1
|
Vuillemin M, Muschiol J, Zhang Y, Holck J, Barrett K, Preben Morth J, Meyer AS, Zeuner B. Discovery of Lacto-N-Biosidases and a Novel N-Acetyllactosaminidase Activity in the CAZy Family GH20: Functional Diversity and Structural Insights. Chembiochem 2024:e202400710. [PMID: 39239753 DOI: 10.1002/cbic.202400710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
The glycoside hydrolase family 20 (GH20) predominantly features N-acetylhexosaminidases (EC 3.2.1.52), with only few known lacto-N-biosidases (EC 3.2.1.140; LNBases). LNBases catalyze the degradation of lacto-N-tetraose (LNT), a prominent component of human milk oligosaccharides, thereby supporting a healthy infant gut microbiome development. We investigated GH20 diversity to discover novel enzymes that release disaccharides such as lacto-N-biose (LNB). Our approach combined peptide clustering, sequence analysis, and 3D structure model evaluation to assess active site topologies, focusing on the presence of a subsite -2. Five LNBases were active on pNP-LNB and four showed activity on LNT. One enzyme displayed activity on both pNP-LacNAc and pNP-LNB, establishing the first report of N-acetyllactosaminidase (LacNAcase) activity. Exploration of this enzyme cluster led to the identification of four additional enzymes sharing this dual substrate specificity. Comparing the determined crystal structure of a specific LNBase (TrpyGH20) and the first crystal structure of an enzyme with dual LacNAcase/LNBase activity (TrdeGH20) revealed a highly conserved subsite -1, common to GH20 enzymes, while the -2 subsites varied significantly. TrdeGH20 had a wider subsite -2, accommodating Gal with both β1,4- and β1,3-linkages to the GlcNAc in subsite -1. Biotechnological applications of these enzymes may include structural elucidation of complex carbohydrates and glycoengineering.
Collapse
Affiliation(s)
- Marlene Vuillemin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Jan Muschiol
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
- Current address: Ocean EcoSystems Biology Unit, Marine Ecology Research Department, GEOMAR Helmholtz Centre for Ocean Research, Wischhofstraβe 1-3, 24148, Kiel, Germany
| | - Yan Zhang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Birgitte Zeuner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Rizzo SM, Vergna LM, Alessandri G, Lee C, Fontana F, Lugli GA, Carnevali L, Bianchi MG, Barbetti M, Taurino G, Sgoifo A, Bussolati O, Turroni F, van Sinderen D, Ventura M. GH136-encoding gene (perB) is involved in gut colonization and persistence by Bifidobacterium bifidum PRL2010. Microb Biotechnol 2024; 17:e14406. [PMID: 38271233 PMCID: PMC10884991 DOI: 10.1111/1751-7915.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ciaran Lee
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Luca Carnevali
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Massimiliano G. Bianchi
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giuseppe Taurino
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Andrea Sgoifo
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ovidio Bussolati
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Interdepartmental Research Centre “Microbiome Research Hub”University of ParmaParmaItaly
| |
Collapse
|
3
|
Gotoh A, Hidaka M, Sakurama H, Nishimoto M, Kitaoka M, Sakanaka M, Fushinobu S, Katayama T. Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from Bifidobacterium longum subspecies infantis ( BiBga42A) revealed by crystallographic and mutational analyses. MICROBIOME RESEARCH REPORTS 2023; 2:20. [PMID: 38046823 PMCID: PMC10688820 DOI: 10.20517/mrr.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 12/05/2023]
Abstract
