1
|
Chenafa A, Ji N, Gu Y, Zhao B, Xu L, Zhu Y. Isolation, characterization, and immobilization of β-galactosidase from Klebsiella michiganensis B5582Y for enhanced transgalactosylation. Int J Biol Macromol 2024; 287:138582. [PMID: 39662551 DOI: 10.1016/j.ijbiomac.2024.138582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
β-Galactosidases are highly desirable in various biotechnological applications. However, research on those obtained from Klebsiella strains has been noticeably restricted. The present investigation centers on the isolation, purification, and characterization of a β-galactosidase enzyme derived from Klebsiella michiganensis (GALB5582Y). Additionally, the study aims to immobilize GALB5582Y onto functionalized graphene oxide (GO)-based polystyrene electrospun nanofibrous membranes (ENMs). The ultimate goal is to enhance the enzyme's transgalactosylation and catalytic efficiency, thereby expanding its range of potential applications. The GALB5582Y gene was sequenced, revealing a 3354 bp sequence that encodes 1024 amino acids. This discovery provides vital information about the gene's structural arrangement. The effectiveness of functionalized graphene oxide (GO)-based engineered nanomaterials (ENMs) in immobilising GALB5582Y was confirmed using SEM, FTIR, and XRD investigations. Significant stability was reported during assessments, with the enzyme activity remaining extended. Additionally, it was shown that the enzyme was efficiently distributed across the surface of the ENM. Although there have been breakthroughs in enzyme production and immobilisation techniques, there is still room for improvement in maximizing the effectiveness of GALB5582Y immobilisation and increasing the yield of galactooligosaccharides (GOS). This calls for additional investigation and refinement.
Collapse
Affiliation(s)
- Aicha Chenafa
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Nairu Ji
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yangyang Gu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bingyu Zhao
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liya Xu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yunping Zhu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Meng X, Xv C, Lv J, Zhang S, Ma C, Pang X. Optimizing Akkermansia muciniphila Isolation and Cultivation: Insights into Gut Microbiota Composition and Potential Growth Promoters in a Chinese Cohort. Microorganisms 2024; 12:881. [PMID: 38792711 PMCID: PMC11124125 DOI: 10.3390/microorganisms12050881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The study aims to analyze the composition of the gut microbiota in Chinese individuals using metagenomic sequencing technology, with a particular focus on the abundance of Akkermansia muciniphila (Akk). To improve the efficiency of Akk isolation and identification accuracy, modifications were made to the enrichment culture medium and 16S rRNA universal primers. Additionally, potential growth-promoting factors that stimulate Akk growth were explored through in vitro screening. The research results revealed that the abundance of Akk in Chinese fecal samples ranged from 0.004% to 0.4%. During optimization, a type of animal protein peptide significantly enhanced the enrichment efficiency of Akk, resulting in the isolation of three Akk strains from 14 fecal samples. Furthermore, 17 different growth-promoting factors were compared, and four factors, including galactose, sialic acid, lactose, and chitosan, were identified as significantly promoting Akk growth. Through orthogonal experiments, the optimal ratio of these four growth-promoting factors was determined to be 1:1:2:1. After adding 1.25% of this growth-promoting factor combination to the standard culture medium, Akk was cultivated at 37° for 36 h, achieving an OD600nm value of 1.169, thus realizing efficient proliferation and optimized cultivation of Akk. This study provides important clues for a deeper understanding of the gut microbiota composition in Chinese individuals, while also offering effective methods for the isolation and cultivation of Akk, laying the groundwork for its functional and application research in the human body.
Collapse
Affiliation(s)
- Xiangyu Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.M.); (C.X.); (J.L.); (S.Z.); (C.M.)
| | - Chen Xv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.M.); (C.X.); (J.L.); (S.Z.); (C.M.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.M.); (C.X.); (J.L.); (S.Z.); (C.M.)
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.M.); (C.X.); (J.L.); (S.Z.); (C.M.)
| | - Changlu Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.M.); (C.X.); (J.L.); (S.Z.); (C.M.)
