1
|
Terzi E, Oz-Bedir BE, Ercan E, Ozdemir-Sanci T, Jafarova S, Aydin T. β-Arbutin and cisplatin: A combined approach to modulating apoptosis, cell viability, and migration in bladder cancer cells. Toxicol In Vitro 2024; 104:105985. [PMID: 39638161 DOI: 10.1016/j.tiv.2024.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
One of the preferred treatments for bladder cancer, one of the most common cancers worldwide, is cisplatin-based chemotherapy. Since most tumor cells show cisplatin resistance, it is very important to discover new agents without adverse side effects. β-arbutin, a hydroquinone-β-D-glucopyranoside, has biological properties such as antioxidant, antimicrobial, anti-inflammatory, and anticancer, and is a phytochemical widely used as a skin whitener. In this study, β-arbutin was purified from the animal feed plant Onobrychis buhseana Boiss. (sainfoin). The study aimed to investigate the combined effects of cisplatin, a clinically used chemotherapeutic agent, and β-arbutin on HT-1376 bladder cancer cells for apoptosis, cell viability, and migration. In the study, after HT-1376 bladder cancer cells were cultured, optimum β-arbutin and cisplatin doses were determined on HT-1376 cells using the WST-1 test. To determine the apoptotic and migratory effects, flow cytometry and wound healing assays were performed. In HT-1376 cells, β-Arbutin led to greater apoptotoic and migratory effects when used alone and combined with Cisplatin (p < 0.0001 for apoptotic and migratory effects treated with β-Arbutin alone, p < 0.0001 for apoptotic and migratory effects when combined with Cisplatin). As a result, it can be suggested that β-arbutin may be a good drug candidate for treating bladder cancer.
Collapse
Affiliation(s)
- Emine Terzi
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye; Ankara Yildirim Beyazit, University Yenimahalle Training and Research Hospital, Ankara, Türkiye
| | - Beyza Ecem Oz-Bedir
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye; Ankara Yildirim Beyazit, University Yenimahalle Training and Research Hospital, Ankara, Türkiye
| | - Elif Ercan
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye; Ankara Yildirim Beyazit, University Yenimahalle Training and Research Hospital, Ankara, Türkiye
| | - Tuba Ozdemir-Sanci
- Department of Histology and Embriyology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye; Ankara Yildirim Beyazit, University Yenimahalle Training and Research Hospital, Ankara, Türkiye.
| | - Shahla Jafarova
- Department of Pharmaceutics, Faculty of Veterninary Medicine, Azerbaijan Dövlet Aqrar University, Ganja, Azerbaijan
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Agri İbrahim Cecen University, Agri, Türkiye
| |
Collapse
|
2
|
Chai W, Yu X, Lin Y, Bai QH, Wu YF, Wu WJ, Ou-Yang HY, Pan QX, Shu HL. 7-(Diethylamino) coumarin-3-carboxylic acid as a novel antibrowning agent: Activity and mechanism. Int J Biol Macromol 2024; 282:137286. [PMID: 39510471 DOI: 10.1016/j.ijbiomac.2024.137286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Browning caused by polyphenol oxidase (PPO) and microorganisms significantly impacts the nutritional quality of fruits and vegetables. This study identified 7-(Diethylamino) coumarin-3-carboxylic acid (7-DCCA) as an effective inhibitor of both PPO and bacteria. Enzyme assays revealed that 7-DCCA competitively inhibits PPO activity with an IC50 value of 0.275 ± 0.002 mM. Fluorescence and molecular simulation methods demonstrated that 7-DCCA forms a complex with PPO through hydrogen bonding and hydrophobic interactions, altering the enzyme's structure and reducing its activity. Thermogravimetric and differential scanning calorimetry (DSC) assays showed that 7-DCCA stabilizes PPO, delaying its thermal decomposition. Antibacterial tests proved that 7-DCCA inhibits Staphylococcus aureus and Escherichia coli by disrupting cell membranes. Additionally, 7-DCCA suppressed PPO and peroxidase activities, delaying phenolic oxidation and preventing browning in fruits and vegetables. Cytotoxicity assays confirmed its safety, with over 85 % cell viability at concentrations up to 0.1 mM. Stability experiments verified that 7-DCCA had greatly light and thermal stability. This study highlighted 7-DCCA as a promising antibrowning agent with potential application in food preservation.
Collapse
Affiliation(s)
- Weiming Chai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Xia Yu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan Lin
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiu-Han Bai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yi-Feng Wu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Jing Wu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui-Ying Ou-Yang
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiu-Xia Pan
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui-Lin Shu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Liu T, Lu Y, Tonissen K, Di Trapani G, Tang W, Feng Y. Application of traditional Chinese medicine as skin depigmentation agents. Heliyon 2022; 8:e12571. [PMID: 36636217 PMCID: PMC9830152 DOI: 10.1016/j.heliyon.2022.e12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been frequently used as skin lightning agents. However, the mechanism of action of their effect is unclear. The present study aims to evaluate anti-tyrosinase activity of 10 commonly used TCM on mushroom (ab), human (hs) and mouse melanoma B16F0 (mm) tyrosinase (TYR) respectively. The results showed that at 1.0 mg/mL, extracts from Rosa rugosa Thumb, Morus alba L. and Paeonia lactiflora Pall were active against both abTYR and hsTYR (>50% inhibition), extracts from Bletilla striata (Thunb.) Rchb. F., Centella asiatica (L.) Urb, Cynanchum atratum L., Rosa canina L., Rhus chinensis Mill. and Glycyrrhiza urolensis Fisch. Ex DC. inhibited either abTYR or hsTYR (>50%), while extract from Tribulus terrestris L. had no/minimal activity (<10% inhibition). When treated with melanoma B16F0 cells, M. alba also significantly reduced mmTYR activity (70% at 250 μg/mL) and melanin content (50% at 250 μg/mL). These findings demonstrated inhibitory effects of 9 TCM against TYR and hence support their application as skin lightning agents. Our results also showed discrepancies in TYR activity from different sources, suggesting a testing regime of combining abTYR, hsTYR and mmTYR when developing depigmentation agents for human application.
