating many diseases and infections. In this respect research and development of biosurfactant has gained immense importance. Substantially, biosurfactant is defined as a class of active amphiphilic chemical compounds that comprise hydrophobic and hydrophilic moieties on their surfaces. It is generally known that many kinds of microorganisms can be used to produce these surfactants or surface-active compounds. Hosting interesting features such as biodegradability, emulsifying/de-emulsifying capacity, low toxicity, and antimicrobial activities; these amphiphilic compounds in recent years have flourished as an ideal replacement for the chemically synthesized surfactant, and also have various commercial attractions. Both bacteria and fungi are the producers of these amphiphilic molecules; however, the pathogenicity of certain bacterial strains has caused a shift in interest toward fungi. Therefore, various fungi species have been reported for the production of biosurfactants amongst which Candida species have been the most studied strains. Biosurfactants uphold desired properties like antibacterial, antifungal, antiviral, antiadhesion, and anticancer activity which proves them an ideal candidate for the application in various fields like pharmaceutical, gene therapy, medical insertion safety, immunotherapy to fight against many chronic diseases, and so forth. Hence, this review article discusses the pharmaceutical prospects of biosurfactants produced from different fungal species, providing new directions toward the discovery and development of molecules with novel structures and diverse functions for advanced application in the medical field.
Collapse
Affiliation(s)
- Shristi Handa
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Yadu Aggarwal
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sanjeev Puri
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
de Andrade CJ, Coelho AL, Feuser PE, de Andrade LM, Carciofi BA, de Oliveira D. Mannosylerythritol lipids: production, downstream processing, and potential applications. Curr Opin Biotechnol 2022; 77:102769. [PMID: 35985133 DOI: 10.1016/j.copbio.2022.102769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022]
Abstract
Mannosylerythritol lipids (MELs) are biosurfactants produced by various fungal species. Depending on the degree of acetylation and further chemical modifications, these glycolipids can show remarkable biological properties, including the increase of water retention in the stratum corneum suppression of melanogenic enzymes tyrosinase-1 and -2, reversion of UV-A radiation-induced aquaporin-3 suppression, skin whitening, and anti-aging effects. These applications of MELs require high purity, which is usually reached by liquid-liquid extraction followed by chromatography, obtaining ≥95% purity. This worked aimed to critically discuss the current state of the art and trends on the production of MELs, including post-production treatment as enzymatic conversion. In addition, their application as skincare or pharmaceutical agents and agricultural biostimulants.
Collapse
Affiliation(s)
- Cristiano J de Andrade
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Ana Ls Coelho
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Paulo E Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Lidiane M de Andrade
- Department of Chemical Engineering of the Polytechnic School, University of São Paulo, São Paulo, SP 05508-010, Brazil
| | - Bruno Am Carciofi
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
6
|
Bhangale AP, Wadekar SD, Kale SB, Mali SN, Pratap AP. Non-traditional oils with water-soluble substrate as cell growth booster for the production of mannosylerythritol lipids by Pseudozyma antarctica (ATCC 32657) with their antimicrobial activity. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2021-2366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Among glycolipids, mannosylerythritol lipids (MEL), are mild and environmentally friendly surfactants used in various industrial applications. MELs are produced by biofermentation using non-traditional oils with various water-soluble carbon sources as cell growth booster. This substrate affects the production yield and cost of MEL. In this research work, the non-traditional oils jatropha oil, karanja oil and neem oil were used as new substrates along with glucose, glycerol and honey as new water-soluble substrates. All these oils are new feedstocks for the production of MEL using Pseudozyma antarctica (ATCC 32657). Jatropha oil, karanja oil and neem oil with honey as substrates resulted in higher MEL yields of (8.07, 7.75, and 1.86) g/L and better cell growth of (8.07, 7.75, and 1.86) g/L, respectively, than non-traditional oils with glucose and glycerol as substrates. Neem oil gave a lower yield of MEL (1.54 g/L) as well as cell growth (6.06 g/L) compared to jatropha oil and karanja oil (7.03 and 6.17) g/L, respectively. Crude MEL from the fermentation broth was detected by thin-layer chromatography (TLC), Fourier transform infrared spectrommetry (FT-IR), high performance liquid chromatography (HPLC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Purified MEL has been used as an antimicrobial agent in cosmetic products associated with gram-positive and gram-negative bacteria and fungi.
