1
|
Son SH, Kang J, Shin Y, Lee C, Sung BH, Lee JY, Lee W. Sustainable production of natural products using synthetic biology: Ginsenosides. J Ginseng Res 2024; 48:140-148. [PMID: 38465212 PMCID: PMC10920010 DOI: 10.1016/j.jgr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024] Open
Abstract
Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.
Collapse
Affiliation(s)
- So-Hee Son
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jin Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| | - YuJin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - ChaeYoung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Structural and biochemical studies of the glycosyltransferase Bs-YjiC from Bacillus subtilis. Int J Biol Macromol 2020; 166:806-817. [PMID: 33152360 DOI: 10.1016/j.ijbiomac.2020.10.238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/19/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023]
Abstract
Glycosylation possess prominent biological and pharmacological significance in natural product and drug candidate synthesis. The glycosyltransferase YjiC, discovered from Bacillus subtilis (Bs-YjiC), shows potential applications in drug development due to its wide substrate spectrums. In order to elucidate its catalytic mechanism, we solved the crystal structure of Bs-YjiC, demonstrating that Bs-YjiC adopts a typical GT-B fold consisting of a flexible N-domain and a relatively rigid C-domain. Structural analysis coupled with site-directed mutagenesis studies revealed that site Ser277 was critical for Nucleoside Diphosphate (NDP) recognition, while Glu317, Gln318, Ser128 and Ser129 were crucial for glycosyl moiety recognition. Our results illustrate the structural basis for acceptor promiscuity in Bs-YjiC and provide a starting point for further protein engineering of Bs-YjiC in industrial and pharmaceutical applications.
Collapse
|
3
|
Chu LL, Montecillo JAV, Bae H. Recent Advances in the Metabolic Engineering of Yeasts for Ginsenoside Biosynthesis. Front Bioeng Biotechnol 2020; 8:139. [PMID: 32158753 PMCID: PMC7052115 DOI: 10.3389/fbioe.2020.00139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 01/03/2023] Open
Abstract
Ginsenosides are a group of glycosylated triterpenes isolated from Panax species. Ginsenosides are promising candidates for the prevention and treatment of cancer as well as food additives. However, owing to a lack of efficient approaches for ginsenoside production from plants and chemical synthesis, ginsenosides may not yet have reached their full potential as medicinal resources. In recent years, an alternative approach for ginsenoside production has been developed using the model yeast Saccharomyces cerevisiae and non-conventional yeasts such as Yarrowia lipolytica and Pichia pastoris. In this review, various metabolic engineering strategies, including heterologous gene expression, balancing, and increasing metabolic flux, and enzyme engineering, have been described as recent advanced engineering techniques for improving ginsenoside production. Furthermore, the usefulness of a systems approach and fermentation strategy has been presented. Finally, the present challenges and future research direction for industrial cell factories have been discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Biotechnology, Yeungnam University, Gyeongsan-si, South Korea
| | | | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
4
|
Darsandhari S, Pandey RP, Shrestha B, Parajuli P, Liou K, Sohng JK. One-Pot Multienzyme Cofactors Recycling (OPME-CR) System for Lactose and Non-natural Saccharide Conjugated Polyphenol Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7965-7974. [PMID: 29968471 DOI: 10.1021/acs.jafc.8b02421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A one-pot multienzyme cofactors recycling (OPME-CR) system was designed for the synthesis of UDP-α-d-galactose, which was combined with LgtB, a β-(1,4) galactosyltransferase from Neisseria meningitidis, to modify various polyphenol glycosides. This system recycles one mole of ADP and one mole of UDP to regenerate one mole of UDP-α-d-galactose by consuming two moles of acetylphosphate and one mole of d-galactose in each cycle. The ATP additionally used to generate UDP from UMP was also recycled at the beginning of the reaction. The engineered cofactors recycling system with LgtB efficiently added a d-galactose unit to a variety of sugar units such as d-glucose, rutinose, and 2-deoxy-d-glucose. The temperature, pH, incubation time, and divalent metal ions for the OPME-CR system were optimized. The maximum number of UDP-α-d-galactose regeneration cycles (RCmax) was 18.24 by fed batch reaction. The engineered system generated natural and non-natural polyphenol saccharides efficiently and cost-effectively.