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.M.); (C.X.); (J.L.); (S.Z.); (C.M.)
| |
Collapse
|
3
|
Abstract
Despite a short history since its first isolation, Akkermansia muciniphila has been extensively studied in relation to its effects on human metabolism. A recent human intervention study also demonstrated that the bacterium is safe to use for therapeutic purposes. The best-known effects of A. muciniphila in human health and disease relate to its ability to strengthen gut integrity, modulate insulin resistance, and protect the host from metabolic inflammation. A further molecular mechanism, induction of GLP-1 secretion through ICAM-2 receptor, was recently discovered with the identification of a new bacterial protein produced by A. muciniphila. However, other studies have suggested a detrimental role for A. muciniphila in specific host immune settings. Here, we evaluate the molecular, mechanistic effects of A. muciniphila in host health and suggest some of the missing links to be connected before the organism should be considered as a next-generation biotherapeutic agent.
Collapse
Affiliation(s)
- Jiyeon Si
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ju You
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea,Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea,CONTACT Hyun Ju You Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea,KoBioLabs, Inc, Seoul, Republic of Korea,Bio, Seoul National UniversityBio-MAX/N-, Seoul, Republic of Korea,GwangPyo Ko Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| |
Collapse
|
4
|
Functional and structural characterization of a GH3 β-N-acetylhexosaminidase from Akkermansia muciniphila involved in mucin degradation. Biochem Biophys Res Commun 2021; 589:186-191. [PMID: 34922201 DOI: 10.1016/j.bbrc.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
Akkermansia muciniphila is a probiotic that colonizes the outer layer of intestinal mucus and is negatively associated with metabolic disorders. Amuc_2109 protein, a β-N-acetylhexosaminidase from A. muciniphila, may be involved in the degradation of mucins and is associated with intestinal health. Here, we reported the crystal structure of Amuc_2109, which belongs to the GH family 3 enzymes and fell into the canonical (α/β)8 TIM barrel structure with GlcNAc bound to the active center. Biochemical assay characterization of Amuc_2109 revealed that Amuc_2109 is a GlcNAc-specific glycosidase active over a wide temperature and pH range, reflecting the survival advantage of Amuc_2109 in the intestinal environment. Our structural and biochemical results will contribute to the understanding of the catalytic mechanism of the GH3 β-N-acetylhexosaminidase and help to gain insight into the molecular mechanism of complex carbohydrate utilization and restoration of the intestinal barrier in A. muciniphila.
Collapse
|
5
|
Roth-Schulze AJ, Penno MAS, Ngui KM, Oakey H, Bandala-Sanchez E, Smith AD, Allnutt TR, Thomson RL, Vuillermin PJ, Craig ME, Rawlinson WD, Davis EA, Harris M, Soldatos G, Colman PG, Wentworth JM, Haynes A, Barry SC, Sinnott RO, Morahan G, Bediaga NG, Smyth GK, Papenfuss AT, Couper JJ, Harrison LC. Type 1 diabetes in pregnancy is associated with distinct changes in the composition and function of the gut microbiome. MICROBIOME 2021; 9:167. [PMID: 34362459 PMCID: PMC8349100 DOI: 10.1186/s40168-021-01104-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND The gut microbiome changes in response to a range of environmental conditions, life events and disease states. Pregnancy is a natural life event that involves major physiological adaptation yet studies of the microbiome in pregnancy are limited and their findings inconsistent. Pregnancy with type 1 diabetes (T1D) is associated with increased maternal and fetal risks but the gut microbiome in this context has not been characterized. By whole metagenome sequencing (WMS), we defined the taxonomic composition and function of the gut bacterial microbiome across 70 pregnancies, 36 in women with T1D. RESULTS Women with and without T1D exhibited compositional and functional changes in the gut microbiome across pregnancy. Profiles in women with T1D were distinct, with an increase in bacteria that produce lipopolysaccharides and a decrease in those that produce short-chain fatty acids, especially in the third trimester. In addition, women with T1D had elevated concentrations of fecal calprotectin, a marker of intestinal inflammation, and serum intestinal fatty acid-binding protein (I-FABP), a marker of intestinal epithelial damage. CONCLUSIONS Women with T1D exhibit a shift towards a more pro-inflammatory gut microbiome during pregnancy, associated with evidence of intestinal inflammation. These changes could contribute to the increased risk of pregnancy complications in women with T1D and are potentially modifiable by dietary means. Video abstract.