Collapse
Affiliation(s)
- Akash P. Bhangale
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg , Matunga (East) , Mumbai 400 019 , India
| | - Sushant D. Wadekar
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg , Matunga (East) , Mumbai 400 019 , India
| | - Sandeep B. Kale
- Department of Chemical Engineering , DBT–ICT Centre for Energy Biosciences, Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg, Matunga (East) , Mumbai 400 019 , India
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Amit P. Pratap
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg , Matunga (East) , Mumbai 400 019 , India
| |
Collapse
|
7
|
The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol 2022; 199:51-60. [PMID: 34973984 DOI: 10.1016/j.ijbiomac.2021.12.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
The coimmobilization of lipases from Rhizomucor miehei (RML) and Candida antarctica (CALB) has been intended using agarose beads activated with divinyl sulfone. CALB could be immobilized on this support, while RML was not. However, RML was ionically exchanged on this support blocked with ethylendiamine. Therefore, both enzymes could be coimmobilized on the same particle, CALB covalently using the vinyl sulfone groups, and RML via anionic exchange on the aminated blocked support. However, immobilized RML was far less stable than immobilized CALB. To avoid the discarding of CALB (that maintained 90% of the initial activity after RML inactivation), a strategy was developed. Inactivated RML was desorbed from the support using ammonium sulfate and 1% Triton X-100 at pH 7.0. That way, 5 cycles of RML thermal inactivation, discharge of the inactivated enzyme and re-immobilization of a fresh sample of RML could be performed. In the last cycle, immobilized CALB activity was still over 90% of the initial one. Thus, the strategy permits that enzymes can be coimmobilized on vinyl sulfone supports even if one of them cannot be immobilized on it, and also permits the reuse of the most stable enzyme (if it is irreversibly attached to the support).
Collapse
|
8
|
Shu Q, Wei T, Liu X, Liu S, Chen Q. The dough-strengthening and spore-sterilizing effects of mannosylerythritol lipid-A in frozen dough and its application in bread making. Food Chem 2022; 369:131011. [PMID: 34507086 DOI: 10.1016/j.foodchem.2021.131011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/27/2021] [Accepted: 08/29/2021] [Indexed: 01/17/2023]
Abstract
Biosurfactants have been put into applications in breadmaking industry, while the effects of mannosylerythritol lipid-A (MEL-A) on gluten network of frozen dough, bread quality and microbial spoilage were firstly investigated in this study. Rheology and differential scanning calorimetry (DSC) analysis showed that MEL-A significantly improved the rheological properties of frozen dough and reduced the content of frozen water. Further experiments showed that MEL-A promoted the formation of aggregates by interacting with gluten protein, and strengthened the gluten network through molecular weight distribution measurement and microstructure observation, effectively avoiding the destruction of ice crystals. A series of bread assessments illustrated MEL-A improved the loaf volume, gas retention ability and textural property. In addition, MEL-A (1.5%) killed 99.97% of the vegetative cells of Bacillus cereus and 75.54% of the spores, and at the same time had a slight inactivation effect on yeast. These results indicate that MEL-A has broad application prospects in the baking industry and the storage stage of flour products.
