1
|
Dorst KM, Engström O, Angles d'Ortoli T, Mobarak H, Ebrahemi A, Fagerberg U, Whitfield DM, Widmalm G. On the influence of solvent on the stereoselectivity of glycosylation reactions. Carbohydr Res 2024; 535:109010. [PMID: 38181544 DOI: 10.1016/j.carres.2023.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Methodology development in carbohydrate chemistry entails the stereoselective formation of C-O bonds as a key step in the synthesis of oligo- and polysaccharides. The anomeric selectivity of a glycosylation reaction is affected by a multitude of parameters, such as the nature of the donor and acceptor, activator/promotor system, temperature and solvent. The influence of different solvents on the stereoselective outcome of glycosylation reactions employing thioglucopyranosides as glycosyl donors with a non-participating protecting group at position 2 has been studied. A large change in selectivity as a function of solvent was observed and a correlation between selectivity and the Kamlet-Taft solvent parameter π* was found. Furthermore, molecular modeling using density functional theory methodology was conducted to decipher the role of the solvent and possible reaction pathways were investigated.
Collapse
Affiliation(s)
- Kevin M Dorst
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Olof Engström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Thibault Angles d'Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Hani Mobarak
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Azad Ebrahemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Ulf Fagerberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Dennis M Whitfield
- Sussex Research Laboratories Inc., 100 Sussex Drive Suite 1120B, Ottawa, Ontario, K1A 0R6, Canada
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
2
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
3
|
Zhong X, Zhou S, Ao J, Guo A, Xiao Q, Huang Y, Zhu W, Cai H, Ishiwata A, Ito Y, Liu XW, Ding F. Zinc(II) Iodide-Directed β-Mannosylation: Reaction Selectivity, Mode, and Application. J Org Chem 2021; 86:16901-16915. [PMID: 34797079 DOI: 10.1021/acs.joc.1c02091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A direct, efficient, and versatile glycosylation methodology promises the systematic synthesis of oligosaccharides and glycoconjugates in a streamlined fashion like the synthesis of medium to long-chain nucleotides and peptides. The development of a generally applicable approach for the construction of 1,2-cis-glycosidic bond with controlled stereoselectivity remains a major challenge, especially for the synthesis of β-mannosides. Here, we report a direct mannosylation strategy mediated by ZnI2, a mild Lewis acid, for the highly stereoselective construction of 1,2-cis-β linkages employing easily accessible 4,6-O-tethered mannosyl trichloroacetimidate donors. The versatility and effectiveness of this strategy were demonstrated with successful β-mannosylation of a wide variety of alcohol acceptors, including complex natural products, amino acids, and glycosides. Through iteratively performing ZnI2-mediated mannosylation with the chitobiosyl azide acceptor followed by site-selective deprotection of the mannosylation product, the novel methodology enables the modular synthesis of the key intermediate trisaccharide with Man-β-(1 → 4)-GlcNAc-β-(1 → 4)-GlcNAc linkage for N-glycan synthesis. Theoretical investigations with density functional theory calculations delved into the mechanistic details of this β-selective mannosylation and elucidated two zinc cations' essential roles as the activating agent of the donor and the principal mediator of the cis-directing intermolecular interaction.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371, Singapore
| | - Qian Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wanmeng Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan.,Graduate School of Science, Osaka University, Toyonaka, Osaka 5600043, Japan
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371, Singapore
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
5
|
Franconetti A, Ardá A, Asensio JL, Blériot Y, Thibaudeau S, Jiménez-Barbero J. Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions. Acc Chem Res 2021; 54:2552-2564. [PMID: 33930267 PMCID: PMC8173606 DOI: 10.1021/acs.accounts.1c00021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Carbohydrates (glycans, saccharides, and sugars) are essential molecules in all domains of life. Research on glycoscience spans from chemistry to biomedicine, including material science and biotechnology. Access to pure and well-defined complex glycans using synthetic methods depends on the success of the employed glycosylation reaction. In most cases, the mechanism of the glycosylation reaction is believed to involve the oxocarbenium ion. Understanding the structure, conformation, reactivity, and interactions of this glycosyl cation is essential to predict the outcome of the reaction. In this Account, building on our contributions on this topic, we discuss the theoretical and experimental approaches that have been employed to decipher the key features of glycosyl cations, from their structures to their interactions and reactivity.We also highlight that, from a chemical perspective, the glycosylation reaction can be described as a continuum, from unimolecular SN1 with naked oxocarbenium cations as intermediates to bimolecular SN2-type mechanisms, which involve the key role of counterions and donors. All these factors should be considered and are discussed herein. The importance of dissociative mechanisms (involving contact ion pairs, solvent-separated ion pairs, solvent-equilibrated ion pairs) with bimolecular features in most reactions is also highlighted.The role of theoretical calculations to predict the conformation, dynamics, and reactivity of the oxocarbenium ion is also discussed, highlighting the advances in this field that now allow access to the conformational preferences of a variety of oxocarbenium ions and their reactivities under SN1-like conditions.Specifically, the ground-breaking use of superacids to generate these cations is emphasized, since it has permitted characterization of the structure and conformation of a variety of glycosyl oxocarbenium ions in superacid solution by NMR spectroscopy.We also pay special attention to the reactivity of these glycosyl ions, which depends on the conditions, including the counterions, the possible intra- or intermolecular participation of functional groups that may stabilize the cation and the chemical nature of the acceptor, either weak or strong nucleophile. We discuss recent investigations from different experimental perspectives, which identified the involved ionic intermediates, estimating their lifetimes and reactivities and studying their interactions with other molecules. In this context, we also emphasize the relationship between the chemical methods that can be employed to modulate the sensitivity of glycosyl cations and the way in which glycosyl modifying enzymes (glycosyl hydrolases and transferases) build and cleave glycosidic linkages in nature. This comparison provides inspiration on the use of molecules that regulate the stability and reactivity of glycosyl cations.
