1
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
2
|
Martin EM, Zuidscherwoude M, Morán LA, Di Y, García A, Watson SP. The structure of CLEC-2: mechanisms of dimerization and higher-order clustering. Platelets 2021; 32:733-743. [PMID: 33819136 DOI: 10.1080/09537104.2021.1906407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The platelet C-type lectin-like receptor CLEC-2 drives inflammation-driven venous thrombosis in mouse models of thrombo-inflammatory disease with a minimal effect on hemostasis identifying it as a target for a new class of antiplatelet agent. Here, we discuss how the protein structure and dynamic arrangement of CLEC-2 on the platelet membrane helps the receptor, which has a single YxxL motif (known as a hemITAM), to trigger intracellular signaling. CLEC-2 exists as a monomer and homo-dimer within resting platelets and forms higher-order oligomers following ligand activation, a process that is mediated by the multivalent nature of its ligands and the binding of the tandem SH2 domains of Syk to the phosphorylated hemITAM and concomitantly to PIP2 or PIP3 to localize it to the membrane. We propose that a low level of active Syk is present at the membrane in resting platelets due to phosphorylation by Src family kinases and that clustering of receptors disturbs the equilibrium between kinases and phosphatases, triggering phosphorylation of the CLEC-2 hemITAM and recruitment of Syk. Knowledge of the structure of CLEC-2 and the mechanism of platelet activation has important implications for development of therapeutics.
Collapse
Affiliation(s)
- Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Luis A Morán
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Angel García
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| |
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Platelets and Defective N-Glycosylation. Int J Mol Sci 2020; 21:ijms21165630. [PMID: 32781578 PMCID: PMC7460655 DOI: 10.3390/ijms21165630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.
Collapse
|
5
|
|
6
|
Liu Y, Ren S, Xie L, Cui C, Xing Y, Liu C, Cao B, Yang F, Li Y, Chen X, Wei Y, Lu H, Jiang J. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget 2016; 6:20650-60. [PMID: 26029999 PMCID: PMC4653032 DOI: 10.18632/oncotarget.4115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023] Open
Abstract
The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear. Here we analyzed the exact site(s) of N-glycosylation in CD133 by mass spectrometry and found that all eight potential N-glycosylation sites of CD133 could be indeed occupied by N-glycans. Loss of individual N-glycosylation sites had no effect on the level of expression or membrane localization of CD133. However, mutation at glycosylation site Asn548 significantly decreased the ability of CD133 to promote hepatoma cell growth. Furthermore, mutation of Asn548 reduced the interaction between CD133 and β-catenin and inhibited the activation of β-catenin signaling by CD133 overexpression. Our results identified the characteristics and function of CD133 glycosylation sites. These data could potentially shed light on molecular regulation of CD133 by glycosylation and enhance our understanding of the utility of glycosylated CD133 as a target for cancer therapies.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Shifang Ren
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Liqi Xie
- Institutes of Biomedical Sciences of Fudan University, Shanghai, People's Republic of China
| | - Chunhong Cui
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yang Xing
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Chanjuan Liu
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Benjin Cao
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Fan Yang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yinan Li
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Xiaoning Chen
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Yuanyan Wei
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Institutes of Biomedical Sciences of Fudan University, Shanghai, People's Republic of China
| | - Jianhai Jiang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016; 37:1407-19. [PMID: 26872045 PMCID: PMC4889498 DOI: 10.1002/elps.201500552] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins mediate cell-cell interactions and adhesion, the transfer of ions and metabolites, and the transmission of signals from the extracellular environment to the cell interior. The extracellular domains of most cell membrane proteins are glycosylated, often at multiple sites. There is a growing awareness that glycosylation impacts the structure, interaction, and function of membrane proteins. The application of glycoproteomics and glycomics methods to membrane proteins has great potential. However, challenges also arise from the unique physical properties of membrane proteins. Successful analytical workflows must be developed and disseminated to advance functional glycoproteomics and glycomics studies of membrane proteins. This review explores the opportunities and challenges related to glycomic and glycoproteomic analysis of membrane proteins, including discussion of sample preparation, enrichment, and MS/MS analyses, with a focus on recent successful workflows for analysis of N- and O-linked glycosylation of mammalian membrane proteins.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Lu H, Zhang Y, Yang P. Advancements in mass spectrometry-based glycoproteomics and glycomics. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Protein N-glycosylation plays a crucial role in a considerable number of important biological processes. Research studies on glycoproteomes and glycomes have already characterized many glycoproteins and glycans associated with cell development, life cycle, and disease progression. Mass spectrometry (MS) is the most powerful tool for identifying biomolecules including glycoproteins and glycans, however, utilizing MS-based approaches to identify glycoproteomes and glycomes is challenging due to the technical difficulties associated with glycosylation analysis. In this review, we summarize the most recent developments in MS-based glycoproteomics and glycomics, including a discussion on the development of analytical methodologies and strategies used to explore the glycoproteome and glycome, as well as noteworthy biological discoveries made in glycoproteome and glycome research. This review places special emphasis on China, where scientists have made sizeable contributions to the literature, as advancements in glycoproteomics and glycomincs are occurring quite rapidly.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Systems Biology for Medicine, School of Basic Medicine and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Key Lab of Glycoconjugate of Ministry of Health and Birth Control, Fudan University, Shanghai 200032, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Ying Zhang
- Department of Systems Biology for Medicine, School of Basic Medicine and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Key Lab of Glycoconjugate of Ministry of Health and Birth Control, Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- Department of Systems Biology for Medicine, School of Basic Medicine and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Key Lab of Glycoconjugate of Ministry of Health and Birth Control, Fudan University, Shanghai 200032, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|