Collapse
Affiliation(s)
- Qin Shu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
9
|
Hollenbach R, Ochsenreither K, Syldatk C. Parameters Influencing Lipase-Catalyzed Glycolipid Synthesis by (Trans-)Esterification Reaction. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:53-72. [PMID: 34518911 DOI: 10.1007/10_2021_173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycolipids are biodegradable, non-toxic surfactants with a wide range of applications. Enzymatic esterification or transesterification facilitated in reaction media of low water activity is a reaction strategy for the production of tailor-made glycolipids as a high structural diversity can be achieved. Organic solvents, ionic liquids, and deep eutectic solvents have been applied as reaction media. However, several challenges need to be addressed for efficient (trans-)esterification reactions, especially for the lipophilization of polar substrates. Therefore, crucial parameters in (trans-)esterification reactions in conventional and non-conventional media are discussed and compared in this review with a special focus on glycolipid synthesis.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
10
|
Beck A, Haitz F, Thier I, Siems K, Jakupovic S, Rupp S, Zibek S. Novel mannosylerythritol lipid biosurfactant structures from castor oil revealed by advanced structure analysis. J Ind Microbiol Biotechnol 2021; 48:6330458. [PMID: 34323925 PMCID: PMC8788835 DOI: 10.1093/jimb/kuab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 11/12/2022]
Abstract
Mannosylerythritol lipids (MEL) are glycolipid biosurfactants that are produced by fungi of the Ustilaginaceae family in the presence of hydrophobic carbon sources like plant oils. In the present study, we investigated the structural composition of mannosylerythritol lipids produced from castor oil using seven different microorganisms and compared them to the structures resulting from other plant oils. Castor oil is an industrially relevant plant oil that is used neither for human consumption nor as a feedstock for animal feed and is therefore presenting an interesting alternative to currently employed edible plant oils like rapeseed or soybean oil. The main fatty acid in castor oil is the mono-hydroxylated ricinoleic acid, providing the possibility to produce novel MEL structures with interesting features. Analysis of the produced MELs from castor oil by different chromatographic and mass spectrometry techniques revealed that all seven microorganisms were generally able to integrate hydroxylated fatty acids into the MEL molecule, although at varying degrees. These novel MELs containing a hydroxy fatty acid (4-O-(2'-O-alka(e)noyl-3'-O-hydroxyalka(e)noyl-4'/6'-O-acetyl-β-D-mannopyranosyl)-erythritol) were more hydrophilic than conventional MEL and therefore showed a different elution behavior in chromatography. Large shares of novel hydroxy MELs in the mixture (around 50 % of total MELs) were found for the two MEL-B/C producing species Ustilago siamensis and Ustilago shanxiensis, but also for the MEL-A/B/C producer Moesziomyces aphidis (around 25 %). In addition, tri-acylated hydroxylated MELs with a third long-chain fatty acid esterified to the free hydroxyl group of the hydroxy fatty acid were identified for some species. Overall, the production of MEL from castor oil with the investigated organisms provided a complex mixture of various novel MEL structures that can be exploited for further research.
Collapse
Affiliation(s)
- Alexander Beck
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Fabian Haitz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | | | | | - Steffen Rupp
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
11
|
Shu Q, Lou H, Wei T, Liu X, Chen Q. Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics 2021; 13:227. [PMID: 33562052 PMCID: PMC7914807 DOI: 10.3390/pharmaceutics13020227] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Glycolipid biosurfactants are natural amphiphiles and have gained particular interest recently in their biodegradability, diversity, and bioactivity. Microbial infection has caused severe morbidity and mortality and threatened public health security worldwide. Glycolipids have played an important role in combating many diseases as therapeutic agents depending on the self-assembly property, the anticancer and anti-inflammatory properties, and the antimicrobial properties, including antibacterial, antifungal, and antiviral effects. Besides, their role has been highlighted as scavengers in impeding the biofilm formation and rupturing mature biofilm, indicating their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction in vast hospital infections. Notably, glycolipids have been widely applied to the synthesis of novel antimicrobial materials due to their excellent amphipathicity, such as nanoparticles and liposomes. Accordingly, this review will provide various antimicrobial applications of glycolipids as functional ingredients in medical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.L.); (T.W.); (X.L.)