Collapse
Affiliation(s)
- Antonio Franconetti
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Ana Ardá
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- lkerbasque,
Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
| | - Juan Luis Asensio
- Instituto
de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Yves Blériot
- Université
de Poitiers, IC2MP, UMR CNRS
7285, Equipe “OrgaSynth”, 4 rue Michel Brunet, 86073 cedex 9 Poitiers, France
| | - Sébastien Thibaudeau
- Université
de Poitiers, IC2MP, UMR CNRS
7285, Equipe “OrgaSynth”, 4 rue Michel Brunet, 86073 cedex 9 Poitiers, France
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- lkerbasque,
Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Department
of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
6
|
Merino P, Delso I, Pereira S, Orta S, Pedrón M, Tejero T. Computational evidence of glycosyl cations. Org Biomol Chem 2021; 19:2350-2365. [PMID: 33481977 DOI: 10.1039/d0ob02373f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosyl cations are key intermediates in the glycosylation reactions taking place through a SN1-type mechanism. To obtain a reliable description of the glycosylation reaction mechanism a combination of computational studies and experimental data such as kinetic isotopic effects is needed. Computational studies have elucidated SN2-type glycosylation reaction mechanisms, but elucidation of mechanisms in which ion pairs can be formed presents some difficulties because of the recombination of the ions. Recent topological and dynamic studies open the door to the ultimate confirmation of the presence of glycosyl cations in the form of intimate ion pairs during certain glycosylation reactions. This review covers the state-of-the-art tools and applications of computational chemistry mainly developed during the last ten years to understand glycosylation reactions in which an oxocarbenium ion could be involved.
Collapse
Affiliation(s)
- Pedro Merino
- Unidad de Glicobiología. Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Fukutani T, Miyazawa K, Iwata S, Satoh H. G-RMSD: Root Mean Square Deviation Based Method for Three-Dimensional Molecular Similarity Determination. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Tomonori Fukutani
- Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kohei Miyazawa
- Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Satoru Iwata
- Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroko Satoh
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Research Organization of Information and Systems (ROIS), 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
8
|
Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. The Experimental Evidence in Support of Glycosylation Mechanisms at the S N1-S N2 Interface. Chem Rev 2018; 118:8242-8284. [PMID: 29846062 PMCID: PMC6135681 DOI: 10.1021/acs.chemrev.8b00083] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the SN1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.
Collapse
Affiliation(s)
- Philip Ouma Adero
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harsha Amarasekara
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Peng Wen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Université Paris-Sud Université Paris-Saclay , 1 avenue de la Terrasse , 91198 Gif-sur-Yvette , France
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
9
|
Kötzler MP, Robinson K, Chen HM, Okon M, McIntosh LP, Withers SG. Modulating the Nucleophile of a Glycoside Hydrolase through Site-Specific Incorporation of Fluoroglutamic Acids. J Am Chem Soc 2018; 140:8268-8276. [DOI: 10.1021/jacs.8b04235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Affiliation(s)
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Satoh H, Oda T, Nakakoji K, Uno T, Tanaka H, Iwata S, Ohno K. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers. J Chem Theory Comput 2016; 12:5293-5308. [PMID: 27673598 DOI: 10.1021/acs.jctc.6b00439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes our approach that is built upon the potential energy surface (PES)-based conformational analysis. This approach automatically deduces a conformational transition network, called a conformational reaction route map (r-map), by using the Scaled Hypersphere Search of the Anharmonic Downward Distortion Following method (SHS-ADDF). The PES-based conformational search has been achieved by using large ADDF, which makes it possible to trace only low transition state (TS) barriers while restraining bond lengths and structures with high free energy. It automatically performs sampling the minima and TS structures by simply taking into account the mathematical feature of PES without requiring any a priori specification of variable internal coordinates. An obtained r-map is composed of equilibrium (EQ) conformers connected by reaction routes via TS conformers, where all of the reaction routes are already confirmed during the process of the deduction using the intrinsic reaction coordinate (IRC) method. The postcalculation analysis of the deduced r-map is interactively carried out using the RMapViewer software we have developed. This paper presents computational details of the PES-based conformational analysis and its application to d-glucose. The calculations have been performed for an isolated glucose molecule in the gas phase at the RHF/6-31G level. The obtained conformational r-map for α-d-glucose is composed of 201 EQ and 435 TS conformers and that for β-d-glucose is composed of 202 EQ and 371 TS conformers. For the postcalculation analysis of the conformational r-maps by using the RMapViewer software program we have found multiple minimum energy paths (MEPs) between global minima of 1C4 and 4C1 chair conformations. The analysis using RMapViewer allows us to confirm the thermodynamic and kinetic predominance of 4C1 conformations; that is, the potential energy of the global minimum of 4C1 is lower than that of 1C4 (thermodynamic predominance) and that the highest energy of those of all the TS structures along a route from 4C1 to 1C4 is lower than that of 1C4 to 4C1 (kinetic predominance).