Aim: Bifidobacterium longum subsp. infantis uses a glycoside hydrolase (GH) family 42 β-galactosidase (BiBga42A) for hydrolyzing lacto-N-tetraose (LNT), which is the most abundant core structure of human milk oligosaccharides (HMOs). As such, BiBga42A represents one of the pivotal enzymes underpinning the symbiosis between bifidobacteria and breastfed infants. Despite its importance, the structural basis underlying LNT hydrolysis by BiBga42A is not understood. Moreover, no substrate-complexed structures are available to date for GH42 family members. Methods: X-ray crystallography was used to determine the structures of BiBga42A in the apo- and liganded forms. The roles of the amino acid residues that were presumed to be involved in catalysis and substrate recognition were examined by a mutational study, in which kinetic parameters of each mutant were determined using 4-nitrophenyl-β-D-galactoside, lacto-N-biose I, LNT, and lacto-N-neotetraose (LNnT) as substrates. Conservation of those amino acid residues was examined among structure-determined GH42 β-galactosidases. Results: Crystal structures of the wild-type enzyme complexed with glycerol, the E160A/E318A double mutant complexed with galactose (Gal), and the E318S mutant complexed with LNT were determined at 1.7, 1.9, and 2.2 Å resolutions, respectively. The LNT molecule (excluding the Gal moiety at subsite +2) bound to the E318S mutant is recognized by an extensive hydrogen bond network and several hydrophobic interactions. The non-reducing end Gal moiety of LNT adopts a slightly distorted conformation and does not overlap well with the Gal molecule bound to the E160A/E318A mutant. Twelve of the sixteen amino acid residues responsible for LNT recognition and catalysis in BiBga42A are conserved among all homologs including β-1,6-1,3-galactosidase (BlGal42A) from Bifidobacterium animalis subsp. lactis. Conclusion: BlGal42A is active on 3-β-galactobiose similarly to BiBga42A but is inactive on LNT. Interestingly, we found that the entrance of the catalytic pocket of BlGal42A is narrower than that of BiBga42A and seems not easily accessible from the solvent side due to the presence of two bulky amino acid side chains. The specificity difference may reflect the structural difference between the two enzymes.
Collapse
Affiliation(s)
- Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Masafumi Hidaka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Haruko Sakurama
- Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Mamoru Nishimoto
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Motomitsu Kitaoka
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
- Faculty of Agriculture, Niigata University, Niigata 950-2102, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
4
|
Wei X, Yu L, Zhang C, Ni Y, Zhang H, Zhai Q, Tian F. Genetic-Phenotype Analysis of Bifidobacterium bifidum and Its Glycoside Hydrolase Gene Distribution at Different Age Groups. Foods 2023; 12:foods12050922. [PMID: 36900439 PMCID: PMC10000437 DOI: 10.3390/foods12050922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Human gut microbiota interfere with host development and aging. Bifidobacterium is a microbial genus found in the human digestive tract that has probiotic activities such as improving constipation and enhancing immunity. The species and numbers present change with age, but there has been limited research on probiotic gut microbiota at specific ages. This study analyzed the distribution of 610 bifidobacteria in subjects in several age groups (0-17, 18-65, and 66-108 y) using 486 fecal samples and determined the distribution of glycoside hydrolases based on genetic analysis of strains representing 85% of the Bifidobacterium species abundance in each age group. 6'-Sialyllactose is a major component of acidic breast milk oligosaccharides, which can promote human neurogenesis and bifidobacteria growth. Using genotypic and phenotypic association analysis, we investigated the utilization of 6'-sialyllactose by six B. bifidum strains isolated from subjects 0-17 and 18-65 y. A comparative genomic analysis of the six B. bifidum strains revealed differences in genomic features across age groups. Finally, the safety of these strains was evaluated by antibiotic gene and drug resistance phenotype analysis. Our results reveal that the distribution of glycoside hydrolase genes in B. bifidum varies with age, thus affecting the phenotypic results. This provides important insights for the design and application of probiotic products for different ages.