Collapse
Affiliation(s)
- Sumangala Darsandhari
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Kwangkyoung Liou
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering and ‡Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| |
Collapse
|
5
|
Darsandhari S, Bae JY, Shrestha B, Yamaguchi T, Jung HJ, Han JM, Rha CS, Pandey RP, Sohng JK. Enzymatic synthesis of novel quercetin sialyllactoside derivatives. Nat Prod Res 2018; 33:1944-1952. [PMID: 29873256 DOI: 10.1080/14786419.2018.1481842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Quercetin and its derivatives are important flavonols that show diverse biological activity, such as antioxidant, anticarcinogenic, anti-inflammatory, and antiviral activities. Adding different substituents to quercetin may change the biochemical activity and bioavailability of molecules, when compared to the aglycone. Here, we have synthesised two novel derivatives of quercetin, quercetin-3-O-β-d-glucopyranosyl, 4''-O-d-galactopyranosyl 3'''-O-α-N-acetyl neuraminic acid i.e. 3'-sialyllactosyl quercetin (3'SL-Q) and quercetin-3-O-β-d-glucopyranosyl, 4''-O-β-d-galactopyranosyl 6'''-O-α-N-acetyl neuraminic acid i.e. 6'-sialyllactosyl quercetin (6'SL-Q) with the use of glycosyltransferases and sialyltransferases enzymes. These derivatives of quercetin were characterised by high-resolution quadrupole-time-of-flight electrospray ionisation mass spectrometry (HR-QTOF-ESI/MS) and 1H and 13C nuclear magnetic resonance (NMR) analyses.
Collapse
Affiliation(s)
- Sumangala Darsandhari
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea
| | - Jae Yoon Bae
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea
| | - Biplav Shrestha
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea
| | - Tokutaro Yamaguchi
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea
| | - Hye Jin Jung
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea
| | - Jang Mi Han
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea
| | - Chan-Su Rha
- c Department of Food Science and Technology , Kyung Hee University , Yongin , Korea
| | - Ramesh Prasad Pandey
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea.,b Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , Asan-si , Korea
| | - Jae Kyung Sohng
- a Department of Life Science and Biochemical Engineering , SunMoon University , Asan-si , Korea.,b Department of BT-Convergent Pharmaceutical Engineering , SunMoon University , Asan-si , Korea
| |
Collapse
|
6
|
Nidetzky B, Gutmann A, Zhong C. Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00710] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
7
|
Microfluidic reactor for lipase-catalyzed regioselective synthesis of neohesperidin ester derivatives and their antimicrobial activity research. Carbohydr Res 2018; 455:32-38. [DOI: 10.1016/j.carres.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022]
|
8
|
Chu LL, Pandey RP, Lim HN, Jung HJ, Thuan NH, Kim TS, Sohng JK. Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities. J Biol Eng 2017; 11:15. [PMID: 28396694 PMCID: PMC5382406 DOI: 10.1186/s13036-017-0056-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Umbelliferone, also known as 7-hydroxycoumarin, is a phenolic metabolite found in many familiar plants. Its derivatives have been shown to have various pharmacological and chemo-preventive effects on human health. A uridine diphosphate glycosyltransferase YjiC from Bacillus licheniformis DSM 13, a cytochrome P450BM3 (CYP450 BM3) variant namely mutant 13 (M13) from Bacillus megaterium, and an O-methyltransferase from Streptomyces avermitilis (SaOMT2) were used for modifications of umbelliferone. RESULTS Three umbelliferone derivatives (esculetin, skimmin, and herniarin) were generated through enzymatic and whole cell catalysis. To improve the efficiencies of biotransformation, different media, incubation time and concentration of substrate were optimized and the production was scaled up using a 3-L fermentor. The maximum yields of esculetin, skimmin, and herniarin were 337.10 μM (67.62%), 995.43 μM (99.54%), and 37.13 μM (37.13%), respectively. The water solubility of esculetin and skimmin were 1.28-folds and 3.98-folds as high as umbelliferone, respectively, whereas herniarin was 1.89-folds less soluble than umbelliferone. Moreover, the antibacterial and anticancer activities of herniarin showed higher than umbelliferone, esculetin and skimmin. CONCLUSIONS This study proves that both native and engineered enzymes could be employed for the production of precious compounds via whole cell biocatalysis. We successfully produced three molecules herniarin, esculetin and skimmin in practical amounts and their antibacterial and anticancer properties were accessed. One of the newly synthesized molecules the present research suggests that the combinatorial biosynthesis of different biosynthetic enzymes could rapidly promote to a novel secondary metabolite.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Haet Nim Lim
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang, Vietnam
| | - Tae-Su Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| |
Collapse
|
9
|
Wang Z, Yang R, Wang J, Bi Y, Zhu C, Zhao X, Nie L, Li W. Regioselective Synthesis of β-D-Glucopyranosides and Their Analogs by Plant Seed-Derived β-Glycosidases. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Jizhong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Chun Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Xiangjie Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Linghong Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| | - Wenqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology
| |
Collapse
|