Collapse
Affiliation(s)
- Hiroko Satoh
- Research Organization of Information and Systems (ROIS), Tokyo 105-0001, Japan.,Department of Chemistry, University of Zurich , 8057 Zurich, Switzerland.,National Institute of Informatics (NII), Tokyo 101-8430, Japan.,Institute for Quantum Chemical Exploration (IQCE), Tokyo 108-0022, Japan
| | - Tomohiro Oda
- Software Research Associates Inc., Tokyo 171-8513, Japan
| | - Kumiyo Nakakoji
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University , Kyoto 606-8501, Japan
| | - Takeaki Uno
- National Institute of Informatics (NII), Tokyo 101-8430, Japan
| | - Hiroaki Tanaka
- Department of Mathematical Informatics, University of Tokyo , Tokyo 113-8654, Japan
| | - Satoru Iwata
- Department of Mathematical Informatics, University of Tokyo , Tokyo 113-8654, Japan
| | - Koichi Ohno
- Institute for Quantum Chemical Exploration (IQCE), Tokyo 108-0022, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University , Sendai 980-8578, Japan
| |
Collapse
|
12
|
Abstract
A total of 14 ocotillol-type ginsenosides were conveniently synthesized employing glycosylation of ocotillol sapogenin derivatives with glucosyl ortho-alkynylbenzoate donors under the promotion of a gold(I) catalyst as the key step. Relying on a rational protecting group strategy and the unexpected regioselectivity of the glycosylation of the 3,25-diol sapogenins (2a/2b, 5a/5b) for the tertiary 25-OH, mono 3-O-glucosyl ocotillol-PPD, 6-O-glucosyl ocotillol-PPT, 25-O-glucosyl ocotillol-PPD/PPT and 3,25-di-O-glucosyl ocotillol-PPD/PPT ginsenosides were prepared in which the configuration at the C-24 is either R or S.
Collapse
Affiliation(s)
- Renzeng Shen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Xin Cao
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Stephane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Jiansong Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University , 437 West Beijing Road, Nanchang, 330027, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
13
|
Abstract
Anomeric sulfonium ions are attractive glycosyl donors for the stereoselective installation of 1,2-cis glycosides. Although these donors are receiving increasing attention, their mechanism of glycosylation remains controversial. We have investigated the reaction mechanism of glycosylation of a donor modified at C-2 with a (1S)-phenyl-2-(phenylsulfanyl)ethyl chiral auxiliary. Preactivation of this donor results in the formation of a bicyclic β-sulfonium ion that after addition of an alcohol undergoes 1,2-cis-glycosylation. To probe the importance of the thiophenyl moiety, analogs were prepared in which this moiety was replaced by an anisoyl or benzyl moiety. Furthermore, the auxiliaries were installed as S- and R-stereoisomers. It was found that the nature of the heteroatom and chirality of the auxiliary greatly influenced the anomeric outcome and only the one containing a thiophenyl moiety and having S-configuration gave consistently α-anomeric products. The sulfonium ions are sufficiently stable at a temperature at which glycosylations proceed indicating that they are viable glycosylation agents. Time-course NMR experiments with the latter donor showed that the initial rates of glycosylations increase with increases in acceptor concentration and the rate curves could be fitted to a second order rate equation. Collectively, these observations support a mechanism by which a sulfonium ion intermediate is formed as a trans-decalin ring system that can undergo glycosylation through a bimolecular mechanism. DFT calculations have provided further insight into the reaction path of glycosylation and indicate that initially a hydrogen-bonded complex is formed between sulfonium ion and acceptor that undergoes SN2-like glycosylation to give an α-anomeric product.
Collapse
Affiliation(s)
- Tao Fang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Yi Gu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Wei Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|