1
|
Bellich B, Cacioppo M, De Zorzi R, Rizzo R, Brady JW, Cescutti P. Interactions of biofilm polysaccharides produced by human infective bacteria with molecules of the quorum sensing system. A microscopy and NMR study. Int J Biol Macromol 2024; 281:136222. [PMID: 39362422 DOI: 10.1016/j.ijbiomac.2024.136222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Biofilms are the most common lifestyle adopted by bacterial communities where cells live embedded in a self-produced hydrated matrix. Although polysaccharides are considered essential for matrix architecture, their possible functional roles are still rather unexplored. The primary structure of polysaccharides produced by Klebsiella pneumoniae and species of the Burkholderia cepacia Complex revealed a composition rich in rhamnose. The methyl group on carbon 6 of rhamnose units lowers the polymer hydrophilicity and can form low polarity regions on the polysaccharide chains. These regions promote chain-chain interactions that contribute to the biofilm matrix stability, but may also act as binding sites for low-polarity molecules, aiding their mobility through the hydrated matrix. In particular, quorum sensing system components crucial for the biofilm life cycle often display poor solubility in water. Therefore, cis-11-methyl-2-dodecenoic acid and L-homoserine-lactones were investigated by NMR spectroscopy for their possible interaction with polysaccharides. In addition, the macromolecular morphology of the polysaccharides was assessed using atomic force and electron microscopies to define the role of Rha residues on the three-dimensional conformation of the polymer. NMR data revealed that quorum sensing components interact with Rhamnose-rich polysaccharides, and the extent of interaction depends on the specific primary structure of each polysaccharide.
Collapse
Affiliation(s)
- Barbara Bellich
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137 Trieste, Italy
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, Bld C11 University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - John W Brady
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - Paola Cescutti
- Department of Life Sciences, Bld C11 University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
2
|
Cacioppo M, De Zorzi R, Syrgiannis Z, Bellich B, Bertoncin P, Jou IA, Brady JW, Rizzo R, Cescutti P. Microscopy and modelling investigations on the morphology of the biofilm exopolysaccharide produced by Burkholderia multivorans strain C1576. Int J Biol Macromol 2023; 253:127294. [PMID: 37813217 PMCID: PMC10872726 DOI: 10.1016/j.ijbiomac.2023.127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Bacteria form very often biofilms where they embed in a self-synthesized matrix exhibiting a gel-like appearance. Matrices offer several advantages, including defence against external threats and the easiness of intercellular communication. In infections, biofilm formation enhances bacteria resistance against antimicrobials, causing serious clinical problems for patients' treatments. Biofilm matrices are composed of proteins, extracellular DNA, and polysaccharides, the latter being the major responsible for matrix architecture. The repeating unit of the biofilm polysaccharide synthesized by Burkholderia multivorans strain C1576 contains two mannoses and two sequentially linked rhamnoses, one of them 50 % methylated on C-3. Rhamnose, a 6-deoxysugar, has lower polarity than other common monosaccharides and its methylation further reduces polarity. This suggests a possible role of this polysaccharide in the biofilm matrix; in fact, computer modelling and atomic force microscopy studies evidenced intra- and inter-molecular non-polar interactions both within polysaccharides and with aliphatic molecules. In this paper, the polysaccharide three-dimensional morphology was investigated using atomic force microscopy in both solid and solution states. Independent evidence of the polymer conformation was obtained by transmission electron microscopy which confirmed the formation of globular compact structures. Finally, data from computer dynamic simulations were used to model the three-dimensional structure.
Collapse
Affiliation(s)
- Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Zois Syrgiannis
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Bertoncin
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Ining A Jou
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - John W Brady
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
3
|
Jou IA, Yoo AS, Dionne EV, Brady JW. Potential of mean force conformational energy maps for disaccharide linkages of the Burkholderia multivorans exopolysaccharide C1576 in aqueous solution. Carbohydr Res 2023; 524:108741. [PMID: 36716692 PMCID: PMC9974804 DOI: 10.1016/j.carres.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Potential of Mean Force Ramachandran energy maps in aqueous solution have been prepared for all of the glycosidic linkages found in the C1576 exopolysaccharide from the biofilms of the bacterial species Burkholderia multivorans, a member of the Burkholderia cepacian complex that was isolated from a cystic fibrosis patient. C1576 is a rhamnomannan with a tetrasaccharide repeat unit. In general, for the four linkage types in this polymer, hydration did not produce dramatic changes in the Ramachandran energy surfaces, with the 3-methyl-α-d-rhamnopyranose-(1→3)-α-d-rhamnopyranose case exhibiting the greatest hydration change, with the global minimum energy conformation shifting by more than 80° in ψ. However, hydration did reduce the rigidity of all the linkages, increasing the overall flexibility of this polysaccharide.