Collapse
Affiliation(s)
- Alexandra J Roth-Schulze
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Megan A S Penno
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Katrina M Ngui
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Helena Oakey
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Esther Bandala-Sanchez
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alannah D Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Theo R Allnutt
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rebecca L Thomson
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Peter J Vuillermin
- Faculty of School of Medicine, Deakin University and Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia
| | - William D Rawlinson
- Virology Research Laboratory, Serology and Virology Division, South Eastern Area Laboratory Services Microbiology, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Elizabeth A Davis
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Mark Harris
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Queensland Children's Hospital, South Brisbane, QLD, 4101, Australia
| | - Georgia Soldatos
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne and Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, VIC, 3168, Australia
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, 3050, Australia
| | - John M Wentworth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, 3050, Australia
| | - Aveni Haynes
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Simon C Barry
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Richard O Sinnott
- Melbourne eResearch Group, School of Computing and Information Services, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Naiara G Bediaga
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology and School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology and School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia
- Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jennifer J Couper
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
- Women's and Children's Hospital, Adelaide, SA, 5006, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
6
|
Qu T, Zhang C, Qin Z, Fan L, Jiang L, Zhao L. A Novel GH Family 20 β-N-acetylhexosaminidase With Both Chitosanase and Chitinase Activity From Aspergillus oryzae. Front Mol Biosci 2021; 8:684086. [PMID: 34095233 PMCID: PMC8170477 DOI: 10.3389/fmolb.2021.684086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
Aminooligosaccharides possess various biological activities and can exploit wide applications in food, pharmaceutical and cosmetic industries. Commercial aminooligosaccharides are often prepared by the hydrolysis of chitin and chitosan. In this study, a novel GH family 20 β-N-acetylhexosaminidases gene named AoNagase was cloned from Aspergillus oryzae and expressed in Pichia pastoris. The purified AoNagase had maximal activity at pH 5.5 and 65°C. It exhibited good pH stability in the range of pH 6.0–7.5 and at temperatures below 50°C. AoNagase was capable of hydrolyzing not only colloidal chitosan (508.26 U/mg) but also chitin (29.78 U/mg). The kinetic parameters (Km and Vmax) of AoNagase were 1.51 mM, 1106.02 U/mg for chitosan and 0.41 mM, 40.31 U/mg for colloidal chitin. To our knowledge, AoNagase is the first GH family 20 β-N-acetylhexosaminidase capable of hydrolyzing both chitosan and chitin. AoNagase is an endo-type β-N-acetylhexosaminidases and can potentially be used for the manufacturing of aminooligosaccharides.
