1
|
Ross P, Farrell MP. The Road to Structurally Defined β-Glucans. CHEM REC 2021; 21:3178-3193. [PMID: 34010496 PMCID: PMC9109639 DOI: 10.1002/tcr.202100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Indexed: 01/28/2023]
Abstract
β-glucans are polymers of glucose that have been isolated from a variety of organisms. Isolated β-glucans have been used for medical purposes for centuries; however, efforts to define the biological activities of β-glucans experimentally were initiated in the 1940's. The diversity of structure associated with isolated β-glucans has impeded said investigations, and efforts to leverage the biological activity of β-glucans for clinical applications. In recognition of the need for defined β-glucans that retain the biological activity of isolated β-glucans, considerable investment has been made to facilitate the synthesis of structurally defined β-glucans. Here, we review the different approaches that have been applied to prepare β-glucans. In addition, we summarize the approaches that have been utilized to conjugate β-glucans to proteins.
Collapse
Affiliation(s)
- Patrick Ross
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Mark P Farrell
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
2
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Gold(I)-promoted synthesis of a β-(1,3)-glucan hexadecasaccharide via the highly convergent strategy. Carbohydr Res 2019; 482:107735. [DOI: 10.1016/j.carres.2019.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 11/20/2022]
|
4
|
Turney T, Pan Q, Zhang W, Oliver AG, Serianni AS. O-Benzoyl side-chain conformations in 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-1,2,6-tri-O-benzoyl-β-D-glucopyranose (ethyl acetate solvate) and 1,2,4,6-tetra-O-benzoyl-β-D-glucopyranose (acetone solvate). ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:161-167. [DOI: 10.1107/s2053229619000822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/17/2019] [Indexed: 05/30/2023]
Abstract
The crystal structures of 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-1,2,6-tri-O-benzoyl-β-D-glucopyranose ethyl acetate hemisolvate, C61H50O18·0.5C4H8O2, and 1,2,4,6-tetra-O-benzoyl-β-D-glucopyranose acetone monosolvate, C34H28O10·C3H6O, were determined and compared to those of methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (methyl β-lactoside) and methyl β-D-glucopyranoside hemihydrate, C7H14O6·0.5H2O, to evaluate the effects of O-benzoylation on bond lengths, bond angles and torsion angles. In general, O-benzoylation exerts little effect on exo- and endocyclic C—C and endocyclic C—O bond lengths, but exocyclic C—O bonds involved in O-benzoylation are lengthened by 0.02–0.04 Å depending on the site of substitution. The conformation of the O-benzoyl side-chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°-alcoholic C atom or bisecting the H—C—H bond angle of an 1°-alcoholic C atom. Of the three bonds that determine the side-chain geometry, the C—O bond involving the alcoholic C atom exhibits greater rotational variability than the remaining C—O and C—C bonds involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of the O-acetyl side-chain conformation in saccharides.
Collapse
|
5
|
Lacey KD, Quarels RD, Du S, Fulton A, Reid NJ, Firesheets A, Ragains JR. Acid-Catalyzed O-Glycosylation with Stable Thioglycoside Donors. Org Lett 2018; 20:5181-5185. [DOI: 10.1021/acs.orglett.8b02125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kristina D. Lacey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rashanique D. Quarels
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Shaofu Du
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ashley Fulton
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Nicholas J. Reid
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Austin Firesheets
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
A Three Component Synthetic Vaccine Containing a β-Mannan T-Cell Peptide Epitope and a β-Glucan Dendritic Cell Ligand. Molecules 2018; 23:molecules23081961. [PMID: 30082627 PMCID: PMC6222438 DOI: 10.3390/molecules23081961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 12/04/2022] Open
Abstract
Glycoconjugates prepared from the capsular polysaccharide of several pathogenic bacteria and carrier proteins, such as CRM 197 or tetanus toxoid, have been one of the most successful public health measures to be implemented in the last quarter century. A crucial element in the success of conjugate vaccines has been the recruitment of T-cell help and systematic induction of a secondary immune response. The seminal discovery, that degraded polysaccharide fragments with attached peptide are presented to the T-cell receptor of carbohydrate specific T-cells by MHC-II molecules that bind to the peptide component of degraded vaccine, suggests potentially novel designs for conjugate vaccines. A fully synthetic conjugate vaccine was constructed from a 1,2-linked β-mannose trisaccharide conjugated to a T-cell peptide, previously shown to afford protection against Candida albicans. This combined B- and T-cell epitope was synthesized with a C-terminal azidolysine residue for subsequent conjugation by click chemistry. Four copies of a β-1,3 linked hexaglucan dendritic cell epitope were conjugated to an asymmetric dendrimer bearing an alkyne terminated tether. Click chemistry of these two components created a conjugate vaccine that induced antibodies to all three epitopes of the fully synthetic construct.
Collapse
|
7
|
Kinnaert C, Daugaard M, Nami F, Clausen MH. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae. Chem Rev 2017; 117:11337-11405. [DOI: 10.1021/acs.chemrev.7b00162] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Kinnaert
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mathilde Daugaard
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
|
9
|
Yashunsky DV, Tsvetkov YE, Grachev AA, Chizhov AO, Nifantiev NE. Synthesis of 3-aminopropyl glycosides of linear β-(1 → 3)-D-glucooligosaccharides. Carbohydr Res 2015; 419:8-17. [PMID: 26595660 DOI: 10.1016/j.carres.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022]
Abstract
3-Aminopropyl glycosides of a series of linear β-(1 → 3)-linked D-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed.
Collapse
Affiliation(s)
- Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Alexey A Grachev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Alexander O Chizhov
- Division of Structural Studies, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| |
Collapse
|