Collapse
Affiliation(s)
- Ining A Jou
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew S Yoo
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elyssa V Dionne
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - John W Brady
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Nepravishta R, Monaco S, Distefano M, Rizzo R, Cescutti P, Angulo J. Multifrequency STD NMR Unveils the Interactions of Antibiotics With Burkholderia multivorans Biofilm Exopolysaccharide. Front Mol Biosci 2021; 8:727980. [PMID: 34604306 PMCID: PMC8481691 DOI: 10.3389/fmolb.2021.727980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilms confine bacterial cells within self-produced matrices, offering advantages such as protection from antibiotics and entrapment of nutrients. Polysaccharides are major components in these macromolecular assemblies, and their interactions with other chemicals are of high relevance for the benefits provided by the biofilm 3D molecular matrix. NMR is a powerful technique for the study and characterization of the interactions between molecules of biological relevance. In this study, we have applied multifrequency saturation transfer difference (STD) NMR and DOSY NMR approaches to elucidate the interactions between the exopolysaccharide produced by Burkholderia multivorans C1576 (EpolC1576) and the antibiotics kanamycin and ceftadizime. The NMR strategies presented here allowed for an extensive characterization at an atomic level of the mechanisms behind the implication of the EpolC1576 in the recalcitrance phenomena, which is the ability of bacteria in biofilms to survive in the presence of antibiotics. Our results suggest an active role for EpolC1576 in the recalcitrance mechanisms toward kanamycin and ceftadizime, though through two different mechanisms.
Collapse
Affiliation(s)
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Marco Distefano
- Department Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Rizzo
- Department Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Cescutti
- Department Life Sciences, University of Trieste, Trieste, Italy
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom.,Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain.,Instituto de Investigaciones Químicas (CSIC-US), Seville, Spain
| |
Collapse
|
5
|
Terán LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P, Sblattero D. Proteomic Studies of the Biofilm Matrix including Outer Membrane Vesicles of Burkholderia multivorans C1576, a Strain of Clinical Importance for Cystic Fibrosis. Microorganisms 2020; 8:E1826. [PMID: 33228110 PMCID: PMC7699398 DOI: 10.3390/microorganisms8111826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Biofilms are aggregates of microbial cells encased in a highly hydrated matrix made up of self-produced extracellular polymeric substances (EPS) which consist of polysaccharides, proteins, nucleic acids, and lipids. While biofilm matrix polysaccharides are unraveled, there is still poor knowledge about the identity and function of matrix-associated proteins. With this work, we performed a comprehensive proteomic approach to disclose the identity of proteins associated with the matrix of biofilm-growing Burkholderia multivorans C1576 reference strain, a cystic fibrosis clinical isolate. Transmission electron microscopy showed that B. multivorans C1576 also releases outer membrane vesicles (OMVs) in the biofilm matrix, as already demonstrated for other Gram-negative species. The proteomic analysis revealed that cytoplasmic and membrane-bound proteins are widely represented in the matrix, while OMVs are highly enriched in outer membrane proteins and siderophores. Our data suggest that cell lysis and OMVs production are the most important sources of proteins for the B. multivorans C1576 biofilm matrix. Of note, some of the identified proteins are lytic enzymes, siderophores, and proteins involved in reactive oxygen species (ROS) scavenging. These proteins might help B. multivorans C1576 in host tissue invasion and defense towards immune system assaults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.C.T.); (M.D.); (B.B.); (S.P.); (P.B.); (P.C.)