Collapse
Affiliation(s)
- Xiaojing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85912155
| | - Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Yamada C, Katayama T, Fushinobu S. Crystal structures of glycoside hydrolase family 136 lacto-N-biosidases from monkey gut- and human adult gut bacteria. Biosci Biotechnol Biochem 2022; 86:464-475. [PMID: 35092420 DOI: 10.1093/bbb/zbac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022]
Abstract
Glycoside hydrolase family 136 (GH136) was established after the discovery and structural analysis of lacto-N-biosidase (LNBase) from the infant gut bacterium Bifidobacterium longum subsp. longum JCM1217 (BlLnbX). Homologous genes of BlLnbX are widely distributed in the genomes of human gut bacteria and monkey Bifidobacterium spp., although only 2 crystal structures were reported in the GH136 family. Cell suspensions of Bifidobacterium saguini, Tyzzerella nexilis, and Ruminococcus lactaris exhibited the LNBase activity. Recombinant LNBases of these 3 species were functionally expressed with their specific chaperones in Escherichia coli, and their kinetic parameters against p-nitrophenol substrates were determined. The crystal structures of the LNBases from B. saguini and T. nexilis in complex with lacto-N-biose I were determined at 2.51 and 1.92 Å resolutions, respectively. These structures conserve a β-helix fold characteristic of GH136 and the catalytic residues, but they lack the metal ions that were present in BlLnbX.
Collapse
Affiliation(s)
- Chihaya Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
7
|
Katoh T, Ojima MN, Sakanaka M, Ashida H, Gotoh A, Katayama T. Enzymatic Adaptation of Bifidobacterium bifidum to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules. Microorganisms 2020; 8:microorganisms8040481. [PMID: 32231096 PMCID: PMC7232152 DOI: 10.3390/microorganisms8040481] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Certain species of the genus Bifidobacterium represent human symbionts. Many studies have shown that the establishment of symbiosis with such bifidobacterial species confers various beneficial effects on human health. Among the more than ten (sub)species of human gut-associated Bifidobacterium that have significantly varied genetic characteristics at the species level, Bifidobacterium bifidum is unique in that it is found in the intestines of a wide age group, ranging from infants to adults. This species is likely to have adapted to efficiently degrade host-derived carbohydrate chains, such as human milk oligosaccharides (HMOs) and mucin O-glycans, which enabled the longitudinal colonization of intestines. The ability of this species to assimilate various host glycans can be attributed to the possession of an adequate set of extracellular glycoside hydrolases (GHs). Importantly, the polypeptides of those glycosidases frequently contain carbohydrate-binding modules (CBMs) with deduced affinities to the target glycans, which is also a distinct characteristic of this species among members of human gut-associated bifidobacteria. This review firstly describes the prevalence and distribution of B. bifidum in the human gut and then explains the enzymatic machinery that B. bifidum has developed for host glycan degradation by referring to the functions of GHs and CBMs. Finally, we show the data of co-culture experiments using host-derived glycans as carbon sources, which underpin the interesting altruistic behavior of this species as a cross-feeder.
Collapse
Affiliation(s)
- Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
| | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
| | - Mikiyasu Sakanaka
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark;
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan;
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; (T.K.); (M.N.O.); (A.G.)
- Correspondence: ; Tel.: +81-75-753-9233
| |
Collapse
|
8
|
Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation. Nutrients 2019; 12:nu12010071. [PMID: 31888048 PMCID: PMC7019425 DOI: 10.3390/nu12010071] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023] Open
Abstract
The infant's gut microbiome is generally rich in the Bifidobacterium genus. The mother's milk contains natural prebiotics, called human milk oligosaccharides (HMOs), as the third most abundant solid component after lactose and lipids, and of the different gut microbes, infant gut-associated bifidobacteria are the most efficient in assimilating HMOs. Indeed, the fecal concentration of HMOs was found to be negatively correlated with the fecal abundance of Bifidobacterium in infants. Given these results, two HMO molecules, 2'-fucosyllactose and lacto-N-neotetraose, have recently been industrialized to fortify formula milk. As of now, however, our knowledge about the HMO consumption pathways in infant gut-associated bifidobacteria is still incomplete. The recent studies indicate that HMO assimilation abilities significantly vary among different Bifidobacterium species and strains. Therefore, to truly maximize the effects of prebiotic and probiotic supplementation in commercialized formula, we need to understand HMO consumption behaviors of bifidobacteria in more detail. In this review, we summarized how different Bifidobacterium species/strains are equipped with varied gene sets required for HMO assimilation. We then examined the correlation between the abundance of the HMO-related genes and bifidobacteria-rich microbiota formation in the infant gut through data mining analysis of a deposited fecal microbiome shotgun sequencing dataset. Finally, we shortly described future perspectives on HMO-related studies.