| |
Collapse
|
12
|
|
13
|
Tailor-made mannosylerythritol lipids: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:6877-6884. [PMID: 29926140 DOI: 10.1007/s00253-018-9160-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
Mannosylerythritol lipids (MELs) are a type of glycolipid biosurfactant produced by basidiomycetous yeasts, most notably those belonging to the genera Pseudozyma and Ustilago. Mannosylerythritol lipids are environmentally friendly and possess many unique functions, such as gene delivery, bio-activation, and human skin repair, and thus have potential applications in cosmetic, pharmaceutical, agriculture, food, and environmental industries. However, MELs will require overcoming same issues related to the commercialization, e.g., expansion of the structure and function variety and cost reduction. In the past decade, various studies have attempted to tailor production of targeted MELs in order to expand the utility of these biosurfactants. Moreover, the rapid development of genomic sequencing techniques will enhance our ability to modify MEL producers. In this review, we focus on current research into the tailored production of MELs, including conventional and advanced approaches.
Collapse
|
14
|
Andrade CJD, Andrade LMD, Rocco SA, Sforça ML, Pastore GM, Jauregi P. A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Paulino BN, Pessôa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 2016; 100:10265-10293. [PMID: 27844141 DOI: 10.1007/s00253-016-7980-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023]
Abstract
Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.
Collapse
Affiliation(s)
- Bruno Nicolau Paulino
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil.
| | - Marina Gabriel Pessôa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Mario Cezar Rodrigues Mano
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Gustavo Molina
- Institute of Science and Technology, Food Engineering, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Iramaia Angélica Neri-Numa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| |
Collapse
|
16
|
Pöhnlein M, Hausmann R, Lang S, Syldatk C. Enzymatic synthesis and modification of surface-active glycolipids. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Martin Pöhnlein
- Institute of Process Engineering in Life Sciences; Section II: Technical Biology; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology; Bioprocess Engineering; University Hohenheim; Stuttgart Germany
| | - Siegmund Lang
- Institute of Biochemistry and Biotechnology; Section of Biotechnology; TU Braunschweig; Braunschweig Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences; Section II: Technical Biology; Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
17
|
Yu M, Liu Z, Zeng G, Zhong H, Liu Y, Jiang Y, Li M, He X, He Y. Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 2015; 407:63-72. [PMID: 25723622 DOI: 10.1016/j.carres.2014.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/04/2014] [Accepted: 12/27/2014] [Indexed: 11/26/2022]
Abstract
Mannosylerythritol lipids (MELs) are promising biosurfactants containing two glycosyl derivatives and various fatty acids, which are mainly secreted by Pseudozyma as well as Ustilago. In this review, the latest research is demonstrated on production conditions, structural diversity, self-assembling properties and versatile biochemical functions of MELs. The genetic study and synthetic pathways, which mainly influence the type and yield of MELs production. Due to the excellent surface activity, biocompatibility and restorative function, MELs can be used in enviornmental industry, which has not been widely noted. In this paper, the current status of research on enviornmental potential of MELs has been discussed including petroleum degradation, bioconversion of chemical wastes and enhanced bioremediation of amphiphilic wastes.
Collapse
Affiliation(s)
- Mingda Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yongbing Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoxiao He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
18
|
Roelants SLKW, De Maeseneire SL, Ciesielska K, Van Bogaert INA, Soetaert W. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential. Appl Microbiol Biotechnol 2014; 98:3449-61. [PMID: 24531239 DOI: 10.1007/s00253-014-5547-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.
Collapse
Affiliation(s)
- Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium,
| | | | | | | | | |
Collapse
|
19
|
Protocols for the Detection and Chemical Characterisation of Microbial Glycolipids. SPRINGER PROTOCOLS HANDBOOKS 2014. [DOI: 10.1007/8623_2014_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 2013; 34:667-75. [PMID: 24182625 DOI: 10.1016/j.tips.2013.10.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Abstract
Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications.
Collapse
|