| |
Collapse
|
6
|
Li X, Zhu Z, Ye L, Kang Z, Zhang X, Huang Y, Zhang B, Zou Y. Comparison of the Partial Structure and Antioxidant Activity of Polysaccharides from Two Species of Chinese Truffles. Molecules 2020; 25:molecules25184345. [PMID: 32971949 PMCID: PMC7571095 DOI: 10.3390/molecules25184345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Truffles are world-renowned premium commodities. Due to their unique aroma and rarity, the price of truffles has always been very high. In this study, Diethylaminoethyl anion exchange chromatography and gel filtration were employed for polysaccharide purification from two different species of Chinese truffles. Three polysaccharide fractions were obtained from Tuber panzhihuanense and referred to as TPZ-NP, TPZ-I, and TPZ-II. Additionally, two polysaccharide fractions were purified from T. pseudoexcavatum (TPD-NP and TPD-I). The results of structural elucidation indicated that the polysaccharide from different species showed different monosaccharide composition and linkage units, as well as molecular weight. Two of the polysaccharide fractions with the highest yield, TPZ-I and TPD-I, were chosen for biological testing. The results indicated that both fractions displayed antioxidant properties through mediation of the intestinal cellular antioxidant defense system, which could protect cultured intestinal cells from oxidative stress-induced damage and cell viability suppression. The TPD-I fraction showed stronger antioxidant effects, which may be due to the difference in structure. Further study on the structure-activity relationship is needed to be done.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
| | - Zhongkai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
| | - Zongjing Kang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoping Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Huang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: ; Tel.: +86-28-86291470
| |
Collapse
|
7
|
Jou IA, Caterino M, Schnupf U, Rizzo R, Cescutti P, Brady JW. Ramachandran conformational energy maps for disaccharide linkages found in Burkholderia multivorans biofilm polysaccharides. Int J Biol Macromol 2020; 143:501-509. [DOI: 10.1016/j.ijbiomac.2019.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
8
|
Bellich B, Distefano M, Syrgiannis Z, Bosi S, Guida F, Rizzo R, Brady JW, Cescutti P. The polysaccharide extracted from the biofilm of Burkholderia multivorans strain C1576 binds hydrophobic species and exhibits a compact 3D-structure. Int J Biol Macromol 2019; 136:944-950. [PMID: 31229548 PMCID: PMC6711379 DOI: 10.1016/j.ijbiomac.2019.06.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms often grow in communities called biofilms where cells are imbedded in a complex self-produced biopolymeric matrix composed mainly of polysaccharides, proteins, and DNA. This matrix, together with cell proximity, confers many advantages to these microbial communities, but also constitutes a serious concern when biofilms develop in human tissues or on implanted prostheses. Although polysaccharides are considered the main constituents of the matrices, their specific role needs to be clarified. We have investigated the chemical and morphological properties of the polysaccharide extracted from biofilms produced by the C1576 reference strain of the opportunistic pathogen Burkholderia multivorans, which causes lung infections in cystic fibrosis patients. The aim of the present study is the definition of possible interactions of the polysaccharide and the three-dimensional conformation of its chain within the biofilm matrix. Surface plasmon resonance experiments confirmed the ability of the polysaccharide to bind hydrophobic molecules, due to the presence of rhamnose dimers in its primary structure. In addition, atomic force microscopy studies evidenced an extremely compact three-dimensional structure of the polysaccharide which may form aggregates, suggesting a novel view of its structural role into the biofilm matrix.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Marco Distefano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Zois Syrgiannis
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Filomena Guida
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - John W Brady
- Department of Food Sciences, Cornell University, M10 Stocking Hall, Ithaca, NY 14853-5701, USA
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
9
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
10
|
Zhang X, Wang D, Jin G, Wang L, Guo Z, Gu G. Synthesis of a tetrasaccharide repeating unit of the exopolysaccharide from Burkholderia multivorans. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1391275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| | - Dongyue Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, 88 Wenhua Dong Lu, Jinan, PR China
| | - Lizhen Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida, United States
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| |
Collapse
|
11
|
Purification, characterization, and complement fixation activity of acidic polysaccharides from Tuber sinoaestivum. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Scarpari M, Reverberi M, Parroni A, Scala V, Fanelli C, Pietricola C, Zjalic S, Maresca V, Tafuri A, Ricciardi MR, Licchetta R, Mirabilii S, Sveronis A, Cescutti P, Rizzo R. Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects. PLoS One 2017; 12:e0171412. [PMID: 28829786 PMCID: PMC5567496 DOI: 10.1371/journal.pone.0171412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Mushrooms represent a formidable source of bioactive compounds. Some of these may be considered as biological response modifiers; these include compounds with a specific biological function: antibiotics (e.g. plectasin), immune system stimulator (e,g, lentinan), antitumor agents (e.g. krestin, PSK) and hypolipidemic agents (e.g. lovastatin) inter alia. In this study, we focused on the Chinese medicinal mushroom "yun zhi", Trametes versicolor, traditionally used for (cit.) "replenish essence and qi (vital energy)". Previous studies indicated the potential activity of extracts from culture filtrate of asexual mycelia of T. versicolor in controlling the growth and secondary metabolism (e.g. mycotoxins) of plant pathogenic fungi. The quest of active principles produced by T. versicolor, allowed us characterising an exo-polysaccharide released in its culture filtrate and naming it Tramesan. Herein we evaluate the biological activity of Tramesan in different organisms: plants, mammals and plant pathogenic fungi. We suggest that the bioactivity of Tramesan relies mostly on its ability to act as pro antioxidant molecule regardless the biological system on which it was applied.