Collapse
|
9
|
Gotoh A, Ojima MN, Katayama T. Minority species influences microbiota formation: the role of Bifidobacterium with extracellular glycosidases in bifidus flora formation in breastfed infant guts. Microb Biotechnol 2019; 12:259-264. [PMID: 30637938 PMCID: PMC6389856 DOI: 10.1111/1751-7915.13366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
The human body houses a variety of microbial ecosystems, such as the microbiotas on the skin, in the oral cavity and in the digestive tract. The gut microbiota is one such ecosystem that contains trillions of bacteria, and it is well established that it can significantly influence host health and diseases. With the advancement in bioinformatics tools, numerous comparative studies based on 16S ribosomal RNA (rRNA) gene sequences, metabolomics, pathological and epidemical analyses have revealed the correlative relationship between the abundance of certain taxa and disease states or amount of certain causative bioactive compounds. However, the 16S rRNA-based taxonomic analyses using next-generation sequencing (NGS) technology essentially detect only the majority species. Although the entire gut microbiome consists of 1013 microbial cells, NGS read counts are given in multiples of 106 , making it difficult to determine the diversity of the entire microbiota. Some recent studies have reported instances where certain minority species play a critical role in creating locally stable conditions for other species by stabilizing the fundamental microbiota, despite their low abundance. These minority species act as 'keystone species', which is a species whose effect on the community is disproportionately large compared to its relative abundance. One of the attributes of keystone species within the gut microbiota is its extensive enzymatic capacity for substrates that are rare or difficult to degrade for other species, such as dietary fibres or host-derived complex glycans, like human milk oligosaccharides (HMOs). In this paper, we propose that more emphasis should be placed on minority taxa and their possible role as keystone species in gut microbiota studies by referring to our recent studies on HMO-mediated microbiota formation in the infant gut.
Collapse
Affiliation(s)
- Aina Gotoh
- Graduate School of BiostudiesKyoto UniversitySakyo‐kuKyoto606‐8502Japan
| | | | - Takane Katayama
- Graduate School of BiostudiesKyoto UniversitySakyo‐kuKyoto606‐8502Japan
| |
Collapse
|
10
|
Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci Rep 2018; 8:13958. [PMID: 30228375 PMCID: PMC6143587 DOI: 10.1038/s41598-018-32080-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities.
Collapse
|
11
|
Zúñiga M, Monedero V, Yebra MJ. Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species. Front Microbiol 2018; 9:1917. [PMID: 30177920 PMCID: PMC6109692 DOI: 10.3389/fmicb.2018.01917] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
Members of the genus Lactobacillus are commonly found at the gastrointestinal tract and other mucosal surfaces of humans. This genus includes various species with a great number of potentially probiotic bacteria. Other often-used probiotic species belong to Bifidobacterium, a genus almost exclusively associated with the gut. As probiotics must survive and be metabolically active at their target sites, namely host mucosal surfaces, consumption of host-produced glycans is a key factor for their survival and activity. The ability to metabolize glycans such as human milk oligosaccharides (HMOs), glycosaminoglycans and the glycan moieties of glycoproteins and glycolipids found at the mucosal surfaces grants a competitive advantage to lactobacilli and bifidobacteria. The analyses of the great number of sequenced genomes from these bacteria have revealed that many of them encode a wide assortment of genes involved in the metabolism and transport of carbohydrates, including several glycoside hydrolases required for metabolizing the carbohydrate moieties of mucins and HMOs. Here, the current knowledge on the genetic mechanisms, known catabolic pathways and biochemical properties of enzymes involved in the utilization of host-produced glycans by lactobacilli and bifidobacteria will be summarized.