Collapse
Affiliation(s)
- Tianle Qu
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| | - Chunyue Zhang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| | - Zhen Qin
- School of Life Science, Shanghai University, Shanghai, China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| | - Lihua Jiang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| |
Collapse
|
7
|
Liu X, Zhao F, Liu H, Xie Y, Zhao D, Li C. Transcriptomics and metabolomics reveal the adaption of Akkermansia muciniphila to high mucin by regulating energy homeostasis. Sci Rep 2021; 11:9073. [PMID: 33907216 PMCID: PMC8079684 DOI: 10.1038/s41598-021-88397-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
In gut, Akkermansia muciniphila (A. muciniphila) probably exerts its probiotic activities by the positive modulation of mucus thickness and gut barrier integrity. However, the potential mechanisms between A. muciniphila and mucin balance have not been fully elucidated. In this study, we cultured the bacterium in a BHI medium containing 0% to 0.5% mucin, and transcriptome and gas chromatography mass spectrometry (GC-MS) analyses were performed. We found that 0.5% (m/v) mucin in a BHI medium induced 1191 microbial genes to be differentially expressed, and 49 metabolites to be changed. The metabolites of sorbose, mannose, 2,7-anhydro-β-sedoheptulose, fructose, phenylalanine, threonine, lysine, ornithine, asparagine, alanine and glutamic acid were decreased by 0.5% mucin, while the metabolites of leucine, valine and N-acetylneuraminic acid were increased. The association analysis between transcriptome and metabolome revealed that A. muciniphila gave strong responses to energy metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways to adapt to high mucin in the medium. This finding showed that only when mucin reached a certain concentration in a BHI medium, A. muciniphila could respond to the culture environment significantly at the level of genes and metabolites, and changed its metabolic characteristics by altering the effect on carbohydrates and amino acids.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Meat Production, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, Nanjing, 210095, People's Republic of China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Li Z, Hu G, Zhu L, Sun Z, Jiang Y, Gao MJ, Zhan X. Study of growth, metabolism, and morphology of Akkermansia muciniphila with an in vitro advanced bionic intestinal reactor. BMC Microbiol 2021; 21:61. [PMID: 33622254 PMCID: PMC7901181 DOI: 10.1186/s12866-021-02111-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background As a kind of potential probiotic, Akkermansia muciniphila abundance in human body is directly causally related to obesity, diabetes, inflammation and abnormal metabolism. In this study, A. muciniphila dynamic cultures using five different media were implemented in an in vitro bionic intestinal reactor for the first time instead of the traditional static culture using brain heart infusion broth (BHI) or BHI + porcine mucin (BPM). Results The biomass under dynamic culture using BPM reached 1.92 g/L, which improved 44.36% compared with the value under static culture using BPM. The biomass under dynamic culture using human mucin (HM) further increased to the highest level of 2.89 g/L. Under dynamic culture using porcine mucin (PM) and HM, the main metabolites were short-chain fatty acids (acetic acid and butyric acid), while using other media, a considerable amount of branched-chain fatty acids (isobutyric and isovaleric acids) were produced. Under dynamic culture Using HM, the cell diameters reached 999 nm, and the outer membrane protein concentration reached the highest level of 26.26 μg/mg. Conclusions This study provided a preliminary theoretical basis for the development of A. muciniphila as the next generation probiotic. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02111-7.
Collapse
Affiliation(s)
- Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoao Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Zhu
- Wuxi Galaxy Biotech Co. Ltd., Wuxi, 214125, China
| | - Zhenglong Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Min-Jie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Liu YH, Wang L, Huang P, Jiang ZQ, Yan QJ, Yang SQ. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem 2020; 332:127438. [DOI: 10.1016/j.foodchem.2020.127438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
|
10
|
González-Morelo KJ, Vega-Sagardía M, Garrido D. Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Front Microbiol 2020; 11:591568. [PMID: 33224127 PMCID: PMC7674204 DOI: 10.3389/fmicb.2020.591568] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
O-linked glycosylation is a post-translational modification found mainly in eukaryotic cells, which covalently attaches oligosaccharides to secreted proteins in certain threonine or serine residues. Most of O-glycans have N-acetylgalactosamine (GalNAc) as a common core. Several glycoproteins, such as mucins (MUCs), immunoglobulins, and caseins are examples of O-glycosylated structures. These glycans are further elongated with other monosaccharides and sulfate groups. Some of them could be found in dairy foods, while others are produced endogenously, in both cases interacting with the gut microbiota. Interestingly, certain gut microbes can access, release, and consume O-linked glycans as a carbon source. Among these, Akkermansia muciniphila, Bifidobacterium bifidum, and Bacteroides thetaiotaomicron are prominent O-linked glycan utilizers. Their consumption strategies include specialized α-fucosidases and α-sialidases, in addition to endo-α-N-acetylgalactosaminidases that release galacto-N-biose (GNB) from peptides backbones. O-linked glycan utilization by certain gut microbes represents an important niche that allows them to predominate and modulate host responses such as inflammation. Here, we focus on the distinct molecular mechanisms of consumption of O-linked GalNAc glycans by prominent gut microbes, especially from mucin and casein glycomacropeptide (GMP), highlighting the potential of these structures as emerging prebiotics.