Collapse
Affiliation(s)
- Marzia Scarpari
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Massimo Reverberi
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Alessia Parroni
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Valeria Scala
- Research Unit for Plant Pathology, Council for Agricultural Research and Economics, Rome, Italy, Roma, Italy
| | - Corrado Fanelli
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Chiara Pietricola
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, HR, Zadar
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Maria R Ricciardi
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Roberto Licchetta
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Simone Mirabilii
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | | | | | | |
Collapse
|
13
|
Ruskoski SA, Champlin FR. Cell surface physiology and outer cell envelope impermeability for hydrophobic substances in Burkholderia multivorans. J Med Microbiol 2017; 66:965-971. [PMID: 28721855 DOI: 10.1099/jmm.0.000532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. METHODOLOGY Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. CONCLUSION These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.
Collapse
Affiliation(s)
- Sallie A Ruskoski
- Department of Health Professions, Northeastern State University, 3100 East New Orleans, Broken Arrow, OK 74014, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Franklin R Champlin
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 West 17th Street, Tulsa, OK 74107, USA
| |
Collapse
|
14
|
Kuttel MM, Cescutti P, Distefano M, Rizzo R. Fluorescence and NMR spectroscopy together with molecular simulations reveal amphiphilic characteristics of a Burkholderia biofilm exopolysaccharide. J Biol Chem 2017; 292:11034-11042. [PMID: 28468829 DOI: 10.1074/jbc.m117.785048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Biofilms are a collective mode of bacterial life in which a self-produced matrix confines cells in close proximity to each other. Biofilms confer many advantages, including protection from chemicals (including antibiotics), entrapment of useful extracellular enzymes and nutrients, as well as opportunities for efficient recycling of molecules from dead cells. Biofilm matrices are aqueous gel-like structures composed of polysaccharides, proteins, and DNA stabilized by intermolecular interactions that may include non-polar connections. Recently, polysaccharides extracted from biofilms produced by species of the Burkholderia cepacia complex were shown to possess clusters of rhamnose, a 6-deoxy sugar with non-polar characteristics. Molecular dynamics simulations are well suited to characterizing the structure and dynamics of polysaccharides, but only relatively few such studies exist of their interaction with non-polar molecules. Here we report an investigation into the hydrophobic properties of the exopolysaccharide produced by Burkholderia multivorans strain C1576. Fluorescence experiments with two hydrophobic fluorescent probes established that this polysaccharide complexes hydrophobic species, and NMR experiments confirmed these interactions. Molecular simulations to model the hydrodynamics of the polysaccharide and the interaction with guest species revealed a very flexible, amphiphilic carbohydrate chain that has frequent dynamic interactions with apolar molecules; both hexane and a long-chain fatty acid belonging to the quorum-sensing system of B. multivorans were tested. A possible role of the non-polar domains of the exopolysaccharide in facilitating the diffusion of aliphatic species toward specific targets within the biofilm aqueous matrix is proposed.
