1
|
Maj W, Pertile G, Różalska S, Skic K, Frąc M. The role of food preservatives in shaping metabolic profile and chemical sensitivity of fungi - an extensive study on crucial mycological food contaminants from the genus Neosartorya (Aspergillus spp.). Food Chem 2024; 453:139583. [PMID: 38772305 DOI: 10.1016/j.foodchem.2024.139583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Food preservatives are crucial in fruit production, but fungal resistance is a challenge. The main objective was to compare the sensitivity of Neosartorya spp. isolates to preservatives used in food security applications and to assess the role of metabolic properties in shaping Neosartorya spp. resistance. Sodium metabisulfite, potassium sorbate, sodium bisulfite and sorbic acid showed inhibitory effects, with sodium metabisulfite the most effective. Tested metabolic profiles included fungal growth intensity and utilization of amines and amides, amino acids, polymers, carbohydrates and carboxylic acids. Significant decreases in the utilization of all tested organic compound guilds were observed after fungal exposure to food preservatives compared to the control. Although the current investigation was limited in the number of predominately carbohydrate substrates and the breadth of metabolic responses, extensive sensitivity panels are logical step in establishing a course of action against spoilage agents in food production being important approach for innovative food chemistry.
Collapse
Affiliation(s)
- Wiktoria Maj
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Giorgia Pertile
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237 Łódź, Poland
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
2
|
Furevi A, Ruda A, Angles d’Ortoli T, Mobarak H, Ståhle J, Hamark C, Fontana C, Engström O, Apostolica P, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPER. Carbohydr Res 2022; 513:108528. [DOI: 10.1016/j.carres.2022.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Kuenstner EJ, Palumbo EA, Levine J, Snyder NL. Synthesis of isobemisiose, neosartose, and fischerose: three α-1,6-linked trehalose-based oligosaccharides identified from Neosartorya fischeri. RSC Adv 2020; 10:22726-22729. [PMID: 35514568 PMCID: PMC9054618 DOI: 10.1039/d0ra04137h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
Three complex α-1,6-linked trehalose-based oligosaccharides with unique preservation properties, isobemisiose, neosartose, and fischerose, were recently identified from the extreme stress-tolerant ascospores of Neosartorya fischeri. Herein, we report the first concise, scalable, and iterative chemical synthesis of these oligosaccharides from a differentially protected thioglycoside donor and a selectively protected, asymmetric trehalose acceptor. This work constitutes an improved synthesis of isobemisiose, and is also the first reported synthesis of neosartose, a tetrasaccharide, and fischerose, a pentasaccharide, in good yield. Importantly, in-depth studies of biological function are enabled by this synthetic platform.
Collapse
Affiliation(s)
- E J Kuenstner
- Department of Chemistry, Davidson College Box 7120 Davidson NC 28036 USA
| | - E A Palumbo
- Department of Chemistry, Davidson College Box 7120 Davidson NC 28036 USA
| | - J Levine
- Department of Chemistry, Davidson College Box 7120 Davidson NC 28036 USA
| | - N L Snyder
- Department of Chemistry, Davidson College Box 7120 Davidson NC 28036 USA
| |
Collapse
|
5
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
6
|
Mulero-Aparicio A, Cernava T, Turrà D, Schaefer A, Di Pietro A, López-Escudero FJ, Trapero A, Berg G. The Role of Volatile Organic Compounds and Rhizosphere Competence in Mode of Action of the Non-pathogenic Fusarium oxysporum FO12 Toward Verticillium Wilt. Front Microbiol 2019; 10:1808. [PMID: 31428080 PMCID: PMC6688467 DOI: 10.3389/fmicb.2019.01808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Verticillium wilts caused by Verticillium spp. are among the most challenging plant diseases to control and affect numerous hosts worldwide. Due to the lack of effective, conventional control methods, integrated control strategies provide a promising approach to manage these diseases. The non-pathogenic Fusarium oxysporum strain FO12 was reported in previous studies to be an effective biocontrol agent against Verticillium dahliae, however, its mode of action remains to be elucidated. In this study, complementary in vitro and in vivo experiments were conducted in order to explore the implications of inhibitory substances and rhizosphere competence in antagonistic effects of FO12 against V. dahliae and V. longisporum. Volatile organic compounds and soluble substances produced by FO12, which caused significant inhibition of mycelial growth and microsclerotia viability in the two tested Verticillium species, were identified by means of gas and liquid chromatography-mass spectrometry. We showed that the antagonistic effect of F. oxysporum FO12 is partially due to the production of bioactive compounds such as 3-methyl-1-butanol and 2-methyl-1-butanol, among others. Several metabolic pathways of FO12 were altered upon contact with V. dahliae ELV22 volatiles. The reduced production of alpha, alpha-trehalose, a metabolite used in starch and sucrose metabolism, suggests that the biocontrol agent activates its stress response in the presence of the phytopathogen. Microscopic analysis using sGFP-tagged FO12 on oil seed rape as a model plant suggests that the biocontrol strain is an efficient root colonizer, which could compete with V. dahliae in the same ecological niche. The findings obtained in this study provide new insights into the mode of action of this potential biocontrol agent, which are relevant for controlling Verticillium wilt through an ecologically friendly approach.