Collapse
Affiliation(s)
| | | | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Cao R, Zhang TC, Chen YR, Cao C, Chen H, Huang YF, Fujita M, Liu L, Voglmeir J. Aberration of Serum and Tissue N-Glycans in Mouse β1,4-GalT1 Y286L Mutant Variants. Glycoconj J 2020; 37:767-775. [PMID: 32926333 DOI: 10.1007/s10719-020-09946-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/04/2020] [Accepted: 09/04/2020] [Indexed: 12/01/2022]
Abstract
β1,4-GalT1 is a type II membrane glycosyltransferase. It catalyzes the production of lactose in the lactating mammary gland and is supposedly also involved in the galactosylation of terminal GlcNAc of complex-type N-glycans. In-vitro studies of the bovine β4Gal-T1 homolog showed that replacing a single residue of tyrosine with leucine at position 289 alters the donor substrate specificity from UDP-Gal to UDP-N-acetyl-galactosamine (UDP-GalNAc). The effect of this peculiar change in β1,4GalT1 specificity was investigated in-vivo, by generating biallelic Tyr286Leu β1,4GalT1 mice using CRISPR/Cas9 and crossbreeding. Mice bearing this mutation showed no appreciable defects when compared to wild-type mice, with the exception of biallelic female B4GALT1 mutant mice, which were unable to produce milk. The detailed comparison of wild-type and mutant mice derived from liver, kidney, spleen, and intestinal tissues showed only small differences in their N-glycan pattern. Comparable N-glycosylation was also observed in HEK 293 wild-type and knock-out B4GALT1 cells. Remarkably and in contrast to the other analyzed tissue samples, sialylation and galactosylation of serum N-glycans of biallelic Tyr286Leu GalT1 mice almost disappeared completely. These results suggest that β1,4GalT1 plays a special role in the synthesis of serum N-glycans. The herein described Tyr286Leu β1,4GalT1 mutant mouse model may, therefore, prove useful in the investigation of the mechanism which regulates tissue-dependent galactosylation.
Collapse
Affiliation(s)
- Ran Cao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian-Chan Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ya-Ran Chen
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Cui Cao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
12
|
Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep 2020; 10:14330. [PMID: 32868839 PMCID: PMC7459334 DOI: 10.1038/s41598-020-71113-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Akkermansia muciniphila is a well-studied anaerobic bacterium specialized in mucus degradation and associated with human health. Because of the structural resemblance of mucus glycans and free human milk oligosaccharides (HMOs), we studied the ability of A. muciniphila to utilize human milk oligosaccharides. We found that A. muciniphila was able to grow on human milk and degrade HMOs. Analyses of the proteome of A. muciniphila indicated that key-glycan degrading enzymes were expressed when the bacterium was grown on human milk. Our results display the functionality of the key-glycan degrading enzymes (α-l-fucosidases, β-galactosidases, exo-α-sialidases and β-acetylhexosaminidases) to degrade the HMO-structures 2′-FL, LNT, lactose, and LNT2. The hydrolysation of the host-derived glycan structures allows A. muciniphila to promote syntrophy with other beneficial bacteria, contributing in that way to a microbial ecological network in the gut. Thus, the capacity of A. muciniphila to utilize human milk will enable its survival in the early life intestine and colonization of the mucosal layer in early life, warranting later life mucosal and metabolic health.