Collapse
Affiliation(s)
- Michelle M Kuttel
- From the Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa and
| | - Paola Cescutti
- the Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Marco Distefano
- the Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Roberto Rizzo
- the Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
15
|
Recent Advances in the Study of Marine Microbial Biofilm: From the Involvement of Quorum Sensing in Its Production up to Biotechnological Application of the Polysaccharide Fractions. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Miller RR, Hird TJ, Tang P, Zlosnik JEA. Whole-Genome Sequencing of Three Clonal Clinical Isolates of B. cenocepacia from a Patient with Cystic Fibrosis. PLoS One 2015; 10:e0143472. [PMID: 26599356 PMCID: PMC4658001 DOI: 10.1371/journal.pone.0143472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/05/2015] [Indexed: 11/29/2022] Open
Abstract
Burkholderia cepacia complex bacteria are amongst the most feared of pathogens in cystic fibrosis (CF). The BCC comprises at least 20 distinct species that can cause chronic and unpredictable lung infections in CF. Historically the species B. cenocepacia has been the most prevalent in CF infections and has been associated in some centers with high rates of mortality. Modeling chronic infection by B. cenocepacia in the laboratory is challenging and no models exist which effectively recapitulate CF disease caused by BCC bacteria. Therefore our understanding of factors that contribute towards the morbidity and mortality caused by this organism is limited. In this study we used whole-genome sequencing to examine the evolution of 3 clonal clinical isolates of B. cenocepacia from a patient with cystic fibrosis. The first isolate was from the beginning of infection, and the second two almost 10 years later during the final year of the patients’ life. These isolates also demonstrated phenotypic heterogeneity, with the first isolate displaying the mucoid phenotype (conferred by the overproduction of exopolysaccharide), while one of the later two was nonmucoid. In addition we also sequenced a nonmucoid derivative of the initial mucoid isolate, acquired in the laboratory by antibiotic pressure. Examination of sequence data revealed that the two late stage isolates shared 20 variant nucleotides in common compared to the early isolate. However, despite their isolation within 10 months of one another, there was also considerable variation between the late stage isolates, including 42 single nucleotide variants and three deletions. Additionally, no sequence differences were identified between the initial mucoid isolate and its laboratory acquired nonmucoid derivative, however transcript analysis indicated at least partial down regulation of genes involved in exopolysaccharide production. Our study examines the progression of B. cenocepacia throughout chronic infection, including establishment of sub-populations likely evolved from the original isolate, suggestive of parallel evolution. Additionally, the lack of sequence differences between two of the isolates with differing mucoid phenotypes suggests that other factors, such as gene regulation, come into play in establishing the mucoid phenotype.
Collapse
Affiliation(s)
- Ruth R. Miller
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, University of British Columbia, Canada, Vancouver, British Columbia, Canada
| | - Trevor J. Hird
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Tang
- British Columbia Centre for Disease Control, University of British Columbia, Canada, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James E. A. Zlosnik
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
17
|
Pellizzoni E, Ravalico F, Scaini D, Delneri A, Rizzo R, Cescutti P. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides. MICROBIOLOGY-SGM 2015; 162:283-294. [PMID: 26586192 DOI: 10.1099/mic.0.000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.
Collapse
Affiliation(s)
- Elena Pellizzoni
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Fabio Ravalico
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Denis Scaini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Ambra Delneri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| |
Collapse
|
18
|
Bhotmange DU, Singhal RS. Identification of chondroitin-like molecules from biofilm isolates Exiguobacterium indicum A11 and Lysinibacillus sp. C13. J Appl Microbiol 2015. [PMID: 26218551 DOI: 10.1111/jam.12914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The study aims to investigate whether the bacteria from biofilms can produce chondroitin-like molecules (CLMs). METHODS AND RESULTS Chondroitin belongs to the class of glycosaminoglycans. Forty bacteria from biofilms were isolated and screened for the production of glycosaminoglycans. Two isolates A11 and C13 produced 43 and 26 mg l(-1) of chondroitinase AC II degradable glycosaminoglycans, respectively, suggesting the possibility of production of CLMs by them. These isolates were identified using 16S rDNA sequencing technique and fatty acid methyl ester analysis. These were recognized as Exiguobacterium indicum A11 (NCIM 5531) and Lysinibacillus sp. C13 (NCIM 5532) respectively. These strains were also characterized using polar lipid content and biochemical tests. The identity of the glycosaminoglycans produced was further confirmed using agarose gel electrophoresis, fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. CONCLUSIONS Prokaryotic biofilms were found to be a good source of bacteria synthesizing CLMs. Two wild strains producing significant amount of the same were identified and characterized. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study exploring natural biofilms for the production of the therapeutic molecule, chondroitin/glycosaminoglycan. These isolates may be prospective new alternatives to recombinant strains that are reported for the production of chondroitin/glycoaminoglycan at an industrial scale. The production by these wild strains could be commercially attractive if the production is higher and/or can be improved further by strain improvement/process engineering. Further, these are new additions to the scientific literature on glycosaminoglycan-producing micro-organisms.
Collapse
Affiliation(s)
- D U Bhotmange
- Food Engineering and Technology Department, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, India
| | - R S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, India
| |
Collapse
|