Collapse
Affiliation(s)
- Tina Liu
- Griffith Institute for Drug Discovery, 46 Don Young Rd, Nathan, QLD 4111, Brisbane, Australia
| | - Yaoying Lu
- Griffith Institute for Drug Discovery, 46 Don Young Rd, Nathan, QLD 4111, Brisbane, Australia
- School of Environment and Science, 170 Kessels Rd, Nathan, QLD 4111, Brisbane, Australia
| | - Kathryn Tonissen
- Griffith Institute for Drug Discovery, 46 Don Young Rd, Nathan, QLD 4111, Brisbane, Australia
- School of Environment and Science, 170 Kessels Rd, Nathan, QLD 4111, Brisbane, Australia
| | - Giovanna Di Trapani
- School of Environment and Science, 170 Kessels Rd, Nathan, QLD 4111, Brisbane, Australia
| | - William Tang
- Ferngrove Pharmaceutical Pty Ltd, 5 Ferngrove Pl, Chester Hill, NSW 2162, Sydney, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, 46 Don Young Rd, Nathan, QLD 4111, Brisbane, Australia
- School of Environment and Science, 170 Kessels Rd, Nathan, QLD 4111, Brisbane, Australia
| |
Collapse
|
4
|
Morales D. Use of Strawberry Tree ( Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods 2022; 11:foods11233838. [PMID: 36496646 PMCID: PMC9736438 DOI: 10.3390/foods11233838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Arbutus unedo, commonly named 'strawberry tree' (ST), is a Mediterranean native plant that represents a relevant source of biologically active fractions and compounds. ST fruits, traditionally used with culinary and medicinal purposes, along with other components (leaves, roots, honeys, etc.), have been subjected to varied extraction procedures to obtain enriched and bioactive products. This work reviewed the scientific literature, searching for studies that evaluated the potential health implications of ST fractions and attending to the tested biological activities (antioxidant, antiproliferative, hypoglycemic, immune-modulatory, antihypertensive, antimicrobial, etc.), the part of the tree, the experimental model, the specific bioactive compounds and the selected extraction protocol. Furthermore, the strengths and weaknesses of the current state of the published evidence were critically analysed. Although in vitro results demonstrated the potential of ST fractions, further research is encouraged in order to obtain in vivo evidence (animal and clinical studies), assess additional activities (hypocholesterolemic, microbiome-modulatory), maximize the use of advanced extraction technologies, purify and isolate specific bioactive compounds and broaden the analysis investigating phenolic and non-phenolic molecules and their bioavailability.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
5
|
Zhang P, Huang Z, Xu P, Zhao D, Li X, Yang J, Zhang Z, Lin J, Li H. A novel method of shrimp blanching by CO2 heat pump: Quality, energy, and economy analysis. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
WANG B, AN X, QU L, WANG F. Review on oral plant extracts in Skin Whitening. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.83922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bo WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Xiaohong AN
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Liping QU
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| | - Feifei WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| |
Collapse
|
8
|
Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10071129. [PMID: 34356362 PMCID: PMC8301119 DOI: 10.3390/antiox10071129] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022] Open
Abstract
Arbutin is a compound of hydroquinone and D-glucose, and it has been over 30 years since there have been serious studies on the skin lightening action of this substance. In the meantime, there have been debates and validation studies about the mechanism of action of this substance as well as its skin lightening efficacy and safety. Several analogs or derivatives of arbutin have been developed and studied for their melanin synthesis inhibitory action. Formulations have been developed to improve the stability, transdermal delivery, and release of arbutin, and device usage to promote skin absorption has been developed. Substances that inhibit melanin synthesis synergistically with arbutin have been explored. The skin lightening efficacy of arbutin alone or in combination with other active ingredients has been clinically evaluated. Combined therapy with arbutin and laser could give enhanced depigmenting efficacy. The use of arbutin causes dermatitis rarely, and caution is recommended for the use of arbutin-containing products, especially from the viewpoint that hydroquinone may be generated during product use. Studies on the antioxidant properties of arbutin are emerging, and these antioxidant properties are proposed to contribute to the skin depigmenting action of arbutin. It is hoped that this review will help to understand the pros and cons of arbutin as a cosmetic ingredient, and will lead to future research directions for developing advanced skin lightening and protecting cosmetic products.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
9
|
Moulis C, Guieysse D, Morel S, Séverac E, Remaud-Siméon M. Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Curr Opin Chem Biol 2020; 61:96-106. [PMID: 33360622 DOI: 10.1016/j.cbpa.2020.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023]
Abstract
An increasing number of transglycosylase-based processes provide access to oligosaccharides or glycoconjugates, some of them reaching performance levels compatible with industrial developments. Nevertheless, the full potential of transglycosylases has not been explored because of the challenges in transforming a glycoside hydrolase into an efficient transglycosylase. Advances in studying enzyme structure/function relationships, screening enzyme activity, and generating synthetic libraries guided by computational protein design or machine learning methods should considerably accelerate the development of these catalysts. The time has now come for researchers to uncover their possibilities and learn how to design and precisely refine their activity to respond more rapidly to the growing demand for well-defined glycosidic structures.
Collapse
Affiliation(s)
- Claire Moulis
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
| | - David Guieysse
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Sandrine Morel
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Etienne Séverac
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
| |
Collapse
|