Collapse
|
13
|
Liu Y, Jiang Z, Ma J, Ma S, Yan Q, Yang S. Biochemical Characterization and Structural Analysis of a β- N-Acetylglucosaminidase from Paenibacillus barengoltzii for Efficient Production of N-Acetyl-d-glucosamine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5648-5657. [PMID: 32338008 DOI: 10.1021/acs.jafc.9b08085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioproduction of N-acetyl-d-glucosamine (GlcNAc) from chitin, the second most abundant natural renewable polymer on earth, is of great value in which chitinolytic enzymes play key roles. In this study, a novel glycoside hydrolase family-18 β-N-acetylglucosaminidase (PbNag39) from Paenibacillus barengoltzii suitable for GlcNAc production was identified and biochemically characterized. It possessed a unique shallow catalytic groove (5.8 Å) as well as a smaller C-terminal domain (solvent-accessible surface area, 5.1 × 103 Å2) and exhibited strict substrate specificity toward N-acetyl chitooligosaccharides (COS) with GlcNAc as the sole product, showing a typical manner of action of β-N-acetylglucosaminidases. Thus, an environmentally friendly bioprocess for GlcNAc production from ball-milled powdery chitin by an enzyme cocktail reaction was further developed. By using the new route, the powdery chitin conversion rate increased from 23.3% (v/v) to 75.3% with a final GlcNAc content of 22.6 mg mL-1. The efficient and environmentally friendly bioprocess may have great application potential in GlcNAc production.
Collapse
Affiliation(s)
- Yihao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junwen Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shuai Ma
- College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
14
|
Takada H, Katoh T, Katayama T. Sialylated O -Glycans from Hen Egg White Ovomucin are Decomposed by Mucin-degrading Gut Microbes. J Appl Glycosci (1999) 2020; 67:31-39. [PMID: 34354526 PMCID: PMC8279891 DOI: 10.5458/jag.jag.jag-2019_0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Ovomucin, a hen egg white protein, is characterized by its hydrogel-forming properties, high molecular weight, and extensive O -glycosylation with a high degree of sialylation. As a commonly used food ingredient, we explored whether ovomucin has an effect on the gut microbiota. O- Glycan analysis revealed that ovomucin contained core-1 and 2 structures with heavy modification by N -acetylneuraminic acid and/or sulfate groups. Of the two mucin-degrading gut microbes we tested, Akkermansia muciniphila grew in medium containing ovomucin as a sole carbon source during a 24 h culture period, whereas Bifidobacterium bifidum did not. Both gut microbes, however, degraded ovomucin O -glycans and released monosaccharides into the culture supernatants in a species-dependent manner, as revealed by semi-quantified mass spectrometric analysis and anion exchange chromatography analysis. Our data suggest that ovomucin potentially affects the gut microbiota through O -glycan decomposition by gut microbes and degradant sugar sharing within the community.
Collapse
|
15
|
Kulinich A, Wang Q, Duan XC, Lyu YM, Zhang XY, Awad FN, Liu L, Voglmeir J. Biochemical characterization of the endo-α-N-acetylgalactosaminidase pool of the human gut symbiont Tyzzerella nexilis. Carbohydr Res 2020; 490:107962. [PMID: 32169671 DOI: 10.1016/j.carres.2020.107962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
Abstract
Three large (2084-, 984-, and 2104-amino acids) endo-α-N-acetylgalactosaminidase candidate genes from the commensal human gut bacterium Tyzzerella nexilis were successfully cloned and subsequently expressed in Escherichia coli. Activity tests of the purified proteins revealed that two of the candidate genes (Tn0153 and Tn2105) were able to hydrolyze the disaccharide unit from Galβ1-3GalNAc-α-pNP. The biochemical characterization revealed optimum pH conditions of 4.0 for both enzymes and temperature optima of 50 °C. The addition of 2-mercaptoethanol, Triton X-100 and urea had only minor effects on the activity of the enzymes, and the addition of imidazole and sodium dodecyl sulfate led to a significant reduction of the enzymes' activities. A mutational study identified and confirmed the role of the catalytically significant amino acids. The present study describes the first functional characterization of members of the GH101 family from this human gut symbiont.