Collapse
Affiliation(s)
- Antonio Mulero-Aparicio
- Grupo de Patología Agroforestal, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Departamento de Agronomía, Universidad de Córdoba, Córdoba, Spain
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - David Turrà
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Angelika Schaefer
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier López-Escudero
- Grupo de Patología Agroforestal, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Departamento de Agronomía, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Trapero
- Grupo de Patología Agroforestal, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Departamento de Agronomía, Universidad de Córdoba, Córdoba, Spain
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
7
|
Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol 2018; 81:2-11. [PMID: 30910084 DOI: 10.1016/j.fm.2018.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
Abstract
This review highlights the variability of fungal spores with respect to cell type, mode of formation and stress resistance. The function of spores is to disperse fungi to new areas and to get them through difficult periods. This also makes them important vehicles for food contamination. Formation of spores is a complex process that is regulated by the cooperation of different transcription factors. The discussion of the biology of spore formation, with the genus Aspergillus as an example, points to possible novel ways to eradicate fungal spore production in food. Fungi can produce different types of spores, sexual and asexually, within the same colony. The absence or presence of sexual spore formation has led to a dual nomenclature for fungi. Molecular techniques have led to a revision of this nomenclature. A number of fungal species form sexual spores, which are exceptionally stress-resistant and survive pasteurization and other treatments. A meta-analysis is provided of numerous D-values of heat-resistant ascospores generated during the years. The relevance of fungal spores for food microbiology has been discussed.
Collapse
|
8
|
Dijksterhuis J, Meijer M, van Doorn T, Samson R, Rico-Munoz E. Inactivation of stress-resistant ascospores of Eurotiales by industrial sanitizers. Int J Food Microbiol 2018; 285:27-33. [DOI: 10.1016/j.ijfoodmicro.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
9
|
|
10
|
Miranda-Molina A, Castillo E, Lopez Munguia A. A novel two-step enzymatic synthesis of blastose, a β-d-fructofuranosyl-(2↔6)-d-glucopyranose sucrose analogue. Food Chem 2017; 227:202-210. [DOI: 10.1016/j.foodchem.2017.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 11/29/2022]
|
11
|
van Leeuwen MR, Wyatt TT, van Doorn TM, Lugones LG, Wösten HAB, Dijksterhuis J. Hydrophilins in the filamentous fungus Neosartorya fischeri (Aspergillus fischeri) have protective activity against several types of microbial water stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:45-52. [PMID: 26487515 DOI: 10.1111/1758-2229.12349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 10/09/2015] [Accepted: 10/17/2015] [Indexed: 05/10/2023]
Abstract
Hydrophilins are proteins that occur in all domains of life and protect cells and organisms against drought and other stresses. They include most of the late embryogenesis abundant (LEA) proteins and the heat shock protein (HSP) Hsp12. Here, the role of a predicted LEA-like protein (LeamA) and two Hsp12 proteins (Hsp12A and Hsp12B) of Neosartorya fischeri was studied. This filamentous fungus forms ascospores that belong to the most stress-resistant eukaryotic cells described to date. Heterologous expression of LeamA, Hsp12A and Hsp12B resulted in increased tolerance against salt and osmotic stress in Escherichia coli. These proteins were also shown to protect lactate dehydrogenase against dry heat and freeze-thaw cycles in vitro. Deletion of leamA caused diminished viability of sexual ascospores after drought and heat. This is the first report on functionality of Hsp12 and putative LeamA proteins derived from filamentous fungi, and their possible role in N. fischeri ascospore resistance against desiccation, high temperature and osmotic stress is discussed.
Collapse
Affiliation(s)
- M R van Leeuwen
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - T T Wyatt
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - T M van Doorn
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L G Lugones
- Microbiology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - H A B Wösten
- Microbiology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - J Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
12
|
Chaube MA, Sarpe VA, Jana S, Kulkarni SS. First total synthesis of trehalose containing tetrasaccharides from Mycobacterium smegmatis. Org Biomol Chem 2016; 14:5595-8. [DOI: 10.1039/c6ob00412a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total synthesis of three important trehalose containing tetrasaccharides isolated fromMycobacterium smegmatisis reported for the first time, using regioselective opening of benzylidene acetals and stereoselective glycosylations as key steps.
Collapse
Affiliation(s)
| | - Vikram A. Sarpe
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Santanu Jana
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Suvarn S. Kulkarni
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
13
|
Walmagh M, Zhao R, Desmet T. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production. Int J Mol Sci 2015; 16:13729-45. [PMID: 26084050 PMCID: PMC4490520 DOI: 10.3390/ijms160613729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 12/23/2022] Open
Abstract
Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-D-glucopyranosyl α-D-galactopyranoside) or galactotrehalose (α-D-galactopyranosyl α-D-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. "Greener" alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis.
Collapse
Affiliation(s)
- Maarten Walmagh
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Renfei Zhao
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Tom Desmet
- Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|