Collapse
Affiliation(s)
- Manuel Zúñiga
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - María J Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
12
|
Molecular Insight into Evolution of Symbiosis between Breast-Fed Infants and a Member of the Human Gut Microbiome Bifidobacterium longum. Cell Chem Biol 2017; 24:515-524.e5. [PMID: 28392148 DOI: 10.1016/j.chembiol.2017.03.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022]
Abstract
Breast-fed infants generally have a bifidobacteria-rich microbiota with recent studies indicating that human milk oligosaccharides (HMOs) selectively promote bifidobacterial growth. Bifidobacterium bifidum possesses a glycoside hydrolase family 20 lacto-N-biosidase for liberating lacto-N-biose I from lacto-N-tetraose, an abundant HMO unique to human milk, while Bifidobacterium longum subsp. longum has a non-classified enzyme (LnbX). Here, we determined the crystal structure of the catalytic domain of LnbX and provide evidence for creation of a novel glycoside hydrolase family, GH136. The structure, in combination with inhibition and mutation studies, provides insight into the molecular mechanism and broader substrate specificity of this enzyme. Moreover, through genetic studies, we show that lnbX is indispensable for B. longum growth on lacto-N-tetraose and is a key genetic factor for persistence in the gut of breast-fed infants. Overall, this study reveals possible evolutionary routes for the emergence of symbiosis between humans and bifidobacterial species in the infant gut.
Collapse
|
13
|
Sugiyama Y, Gotoh A, Katoh T, Honda Y, Yoshida E, Kurihara S, Ashida H, Kumagai H, Yamamoto K, Kitaoka M, Katayama T. Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-l-fucosynthase. Glycobiology 2016; 26:1235-1247. [DOI: 10.1093/glycob/cww085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
|
14
|
Katayama T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria†. Biosci Biotechnol Biochem 2016; 80:621-32. [DOI: 10.1080/09168451.2015.1132153] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Lactation is a common feeding strategy of eutherian mammals, but its functions go beyond feeding the neonates. Ever since Tissier isolated bifidobacteria from the stool of breast-fed infants, human milk has been postulated to contain compounds that selectively stimulate the growth of bifidobacteria in intestines. However, until relatively recently, there have been no reports to link human milk compound(s) with bifidobacterial physiology. Over the past decade, successive studies have demonstrated that infant-gut-associated bifidobacteria are equipped with genetic and enzymatic toolsets dedicated to assimilation of host-derived glycans, especially human milk oligosaccharides (HMOs). Among gut microbes, the presence of enzymes required for degrading HMOs with type-1 chains is essentially limited to infant-gut-associated bifidobacteria, suggesting HMOs serve as selected nutrients for the bacteria. In this study, I shortly discuss the research on bifidobacteria and HMOs from a historical perspective and summarize the roles of bifidobacterial enzymes in the assimilation of HMOs with type-1 chains. Based on this overview, I suggest the co-evolution between bifidobacteria and human beings mediated by HMOs.
Collapse
Affiliation(s)
- Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
| |
Collapse
|
15
|
Hattie M, Ito T, Debowski AW, Arakawa T, Katayama T, Yamamoto K, Fushinobu S, Stubbs KA. Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis. Chem Commun (Camb) 2015; 51:15008-11. [DOI: 10.1039/c5cc05494j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesis and structural analysis of rationally developed inhibitors.
Collapse
Affiliation(s)
- Mitchell Hattie
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| | - Tasuku Ito
- National Food Research Institute
- National Agriculture and Food Research Organization
- Tsukuba
- Japan
| | - Aleksandra W. Debowski
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
- School of Pathology and Laboratory Medicine
| | - Takatoshi Arakawa
- Department of Biotechnology
- The University of Tokyo
- Tokyo 113-8657
- Japan
| | - Takane Katayama
- Graduate School of Biostudies
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology
- Ishikawa Prefectural University
- Nonoichi
- Japan
| | - Shinya Fushinobu
- Department of Biotechnology
- The University of Tokyo
- Tokyo 113-8657
- Japan
| | - Keith A. Stubbs
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| |
Collapse
|