Collapse
Affiliation(s)
- Anna Kulinich
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Qian Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xu-Chu Duan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiao-Yang Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Faisal Nureldin Awad
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
16
|
Tang Q, Wang W, Zhang L, Liu Y. Cloning, purification and biochemical characterization of recombinant Cathepsin L from Takifugu rubripes and its role in taste formation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Wang M, Zheng F, Wang T, Lyu YM, Alteen MG, Cai ZP, Cui ZL, Liu L, Voglmeir J. Characterization of Stackebrandtia nassauensis GH 20 Beta-Hexosaminidase, a Versatile Biocatalyst for Chitobiose Degradation. Int J Mol Sci 2019; 20:ijms20051243. [PMID: 30871033 PMCID: PMC6429369 DOI: 10.3390/ijms20051243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
An unstudied β-N-acetylhexosaminidase (SnHex) from the soil bacterium Stackebrandtia nassauensis was successfully cloned and subsequently expressed as a soluble protein in Escherichia coli. Activity tests and the biochemical characterization of the purified protein revealed an optimum pH of 6.0 and a robust thermal stability at 50 °C within 24 h. The addition of urea (1 M) or sodium dodecyl sulfate (1% w/v) reduced the activity of the enzyme by 44% and 58%, respectively, whereas the addition of divalent metal ions had no effect on the enzymatic activity. PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate) strongly inhibited the enzyme in sub-micromolar concentrations. The β-N-acetylhexosaminidase was able to hydrolyze β1,2-linked, β1,3-linked, β1,4-linked, and β1,6-linked GlcNAc residues from the non-reducing end of various tested glycan standards, including bisecting GlcNAc from one of the tested hybrid-type N-glycan substrates. A mutational study revealed that the amino acids D306 and E307 bear the catalytically relevant side acid/base side chains. When coupled with a chitinase, the β-N-acetylhexosaminidase was able to generate GlcNAc directly from colloidal chitin, which showed the potential of this enzyme for biotechnological applications.
Collapse
Affiliation(s)
- Meng Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Zheng
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Zhi-Peng Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhong-Li Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Chen X, Wang J, Liu M, Yang W, Wang Y, Tang R, Zhang M. Crystallographic evidence for substrate-assisted catalysis of β-N-acetylhexosaminidas from Akkermansia muciniphila. Biochem Biophys Res Commun 2019; 511:833-839. [PMID: 30846208 DOI: 10.1016/j.bbrc.2019.02.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
β-N-acetylhexosaminidases from Akkermansia muciniphila was reported to perform the crystal structure with GlcNAc complex, which proved to be the substrate of Am2301. Domain II of Am2301 is consisted of amino acid residues 111-489 and is folded as a (β/α)8 barrel with the active site combined of the glycosyl hydrolases. Crystallographic evidence showed that Asp-278 and Glu-279 could be the catalytic site and Tyr-373 may plays a role on binding the substrate. Moreover, Am2301 prefers to bind Zn ion, which similar to other GH 20 family. Enzyme activity and kinetic parameters of wild-type Am2301 and mutants proved that Asp-278 and Glu-279 are the catalytic sites and they play a critical role on the catalytic process. Overall, our results demonstrate that Am2301 and its complex with GlcNAC provide obvious structural evidence for substrate-assisted catalysis. Obviously, this expands our understanding on the mode of substrate-assisted reaction for this enzyme family in Akkermansia muciniphila.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Department of Biological and Food Engineering, Bozhou University, 2266 Tangwang Road, Bozhou, Anhui, China
| | - Junchao Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Mingjie Liu
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Wenyi Yang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Rupei Tang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| | - Min Zhang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
19
|
Abstract
Akkermansia muciniphila, a symbiotic bacterium of the mucus layer, can utilize mucin as its sole carbon, nitrogen, and energy source. As an abundant resident in the intestinal tract of humans and animals, the probiotic effects of A. muciniphila including metabolic modulation, immune regulation and gut health protection, have been widely investigated. Various diseases such as metabolic syndromes and auto-immnue diseases have been reported to be associated with the disturbance of the abundance of A. muciniphila. In this review, we describe the biological characterization of A. muciniphia, the factors that influence its colonization of the intestinal tract; and discuss the current state of our knowledge on its role in host health and disease.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Saisai Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Narbad Arjan
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.,Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| |
Collapse
|
20
|
Revisiting glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidases: Crystal structures, physiological substrates and specific inhibitors. Biotechnol Adv 2018; 36:1127-1138. [DOI: 10.1016/j.biotechadv.2018.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
|
21
|
Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj J 2018; 35:255-263. [DOI: 10.1007/s10719-018-9824-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023]
|